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Abstract. Conventional approaches to similarity search and case-based
retrieval, such as nearest neighbor search, require the specification of a
global similarity measure which is typically expressed as an aggregation
of local measures pertaining to different aspects of a case. Since the
proper aggregation of local measures is often quite difficult, we propose a
novel concept called similarity skyline. Roughly speaking, the similarity
skyline of a case base is defined by the subset of cases that are most
similar to a given query in a Pareto sense. Thus, the idea is to proceed
from a d-dimensional comparison between cases in terms of d (local)
distance measures and to identify those cases that are maximally similar
in the sense of the Pareto dominance relation [2]. To refine the retrieval
result, we propose a method for computing maximally diverse subsets of
a similarity skyline. Moreover, we propose a generalization of similarity
skylines which is able to deal with uncertain data described in terms of
interval or fuzzy attribute values. The method is applied to similarity
search over uncertain archaeological data.

1 Introduction

Similarity search in high-dimensional data spaces is important for numerous
application areas. In case-based reasoning (CBR), for example, it provides an
essential means for implementing case retrieval, a critical step in case-based
problem solving. In case-based retrieval, understood as the application of CBR
paradigms to information retrieval tasks [3], similarity search becomes an even
more central issue.

A commonly applied approach to case retrieval is nearest neighbor (NN)
search. In fact, NN queries as proposed in [4] and their application to similarity
search have been studied quite extensively in the past. Despite their usefulness
for certain problems, NN methods exhibit several disadvantages. For example,
they are usually sensitive toward outliers and cannot easily deal with uncertain
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data. Due to the “curse of dimensionality” [5], the performance of NN methods
significantly degrades in the case of high-dimensional data.

Perhaps even more importantly, NN methods assume a global similarity or,
alternatively, distance function to be specified across the full feature set. The
specification of such a measure is often greatly simplified by the “local–global
principle”, according to which the global similarity between two cases can be ob-
tained as an aggregation of various local measures pertaining to different features
of a case [6]. However, even though it is true that local distances can often be de-
fined in a relatively straightforward way, the combination of these distances can
become quite difficult in practice, especially since different features may pertain
to completely different aspects of a case. Moreover, the importance of a feature
is often subjective and context-dependent. Thus it might be reasonable to free a
user querying a system from the specification of an aggregation function, or at
least to defer this step to a later stage.

In this paper, we propose a new concept, called similarity skyline, for sup-
porting similarity search and case-based retrieval without the need to specify
a global similarity measure. Roughly speaking, the similarity skyline of a case
base is defined by the subset of cases that are most similar to a given query
in a Pareto sense. More precisely, the idea is to proceed from a d-dimensional
comparison between cases in terms of d (local) similarity or distance measures
and to identify those cases that are maximally similar in the sense of the Pareto
dominance relation.

The rest of the paper is organized as follows: Section 2 describes the ap-
plication that motivates our approach, namely similarity search over uncertain
archaeological data. The concept of a similarity skyline is introduced in Section 3.
In Section 4, we propose a method for refining the retrieval result, namely by
selecting a (small) diverse subset of a similarity skyline. Section 5 is devoted
to a generalization of similarity skylines which is able to deal with uncertain
data described in terms of interval or fuzzy attribute values. Finally, Section 6
presents some experimental results, and Section 7 concludes the paper.

2 Motivation and Background

Even though the methods introduced in this paper are completely general, they
have been especially motivated by a particular application. As we shall report
experimental results for this application later on, we devote this section to a
brief introduction.

The DEADDY project aims at using knowledge discovery techniques to ex-
tract valuable information from archaeological databases. The domain under
study is the analysis of graves in the Early Middle Ages. The data informs
about graves, the persons buried therein, and the grave goods (objects which
were put into the grave during the funeral ceremony according to religious rules
or traditions typical for the given historical moment). Fig. 1 shows a screen shot
of the DEADDY user interface. One can see a data record with information
about particular grave goods: type, material, position in the grave, etc.



Fig. 1. Grave Good Form in the DEADDY Database

To demonstrate our approach, we have chosen the graveyard Wenigumstadt,
which dates from the Early Middle Ages and is situated in the south of Germany.
The inhabitants of a small village were buried in this cemetery from the end of the
Roman Empire to the Age of Charlemagne. The data set contains information
about 126 graves and 1074 grave goods. Data were extracted from a relational
database and put into a joint table containing attributes for graves, individuals
and grave goods. In total there are 9 attributes, 3 of which describe a grave, 2 a
person, and the remaining 4 the grave goods.

Imagine an archaeologist interested in discovering dependencies between wealth
of the grave equipment and the age of the person buried therein. To make a first
step in analyzing this question, a system should support similarity searches in
a proper way. For example, an archaeologist may choose an interesting grave
as a starting point and then try to find graves which are similar to this one.
The techniques developed in this paper are especially motivated by the following
experiences that we had with this field of application and corresponding users:

– While local similarity measures pertaining to different attributes or proper-
ties of a grave can often be defined without much difficulty, an archaeologist
is usually not willing or not able to define a global distance measure properly
reflecting his or her (vague) idea of similarity between complete graves.

– Both the data, such as age or spatial coordinates of a grave good, as well as
the queries referring to the data are typically vague and imprecise, sometimes
even context-dependent.

3 Similarity Search and the Similarity Skyline

We proceed from a description of cases in terms of d-dimensional feature vectors

x = (x1, x2 . . . xd) ∈ X = X1 × X2 × . . . × Xd, (1)



where Xi is the domain of the i-th feature Xi. A case base CB is a finite subset
of the space X spanned by the domains of the d features. Even though a feature-
based representation is of course not always suitable, it is often natural and
still predominant in practice [7]. In this regard, we also note that a feature is
not assumed to be a simple numerical or categorical attribute. Instead, a single
feature can be a complex entity (and hence Xi a complex space), for example
a structured object such as a tree or a graph. We only assume the existence of
local distance measures

δi : Xi × Xi → R+, (2)

i.e., each space Xi is endowed with a measure that assigns a degree of distance
δi(xi, yi) to each pair of features (xi, yi) ∈ Xi×Xi. According to the local–global
principle, the distance between two cases can then be obtained as an aggregation
of the local distance measures (2):

∆(x,y) = A ( δ1(x1, y1), δ2(x2, y2) . . . δd(xd, yd) ) , (3)

where A is a suitable aggregation operator. As mentioned in the introduction,
the specification of such an aggregation operator can become quite difficult in
practice, especially for non-experts. Therefore, it might be reasonable to free a
user querying a system from this requirement, or at least to defer this step to a
later stage.

One may of course imagine intermediary scenarios in which some of the
local similarity measures can be aggregated into measures at a higher level of
a hierarchical scheme. In this scheme, the problem of similarity assessment is
decomposed in a recursive way, i.e., a similarity criterion is decomposed into
certain sub-criteria, which are then aggregated in a suitable way. In other words,
each feature or, perhaps more accurately, similarity feature Xi in (1) might
already be an aggregation

Xi = Ai(Xi1, Xi2 . . . Xik)

of a certain number of sub-features, which in turn can be aggregations of sub-sub-
features, etc. Now, our assumption is that a further aggregation of the features
X1 . . . Xd is not possible, or at least not supported by the user. These (similar-
ity) features, however, do not necessarily correspond to the attributes used to
describe a single case. For example, suppose that two cars, each of which might
be described by a large number of attributes, can be compared with respect to
comfort and investment in terms of corresponding similarity measures. If a fur-
ther combination of these two degrees into a single similarity score is difficult,
then comfort and investment are the features in (1).

3.1 The Similarity Skyline

Note that a global similarity or distance function, if available, induces a total

order on the set of all alternatives: Given a query z = (z1 . . . zd) ∈ X and two
cases x,y ∈ CB,

x �z y
df

⇐⇒ ∆(z,x) ≤ ∆(z,y).



Instead of requiring a user to define a global distance measure and, thereby, to
bring all alternatives into a total order, the idea of this paper is to compare
alternatives in terms of a much weaker “closeness” or, say, “preference” relation,
namely Pareto dominance: Given a query z and cases x,y,

x �z y
df

⇐⇒ ∀ i ∈ {1, 2 . . . d} : δi(zi, xi) ≤ δi(zi, yi).

Thus, x is (weakly) preferred to y if the former is not less similar to z than the
latter in every dimension. Moreover, we define strict preference as follows:

x �z y
df

⇐⇒ x �z y ∧ ∃ i ∈ {1, 2 . . . d} : δi(zi, xi) < δi(zi, yi). (4)

When x �z y, we also say that y is dominated or, more specifically, similarity-

dominated by x. Note that the relation �z is only a partial order, i.e., it is
antisymmetric and transitive but not complete. That is, two cases x,y ∈ CB
may (and often will) be incomparable in terms of �z, i.e., it may happen that
one can neither say that x is “more similar” than y nor vice versa.

However, when x �z y holds, x is arguably more interesting than y as a
retrieval candidate. More precisely, the following observation obviously holds:
x �z y implies ∆(z,x) < ∆(z,y), regardless of the aggregation function A in
(3), provided this function is strictly monotone in all arguments. As a result, y

cannot be maximally similar to the query, as x is definitely more similar.
Consequently, the interesting candidates for case retrieval are those cases

that are non-dominated. Such cases are called Pareto-optimal, and the set itself is
called the Pareto set. This set corresponds to the set of cases that are potentially
most similar to the query: If there exists an aggregation function A such that
x is maximally similar to z among all cases in CB, then x must be an element
of the Pareto set. For reasons that will become clear in the next subsection, we
call the set of Pareto-optimal cases the similarity skyline:

SSky(CB, z)
df
= {x ∈ CB | ∀y ∈ CB : y 6�z x } (5)

In passing, we note that only the ordinal structure of the local distance measures
δi is important for this approach, which further simplifies their definition: For
the X → R+ mapping δi(zi, ·), it is only important how it orders xi and yi, i.e.,
whether δi(zi, xi) < δi(zi, yi) or δi(zi, xi) > δi(zi, yi), while the distance degrees
themselves are irrelevant. In other words, the similarity skyline (5) is invariant
toward monotone transformations of the δi.

3.2 Skyline Computation

The computation of a Pareto optimal subset of a given reference set has received
a great deal of attention in the database community in recent years. Here, the
Pareto optimal set is also called the skyline. A “skyline operator”, along with
a corresponding SQL notation, was first proposed in [8]. It proceeds from a
representation of objects in terms of d criteria, i.e., “less-is-better” attributes



Ci, i = 1 . . . d, with linearly ordered domains R+; the corresponding data space
is the Cartesian product of these domains, and an object is a vector in this space.
In the simplest form, the skyline Sky(P ) of a d-dimensional data set P is defined
by the subset of objects (c1 . . . cd) ∈ P that are non-dominated, i.e., for which
there is no (c′1 . . . c′d) ∈ P such that c′i ≤ ci holds for all and c′i < ci for at least
one i ∈ {1 . . . d}.

To illustrate, consider a user choosing a car from a used-cars database,
and suppose cars to be characterized by only two attributes, namely price and
mileage. An example data set and its skyline are presented in Fig. 2. Point A
(Acura) is dominated by point H (Honda), because the Honda is cheaper and
has lower mileage. The six points (marked black) which are non-dominated by
any other point form the skyline.

Car Price , 
1000$

Milea ge, 
1000km

Acura 17 68

BMW 32 13

Cadillac 24 37

Ford 14 29

Honda 12 33

Land Rover 26 16
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Toyota 21 18

Volkswagen 13 28
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Fig. 2. Example of a two-dimensional skyline.

Now, recall the problem of computing a similarity skyline, as introduced in
the previous subsection: Given a case base CB and a query case z, the goal
is to retrieve the set of cases x ∈ CB that are non-dominated in the sense of
(4). This problem can be reduced to the standard skyline problem in a relatively
straightforward way. To this end, one simply defines the criteria to be minimized
by the distances in the different dimensions. Thus, with δi : Xi × Xi → R+

denoting the distance measure for the i-th feature, a case x = (x1 . . . xd) is first
mapped to a point

x′ = Tz(x)
df
= ( δ1(x1, z1), δ2(x2, z2) . . . δd(xd, zd) ) ∈ R

d
+. (6)

Geometrically speaking, this transformation is a kind of reflection that, using
the reference point z as a center, maps all data points into the positive quadrant
(see Fig. 3). The similarity skyline then corresponds to the standard skyline of
the image of CB under the mapping Tz, i.e.,

SSky(CB, z) = Sky(Tz(CB)).

Computing a skyline in an efficient way is a non-trivial problem, especially in
high dimensions (cf. Section 6). In the database field, several main-memory algo-
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Fig. 3. Using the query point q as a center, the original data points (a) are mapped into
the positive quadrant in a distance-preserving way (b). The skyline in the transformed
space corresponds to the points that are not similarity-dominated (c).

rithms (for the case where the whole data set fits in memory) as well as efficient
methods for computation of skyline points over data stored in the database have
been proposed. In our implementation, we used the block nested loop (BNL)
algorithm for skyline computation [8]. The most naive way to compute a skyline
is to check the non-dominance condition explicitly for each case (by comparing
it to all other cases). BNL is a modification of this approach which proceeds as
follows: The list of skyline candidate objects (SCL) is kept in the memory, ini-
tialized with the first case. Then, the other cases y are examined one by one: (a)
If y is dominated by any case in the SCL, it is pruned as it can not belong to the
skyline. (b) If y dominates one or more case in the SCL, these cases are replaced
by y. (c) If y is neither dominated by, nor dominates any case in the SCL, it is
simply added to the SCL. We refer to [9] for more details on BNL and a thorough
review of alternative skyline computation algorithms. It is also worth mention-
ing that the concept of dynamic skyline, proposed in the same paper, provides a
perfect algorithmic framework for implementing similarity skyline computation
when the data is stored in an indexed database instead of main memory.

4 Refining Similarity Skylines

The similarity skyline (5) may become undesirably large, especially in high di-
mensions. A user may thus not always want to inspect the whole set of Pareto
optimal cases. A possible solution to this problem is to select an interesting
subset from S = SSky(CB, z), i.e., to filter S according to a suitable criterion.
Here, we propose the criterion of diversity, which has recently attracted special
attention in case-based retrieval [10, 11]: To avoid redundancy, and to convey a
picture of the whole set S with only a few cases, the idea is to select a subset of
cases which is as diverse as possible.

An implementation of this criterion requires a formalization of the concept
of diversity. What does it mean that a set D ⊆ S is diverse? Intuitively, it means
that the cases in D should be dissimilar amongst each other. It is important to



note that, according to our assumptions, a formalization of this criterion must
only refer to the local distance measures δi, i = 1 . . . d, and not to a global
measure.

We therefore define the diversity of a subset D of cases by the vector div(D) =
(v1, v2 . . . vd), where

vi
df
= min{ δi(xi, yi) |x = (x1 . . . xd), y = (y1 . . . yd) ∈ D }

is the diversity in the i-th dimension. In principle, it is now again possible to
apply the concept of Pareto optimality, i.e., to define a preference relation � on
subsets of cases by D � D

′ iff div(D) ≥ div(D′), and to look for Pareto optimal
subsets of S. However, this Pareto set will also include subsets that are very
dissimilar in some dimensions but not at all dissimilar in others. From a diversity
point of view, this is not desirable. To find subsets that are as “uniformly” diverse
as possible, we therefore propose the following strategy: Suppose that a user
wants to get a diverse subset of size K, which means that the set of candidates
is given by the set of all subsets D ⊆ S with |D| = K. Moreover, for dimension
i, consider the ranking of all candidate subsets D in descending order according
to their diversity vi in that dimension, and let ri(D) be the rank of D. We then
evaluate a candidate subset D by

val(D)
df
= max{ ri(D) | i = 1 . . . d },

and the goal is to find a subset minimizing this criterion. Note that the latter
is a minimax-solution, that is, a subset which minimizes its worst position in
the d rankings; Fig. 4 gives an illustration. Interestingly, the above idea has
recently been proposed independently under the name “ranking dominance” in
the context of multi-criteria optimization [12].

Fig. 4. A set of cases represented as points, the similarity skyline (boxes), and a diverse
subset of size 4 (encircled boxes).



Algorithmically, we solve the problem as follows. For every pair of cases
x,y ∈ S and for each dimension i, one can precompute the rank ri(xi, yi) of
their distance δi(xi, yi). For a fixed v ∈ N, define a graph Gv as follows: the
node set is S, and for each x,y ∈ S, an edge is inserted in Gv if ri(xi, yi) ≤ v.
Obviously, a subset D with val(D) ≤ v corresponds to a K-clique in Gv. The
optimization problem can thus be solved by finding the minimal v ∈ N such that
Gv contains a K-clique.

Unfortunately, the K-clique problem is known to be NP-hard [13]. Never-
theless, there exist good heuristics. In our approach, we use a method similar
to the one proposed in [14]. Moreover, to find the minimal value v, we employ
the bisection method with lower bound 1 and upper bound vmax, where vmax is
guessed at the beginning (and probably increased if Gvmax

does not contain a
K-clique). Essentially, this means that the number of search steps is logarithmic
in vmax.

We conclude this section by noting that a diverse subset D can be taken as
a point of departure for “navigating” within a similarity skyline. For example,
a user may identify one case x ∈ D as being most interesting. Then, one could
“zoom” into that part of the skyline by retrieving another subset of cases from
the skyline that are as similar to x as possible, using a criterion quite similar to
the one used for diversity computation. Such extensions are being investigated
in ongoing work.

5 Similarity Skyline for Uncertain Data

Motivated by our main application scenario, we have extended the concept of a
similarity skyline to the case of uncertain data. In fact, the problem of uncertain
and imprecisely known attribute values is quite obvious for archaeological data,
though it is of course not restricted to this application field. Besides, note that
the query itself is often imprecise. For example, consider a user looking for a
case which is maximally similar to an “ideal” case, which is given as a query.
This ideal case can be fictitious, and the user may prefer to specify it in terms
of imprecise or fuzzy features like “a prize of about 1,200 dollars”.

5.1 Uncertainty Modeling

Perhaps the most simple approach to handling imprecise attribute values is to
use an interval-based representation: Each attribute value is characterized in
terms of an interval that is assumed to cover the true but unknown value. For
example, the unknown age at death of a person could be specified in terms of
the interval [25, 45].

An interval of the form [a, b] declares some values to be possible or plausible,
namely those between a and b, and excludes others as being impossible, namely
those outside the interval. A well-known and quite obvious disadvantage of the
interval-based approach is the abrupt transition between the range of possible
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Fig. 5. Example of a fuzzy set modeling the linguistic concept “middle-aged”.

and impossible values. In the above example, the age of 45 is considered as fully
plausible, while 46 years is definitely excluded.

Another approach to uncertainty modeling, which often appears to be more
appropriate, is to characterize the set of possible values of an attribute Xi in
terms of a fuzzy subset of the attribute’s domain Xi, that is, by a mapping
F : Xi → [0, 1]. Adopting a semantic interpretation of membership degrees in
terms of degrees of plausibility, a fuzzy set F can be associated with a possibility
distribution πF : For every x ∈ Xi, πF (x) = F (x) corresponds to the degree of
plausibility that x equals the true but unknown attribute value xi. A possibility
distribution thus allows one to express that a certain value x is neither completely
plausible nor completely impossible, but rather possible to some degree. For
example, given the information that a person was middle-aged, all ages between
30 and 40 may appear fully plausible, which means that πF (x) = 1 for x ∈
[30, 40]. Moreover, all ages below 20 or above 50 might be completely excluded,
i.e., πF (x) = 0 for x ≤ 20 and x ≥ 50. All values in-between these regions are
possible to some degree. The simplest way to model a gradual transition between
possibility and impossibility is to use a linear interpolation, which leads to the
commonly employed trapezoidal fuzzy sets (see Fig. 5). According to this model,
πF (25) = 0.5, i.e., an age of 25 is possible to the degree 0.5.

A possibility distribution πF induces two important measures, namely a pos-

sibility and a necessity measure:

ΠF : 2Xi → [0, 1], A 7→ sup
x∈A

πF (x)

NF : 2Xi → [0, 1], A 7→ 1 − sup
x6∈A

πF (x)

For each subset A ⊆ Xi, ΠF (A) is the degree of plausibility that xi ∈ A. More-
over, N(A) is the degree to which xi is necessarily in A. The measures ΠF and
NF are dual in the sense that ΠF (A) ≡ 1−NF (X\A). To verbalize, xi is possibly
in A as long as it is not necessarily in the complement X \ A.

5.2 Transformation for Fuzzy Attribute Values

As outlined above, a first step of our approach consists of mapping a data point
x = (x1 . . . xd) ∈ CB to the “distance space”. According to (6), every attribute



value xi is replaced by its distance x′
i = δi(xi, zi) to the corresponding value of

the query case z = (z1 . . . zd).
When both xi and zi are characterized in terms of fuzzy sets Fi and Gi,

respectively, the distance x′
i becomes a fuzzy quantity F ′

i as well. It can be
derived by applying the well-known extension principle to the distance δi [15]:

F ′
i (d) = sup{min(Fi(xi), Gi(zi)) | δi(xi, zi) = d } (7)

5.3 The Dominance Relation for Fuzzy Attribute Values

The definition of the skyline of a set of data points involves the concept of
dominance. In the case of similarity queries, dominance refers to distance, i.e.,
a value xi (weakly) dominates a value yi if xi ≤ yi. If the data is uncertain, an
obvious question is how to extend this concept of dominance to attribute values
characterized in terms of intervals or fuzzy sets. This question is non-trivial,
since neither the class of intervals nor the class of fuzzy subsets of a totally
ordered domain are endowed with a natural order.

Consider two objects (transformed cases) x = (x1 . . . xd) and y = (y1 . . . yd),
and suppose that the true distance values xi and yi are characterized in terms
of fuzzy sets Fi and Gi, respectively (derived according to (7)). The problem
is now to extend the dominance relation so as to enable the comparison of two
fuzzy vectors F = (F1 . . . Fd) and G = (G1 . . . Gd).

Let πFi
and πGi

denote, respectively, the possibility distributions associated
with the fuzzy sets Fi and Gi. If these distributions can be assumed to be non-
interactive, the degree of possibility and the degree of necessity of the event
xi ≤ yi are given, respectively, by

pi = Π(xi ≤ yi) = sup
x≤y

min(πFi
(x), πGi

(y)),

ni = N(xi ≤ yi) = 1 − sup
x>y

min(πFi
(x), πGi

(y)) .

Since the dominance relation requires dominance for all dimensions, these de-
grees have to be combined conjunctively. To this end, one can refer to a t-norm
as a generalized logical conjunction [16]. Using the minimum operator for this
purpose, one eventually obtains two degrees p and n, such that

p = min(p1 . . . pd) ≥ min(n1 . . . nd) = n ,

which correspond, respectively, to the degree of possibility and the degree of
necessity that the first object (x) dominates the second one (y). Thus, the
(fuzzy) dominance relation between x and y is now expressed in terms of a
possibility/necessity interval:

FDOM(x,y) = [n, p] (8)

In principle, it would now be possible to use this “fuzzy” conception of dominance
to define a kind of fuzzy skyline. More specifically, for each object x one could



derive a degree of possibility and a degree of necessity for x to be an element of
the skyline. A less complex alternative is to “defuzzify” the dominance relation
first, and to compute a standard skyline afterward. Defuzzifying means replacing
fuzzy dominance by a standard (non-fuzzy) dominance relation, depending on
the two degrees p and n. Of course, this can be done in different ways, for example
by thresholding:

x � y
df

⇐⇒ n ≥ α and p ≥ β , (9)

where 0 ≤ α ≤ β ≤ 1. If α is small while β = 1, this means that x � y

iff dominance is considered fully plausible and also necessary to some extent.
In fact, for β = 1, (9) has an especially intuitive meaning: A fuzzy interval
Fi dominates a fuzzy interval Gi if the (1 − α)-cut of Fi, which is the interval
[f l

1−α, fu
1−α] = {xi |Fi(xi) ≥ 1−α}, dominates the (1−α)-cut of Gi, [gl

1−α, gu
1−α],

in the sense that the former precedes the latter, i.e., fu
1−α < gl

1−α. The dominance
relation hence tolerates a certain overlap of the fuzzy intervals, and the degree
of this overlap depends on α; see Fig. 6 for an illustration.

Fig. 6. Example in which the dominance relation (9) holds for α = 0.3 (and β = 1)
but not for α = 0.6. In the latter case, the (1 − α)-cuts of Fi and Gi intersect.

As suggested by this example, the thresholds α and β can be used to make
the dominance relation more or less restrictive and, thereby, to influence the size
of the skyline: If α and β are increased, the dominance relation will hold for
fewer objects, which in turn means that the skyline grows. In this regard, also
note that α and β must satisfy certain restrictions in order to guarantee that
x � y and x � y cannot hold simultaneously. Since FDOM(y,x) = [1−p, 1−n],
a reasonable restriction excluding this case is α + β > 1.

6 Experiments

The get a first idea of the efficacy and scalability of our approach, we have
conducted a number of experiments. In particular, we investigated how many
cases are found to be similar to a query depending on the dimensionality of
the case base and the strictness of the dominance relation (9), that we used for
different values of α (while β was fixed to 1). Moreover, we addressed the issues
of run time and scalability. Since the original data in the current version of our
archaeological database is interval data, we turned intervals into fuzzy sets with



triangular membership functions, using the mid-point of an interval as the core
(center point) of the corresponding fuzzy set.

From the original 9-dimensional case base, 22 test sets of different dimen-
sion were constructed by projecting to corresponding subsets of the attributes.
Each case of a case base CB was used as a query resulting in a total number of
n = |CB | queries. For the corresponding n answer sets (skylines), we derived
the average and the standard deviation of the relative size of answer set (num-
ber divided by n); see Fig. 7. Likewise, the average run time and its standard
deviation were measured; see Fig. 8. Finally, Fig. 9 shows run time results for
the computation of diverse subsets of size 5, depending on the size of the original
skyline.
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Fig. 9. Run time for the computation of diverse subsets of size 5 and dimensions 2–15
depending on the size of the original skyline.

As it was to be expected, the cardinality of the answer set critically depends
on the dimensionality of the case base and the strictness of the dominance re-
lation. Run time increases correspondingly but remains satisfactory even for
high-dimensional queries (171 ms on average for a 9-dimensional query). Similar
remarks apply to the computation of diverse subsets.

In summary, our results confirm theoretical findings showing that the com-
plexity of skyline computation, like most other retrieval techniques, critically
depends on the dimension of a data set, in the worst case exponentially. Still,
the results also show that problems of reasonable size (the number of features
deemed relevant by a user in a similarity query is typically not very large) can
be handled with an acceptable cost in terms of run time.

7 Conclusions

Motivated by an application in the field of archeology, we have proposed a new
approach to similarity search. Our method is based on the concept of Pareto
dominance and, taking an example case as a reference point, seeks to find objects
that are maximally similar in a Pareto sense. It is especially user-friendly, as it
does not expect the specification of a global similarity or distance function. Our
first experiences are promising, and so far we received quite positive feedback
from users.

Again motivated by our application, we have extended the computation of a
similarity skyline to the case of uncertain (fuzzy) data. Apart from advantages
with respect to modeling and knowledge representation, the fuzzy extension also
allows for controlling the size of answer sets: Since one object can dominate an-
other one “to some degree”, the (non-fuzzy) dominance relation can be specified
in a more or less stringent way. This effect is clear from our experimental results.

We believe that similarity search based on Pareto dominance is of general
interest for CBR, and we see this paper as a first step to popularize this research



direction. Needless to say, a lot of open problems remain to be solved. For ex-
ample, as Pareto dominance is a rather weak preference relation, the number of
cases “maximally similar” to the query can become quite large. Implementing
additional filter strategies, such as diverse subset computation, is one way to
tackle this problem. Another direction is to refine Pareto dominance, so that it
discriminates more strongly between cases. This is a topic of ongoing work.
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