Stetige Wahrscheinlichkeitsverteilungen – allgemeine Modelle

Hajo Holzmann

Philipps-Universität Marburg

Diskrete Zufallsvariablen

- (Ω, P) diskreter W-Raum, $X : \Omega \to \mathbb{R}$ Zufallsvariable.
- ullet P_X eine Wahrscheinlichkeitsverteilung auf $X(\Omega)\subset \mathbb{R}$
- macht $(X(\Omega), P_X)$ zu diskretem W-Raum.

Diskrete Zufallsvariablen

- (Ω, P) diskreter W-Raum, $X : \Omega \to \mathbb{R}$ Zufallsvariable.
- ullet P_X eine Wahrscheinlichkeitsverteilung auf $X(\Omega)\subset\mathbb{R}$
- macht $(X(\Omega), P_X)$ zu diskretem W-Raum.

Erweitere P_X zu Wahrscheinlichkeitsverteilung auf ganz \mathbb{R} :

$$ilde{P}_X : \mathcal{P}(\mathbb{R}) \to [0,1],$$
 $ilde{P}_X(A) = P_X(A \cap X(\Omega)), \quad A \subset \mathbb{R}.$

 \rightarrow Weiterhin σ -additiv, normiert.

Verteilungen für stetige Merkmale

Erwarten

- W-keit, das Beobachtung in gewisse Intervalle fällt, positiv
- Gleich (mit positiver Fkt) gewichtete Länge des Intervalls
- W-keit für individuellen Ausgang x dann = 0 für alle $x \in \mathbb{R}$.

Verteilungen für stetige Merkmale

Erwarten

- W-keit, das Beobachtung in gewisse Intervalle fällt, positiv
- Gleich (mit positiver Fkt) gewichtete Länge des Intervalls
- W-keit für individuellen Ausgang x dann = 0 für alle $x \in \mathbb{R}$.

Satz von Banach und Kuratowski

 $P:\mathcal{P}(\mathbb{R}) \to [0,1]$ σ -additiv und normiert

 \Rightarrow es existiert $x \subset \mathbb{R}$ mit $P(\{x\}) > 0$.

(Voraussetzung: Gültigkeit der Kontiuumshypothese).

Verteilungen für stetige Merkmale

Erwarten

- W-keit, das Beobachtung in gewisse Intervalle fällt, positiv
- Gleich (mit positiver Fkt) gewichtete Länge des Intervalls
- W-keit für individuellen Ausgang x dann = 0 für alle $x \in \mathbb{R}$.

Satz von Banach und Kuratowski

 $P:\mathcal{P}(\mathbb{R}) \to [0,1]$ σ -additiv und normiert

 \Rightarrow es existiert $x \subset \mathbb{R}$ mit $P(\{x\}) > 0$.

(Voraussetzung: Gültigkeit der Kontiuumshypothese).

ightarrow : Es gibt keine auf ganz $\mathcal{P}(\mathbb{R})$ definierte

Wahrscheinlichkeitfunktion für stetige Merkmale.

Systeme von Teilmengen: σ -Algebren

Lösung:

- Definiere Wahrscheinlichkeit nicht für alle $A \subset \mathbb{R}$.
- Nur für System von Teilmengen, dass
 - alle relevanten Mengen (etwa Intervalle) enthält
 - technisch praktisch zu handhaben ist: abgeschlossen unter allen abzählbaren Mengenoperationen

Systeme von Teilmengen: σ -Algebren

Lösung:

- Definiere Wahrscheinlichkeit nicht für alle $A \subset \mathbb{R}$.
- Nur für System von Teilmengen, dass
 - alle relevanten Mengen (etwa Intervalle) enthält
 - technisch praktisch zu handhaben ist: abgeschlossen unter allen abzählbaren Mengenoperationen

Definition Ω nicht leere Menge. $\mathcal{A} \subset \mathcal{P}(\Omega)$ heißt σ-Algebra über Ω , falls

- $\Omega \in \mathcal{A}$.
- $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$.
- $A_1, A_2, \ldots \in \mathcal{A} \Rightarrow \bigcup_n A_n \in \mathcal{A}$.

Borel - σ Algebra

Sei $\mathcal{I} =$ alle Intervalle in \mathbb{R} .

Definition Die kleinste σ -Algebra über \mathbb{R} , die ganz \mathcal{I} enthält, heißt die Borel- σ -Algebra über \mathbb{R} , Bez. \mathcal{B} . Formal ist

$$\mathcal{B} = igcap_{\mathcal{A} \subset \mathcal{P}(\mathbb{R})} igcap_{\sigma - \mathsf{Algebra}, \ \mathcal{I} \subset \mathcal{A}} \mathcal{A}.$$

ightarrow Nur Mengen $B \in \mathcal{B}$ (Borel-Mengen) wird Wahrscheinlichkeit zugeordnet.

 \mathcal{B} enthält insbesondere alle diskreten Teilmengen $B \subset \mathbb{R}$.

Wahrscheinlichkeitsmaß, Wahrscheinlichkeitsraum

Definition Sei Ω eine nichtleere Menge und $\mathcal A$ eine σ -Algebra über

Ω. Eine Abbildung

$$P:\mathcal{A}\to [0,1]$$

heißt Wahrscheinlichkeitsmaß über (Ω, \mathcal{A}) , falls gelten

1.
$$P(\Omega) = 1$$
.

Wahrscheinlichkeitsmaß, Wahrscheinlichkeitsraum

Definition Sei Ω eine nichtleere Menge und $\mathcal A$ eine σ -Algebra über

Ω. Eine Abbildung

$$P:\mathcal{A}\to[0,1]$$

heißt Wahrscheinlichkeitsmaß über (Ω, A) , falls gelten

- 1. $P(\Omega) = 1$.
- 2. Für paarweise disjunkte Mengen $A_1,A_2,\ldots\in\mathcal{A}$ gilt

$$P\Big(\bigcup_{k=1}^{\infty}A_k\Big)=\sum_{k=1}^{\infty}P(A_k).$$

Wahrscheinlichkeitsmaß, Wahrscheinlichkeitsraum

Definition Sei Ω eine nichtleere Menge und $\mathcal A$ eine σ -Algebra über

Ω. Eine Abbildung

$$P:\mathcal{A} \rightarrow [0,1]$$

heißt Wahrscheinlichkeitsmaß über (Ω, A) , falls gelten

- 1. $P(\Omega) = 1$.
- 2. Für paarweise disjunkte Mengen $A_1, A_2, \ldots \in \mathcal{A}$ gilt

$$P\Big(\bigcup_{k=1}^{\infty}A_k\Big)=\sum_{k=1}^{\infty}P(A_k).$$

Das Tripel (Ω, \mathcal{A}, P) heißt Wahrscheinlichkeitsraum.

Zufallsvariablen

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum.

Definition. Abbildung $X:\Omega\to\mathbb{R}$ heißt Zufallsvariable, falls für alle Borel-Mengen $B\in\mathcal{B}$ gilt

$${X \in B} = {\omega \in \Omega : X(\omega) \in B} \in \mathcal{A}.$$

Bemerkung

Für diskretes Ω ist $\mathcal{A} = \mathcal{P}(\Omega)$

 \rightarrow jede Abbildung $X:\Omega \rightarrow \mathbb{R}$ Zufallsvariable.

Verteilung von Zufallsvariablen

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum, $X : \Omega \to \mathbb{R}$ Zufallsvariable.

Definition. Die Verteilung von X ist gegeben durch

$$P_X(B) := P(X \in B) = P(\{\omega : X(\omega) \in B\}), \qquad B \in \mathcal{B}.$$

Wohldefiniert, da $\{\omega: X(\omega) \in B\} \in \mathcal{A}$.

Verteilung von Zufallsvariablen

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum, $X : \Omega \to \mathbb{R}$ Zufallsvariable.

Definition. Die Verteilung von X ist gegeben durch

$$P_X(B) := P(X \in B) = P(\{\omega : X(\omega) \in B\}), \qquad B \in \mathcal{B}.$$

Wohldefiniert, da $\{\omega: X(\omega) \in B\} \in \mathcal{A}$.

 P_X ist Wahrscheinlichkeitsmaß auf \mathcal{B} (den Borel Mengen)

ightarrow: somit $(\mathbb{R},\mathcal{B},P_X)$ ein Wahrscheinlichkeitsraum.

 P_X diskret und X diskret verteilt, falls $P_X(B)=1$ für $B\subset \mathbb{R}$ diskret.

Wahrscheinlichkeitsdichte

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum, $X : \Omega \to \mathbb{R}$ Zufallsvariable.

Definition. X heißt (absolut) stetig verteilt mit Wahrscheinlichkeitsdichte (bzw. Dichte) f, falls $\exists f : \mathbb{R} \to \mathbb{R}$ integrierbar, $f \geq 0$, so dass

$$P_X(B) = \int_B f(t) dt, \qquad B \subset \mathcal{B}.$$

Bemerkungen zur Dichte

1. Für allgemeine Borel Mengen $B \in \mathcal{B}$ ist das Integral

$$\int_{B} f(t) dt$$

nicht als Riemann, sondern nur als Lebesgue Integral erklärt.

Für uns: B Intervall, f stetig diffbar, dann Riemann Integral.

Bemerkungen zur Dichte

1. Für allgemeine Borel Mengen $B \in \mathcal{B}$ ist das Integral

$$\int_{B} f(t) dt$$

nicht als Riemann, sondern nur als Lebesgue Integral erklärt.

Für uns: B Intervall, f stetig diffbar, dann Riemann Integral.

2. Die σ -Additivität bedeutet: Sind $(B_n)_{n\geq 1}\subset \mathcal{B}$ disjunkt, so gilt

$$\int_{B} f(t) dt = \sum_{n=1}^{\infty} \int_{B_{n}} f(t) dt, \qquad B = \bigcup_{n} B_{n}.$$

Wenn B, B_n Intervalle, Konvergenzsatz über Riemann Integral.

Allgemeine Maßräume

Definition Sei Ω eine nichtleere Menge und $\mathcal A$ eine σ -Algebra über Ω . Eine Abbildung

$$\mu: \mathcal{A} \to [0, \infty]$$

heißt Maß über (Ω, \mathcal{A}) , falls gilt

Für paarweise disjunkte Mengen $A_1,A_2,\ldots\in\mathcal{A}$ gilt

$$\mu\Big(\bigcup_{k=1}^{\infty}A_k\Big)=\sum_{k=1}^{\infty}\mu(A_k).$$

Allgemeine Maßräume

Definition Sei Ω eine nichtleere Menge und $\mathcal A$ eine σ -Algebra über Ω . Eine Abbildung

$$\mu: \mathcal{A} \to [0, \infty]$$

heißt Maß über (Ω, \mathcal{A}) , falls gilt

Für paarweise disjunkte Mengen $A_1,A_2,\ldots\in\mathcal{A}$ gilt

$$\mu\Big(\bigcup_{k=1}^{\infty}A_k\Big)=\sum_{k=1}^{\infty}\mu(A_k).$$

Das Tripel $(\Omega, \mathcal{A}, \mu)$ heißt Maßraum.

Wahrscheinlichkeitstheorie $\hat{=}$ Theorie der endlichen, normierten Maßräume.

Probability is just another chapter of measure theory

Wahrscheinlichkeitstheorie $\hat{=}$ Theorie der endlichen, normierten Maßräume.

Probability is just another chapter of measure theory

Joseph Leo Doob (1910-2004)

Probability is simply a branch of measure theory, with its own special emphasis and field of application.

Wahrscheinlichkeitstheorie $\hat{=}$ Theorie der endlichen, normierten Maßräume.

Probability is just another chapter of measure theory

Joseph Leo Doob (1910-2004)

Probability is simply a branch of measure theory, with its own special emphasis and field of application.

Wahrscheinlichkeitsmaße lassen sich auf komplizierten Mengen konstruieren, etwa

$$\mathbb{R}^{\mathbb{N}}, \qquad \mathbb{R}[0,\infty), \qquad C[0,1], \qquad C[0,\infty).$$

Probability is just another chapter of measure theory

Kai Lai Chung (1917–2009) spricht von

- specious utterance trügerische, einfältige Äußerung
- not so much false as it is fatuous (einfältig), as it would be to say that number theory is just a chapter of algebra

Probability is just another chapter of measure theory

Kai Lai Chung (1917-2009) spricht von

- specious utterance trügerische, einfältige Äußerung
- not so much false as it is fatuous (einfältig), as it would be to say that number theory is just a chapter of algebra

Probability often used as a front (Fassade) for certain types of analysis such as combinatorial, Fourier, functional and whatnot.