3. Schließende Statistik

3.1 Statistische Modelle

Hajo Holzmann

Philipps-Universität Marburg

3.1.1 Schließende Statistik: Statistische Modelle

Grundidee der induktiven Statistik

- Interpretiere Beobachtungen x_1, \ldots, x_n als
 - \rightarrow Realisierungen von u.i.v. Z.V. X_1, \ldots, X_n
- Verteilung P der X_i quantifiziert Unsicherheit/Schwankungen in den Daten x_i .

3.1.1 Schließende Statistik: Statistische Modelle

Grundidee der induktiven Statistik

- Interpretiere Beobachtungen x_1, \ldots, x_n als
 - \rightarrow Realisierungen von u.i.v. Z.V. X_1, \ldots, X_n
- Verteilung P der X_i quantifiziert Unsicherheit/Schwankungen in den Daten x_i .

Aber: Verteilung P unbekannt, ziehe aus Daten x_1, \ldots, x_n Rückschlüsse auf P.

Dazu: Statistisches Modell für P.

Statistische Modelle

Sei

$$\mathcal{M}_1(\mathbb{R}) = \{P \text{ Wahrscheinlichkeitsmaß auf } \mathbb{R}\}.$$

Definition: Eine Teilmenge $\mathcal{P} \subset \mathcal{M}_1(\mathbb{R})$ heißt ein statistisches Modell.

Statistische Modelle

Sei

$$\mathcal{M}_1(\mathbb{R}) = \{P \text{ Wahrscheinlichkeitsmaß auf } \mathbb{R}\}.$$

Definition: Eine Teilmenge $\mathcal{P} \subset \mathcal{M}_1(\mathbb{R})$ heißt ein statistisches Modell.

Modell für Beobachtungen x_1, \ldots, x_n :

Realisierungen von $u.i.v.\ Z.V.\ X_1,\ldots,X_n$ mit

 $X_i \sim P$ für ein (unbekanntes) $P \in \mathcal{P}$.

3.1.2 Parametrische Modelle

Definition: Ein statistisches Modell $\mathcal{P}=(P_{\theta})_{\theta\in\Theta}$, in welchem die Elemente P_{θ} durch endlichdim. Parameter $\theta\in\Theta\subset\mathbb{R}^p$ indiziert sind (in natürlicher Weise), heißt ein parametrisches Modell.

3.1.2 Parametrische Modelle

Definition: Ein statistisches Modell $\mathcal{P}=(P_{\theta})_{\theta\in\Theta}$, in welchem die Elemente P_{θ} durch endlichdim. Parameter $\theta\in\Theta\subset\mathbb{R}^p$ indiziert sind (in natürlicher Weise), heißt ein parametrisches Modell.

- \bullet θ heißt der Parameter von \mathcal{P} ,
- Θ heißt der Parameterraum

3.1.2 Bernoulli-Modell

Bernoulli - Modell

$$\mathcal{P} = \{ P = \mathsf{Ber}(p) \text{ für ein } p \in [0, 1]. \}.$$

$$\rightarrow \theta = \rho, \ \Theta = [0, 1].$$

Je Versuchdurchgang zwei mögliche Kategorien beobachten.

Gesamt:
$$X_1, \ldots, X_n$$
 u.i.v., $X_i \sim Ber(p)$, $p \in [0, 1]$.

3.1.2 Bernoulli-Modell

Bernoulli - Modell

$$\mathcal{P} = \{ P = \mathsf{Ber}(p) \text{ für ein } p \in [0, 1]. \}.$$

$$\rightarrow \theta = \rho, \ \Theta = [0, 1].$$

Je Versuchdurchgang zwei mögliche Kategorien beobachten.

Gesamt:
$$X_1, \ldots, X_n$$
 u.i.v., $X_i \sim Ber(p)$, $p \in [0, 1]$.

Bsp.:

- Werfen einer Reizzwecke
- Tea-tasting lady: Lady pro Durchgang zwei Tassen Tee, eine erst Milch, dann Tee, die andere erst Tee, dann Milch. Muss richtig bestimmen.

Multinomial Modell

Multinomial - **Modell**: Für festes $k \in \mathbb{N}$

$$\mathcal{P} = \{ P = \mathsf{Mult}(1; p_1, \dots, p_k), \ p_i > 0, \ p_1 + \dots + p_k = 1. \}.$$

$$\rightarrow \theta = (p_1, \dots, p_k)$$
, Theta: k-Simplex.

Je Versuchdurchgang k mögliche Kategorien beobachten.

Also:
$$X_1, \ldots, X_n$$
 u.i.v., $X_i \sim \text{Mult}(1; p_1, \ldots, p_k)$.

Multinomial Modell

Multinomial - **Modell**: Für festes $k \in \mathbb{N}$

$$\mathcal{P} = \{ P = \text{Mult}(1; p_1, \dots, p_k), p_i > 0, p_1 + \dots + p_k = 1. \}.$$

$$\rightarrow \theta = (p_1, \dots, p_k)$$
, Theta: k-Simplex.

Je Versuchdurchgang k mögliche Kategorien beobachten.

Also:
$$X_1, \ldots, X_n$$
 u.i.v., $X_i \sim \text{Mult}(1; p_1, \ldots, p_k)$.

Bsp.:

- Beobachten Autotyp
- Augenfarbe Person

Hypergeometrisches Modell

Hypgergeometrisches Modell: Für ein festes $m \in \mathbb{N}$

$$\mathcal{P} = \{ P = \mathsf{Hyper}(; m, R, M) \text{ für } R, M \in \mathbb{N}, R \leq M. \}$$

Beobachte meist nur ein $X \sim \text{Hyper}(; m, R, M)$ (n = 1).

Hypergeometrisches Modell

Hypgergeometrisches Modell: Für ein festes $m \in \mathbb{N}$

$$\mathcal{P} = \{ P = \mathsf{Hyper}(; m, R, M) \text{ für } R, M \in \mathbb{N}, R \leq M. \}$$

Beobachte meist nur ein $X \sim \text{Hyper}(; m, R, M)$ (n = 1).

Bsp.:

- M Größe Population, R Personen mit hohem Blutdruck.
- Es werden m verschiedene Personen beobachtet und jeweils der Blutdruck festgestellt.
- Bei X wird hoher Blutdruck beobachtet.

Poisson Modell

Poisson Modell

$$\mathcal{P} = \{ P = \text{Poi}(\lambda) \text{ für } \lambda > 0 \}.$$

$$\rightarrow \theta = \lambda$$
, $\Theta = (0, \infty)$.

Modell für Zähldaten.

addiere viele mögliche, einzeln relativ unwahrscheinliche Ereignisse.

Poisson Modell

Poisson Modell

$$\mathcal{P} = \{ P = \text{Poi}(\lambda) \text{ für } \lambda > 0 \}.$$

$$\rightarrow \theta = \lambda, \ \Theta = (0, \infty).$$

Modell für Zähldaten.

addiere viele mögliche, einzeln relativ unwahrscheinliche Ereignisse.

Bsp.: Rutherford-Geiger-Experiment.

- Anzahl der Zerfälle in radioaktiven Präparat
- über 2608 Zeitintervalle von je 7.5 Sekunden.

Weitere Parametrische Modelle

Normalverteilungs-Modell

$$\mathcal{P} = \{ P = N(\mu, \sigma^2) \text{ für } \mu \in \mathbb{R}, \sigma^2 > 0 \}.$$

$$o heta = (\mu, \sigma^2), \ \Theta = \mathbb{R} \times (0, \infty).$$

Modell für stetige Daten.

ZGWS: Summe vieler kleiner, unabhängiger Einflüsse

Bsp.: Körpergröße, Messfehler.

Weitere Parametrische Modelle

Normalverteilungs-Modell

$$\mathcal{P} = \{ P = N(\mu, \sigma^2) \text{ für } \mu \in \mathbb{R}, \sigma^2 > 0 \}.$$

$$o heta = (\mu, \sigma^2), \ \Theta = \mathbb{R} \times (0, \infty).$$

Modell für stetige Daten.

ZGWS: Summe vieler kleiner, unabhängiger Einflüsse

Bsp.: Körpergröße, Messfehler.

Exponential-Modell

$$\mathcal{P} = \{ P = \mathsf{Ex}(\lambda) \text{ für } \lambda > 0 \}.$$

→ Modell für positive, stetige Daten.

Gedächtnislosigkeit: Überlebensdauern falls gedächtnislos.

Modell-Vergleich

- Modell direkt aus Experiment:
 - Bernoulli-Modell, Multinomial-Modell, Hypergeometrisches Modell.
- Modell aus Datentyp:
 - Poisson-Modell, Exponential-Modell, Normalverteilungsmodell.

3.1.3 Nichtparametrische Modelle

Modelle, die nicht durch einen endlichdimensionalen Parameter indiziert werden.

 \rightarrow modellfreie Statistik.

Beispiele

- **①** Alle Wahrscheinlichkeitsmaße auf \mathbb{R} : $\mathcal{P} = \mathcal{M}_1(\mathbb{R})$.
- Alle Wahrscheinlichkeitsmaße mit stetig-differenzierbarer Dichte

$$\mathcal{P} = \{ P \in \mathcal{M}_1(\mathbb{R}), \quad P \text{ absolut stetig, Dichte } f \in C^1(\mathbb{R}) \}.$$

Alle Wahrscheinlichkeitsmaße mit exitierendem Erwartungswert und Varianz:

$$\mathcal{P} = \{ P \in \mathcal{M}_1(\mathbb{R}), \quad \text{lst } X \text{ Z.V. }, X \sim P, \text{ so ist } E_P X^2 < \infty \}.$$

