10. Übungsblatt zur Algebra

Abgabe: Do, 12.01.2012, bis 17 Uhr, Lahnberge, Briefkästen Ebene D6

1. Sei R ein Ring. Zu R betrachten wir die Menge $R \times \mathbb{Z}$ mit den Verknüpfungen

$$+: (r_1, z_1) + (r_2, z_2) := (r_1 + r_2, z_1 + z_2)$$

$$\cdot: (r_1, z_1) \cdot (r_2, z_2) := (r_1 r_2 + z_2 r_1 + z_1 r_2, z_1 z_2)$$

 $(r_1, r_2 \in R, z_1, z_2 \in \mathbb{Z}).$

- (i) Zeigen Sie:
 - (α) $(R \times \mathbb{Z}, +, \cdot)$ ist ein Ring mit Eins.
 - (β) Es gibt einen injektiven Ringhomomorphismus $\varphi : R \to R \times \mathbb{Z}$. Ist R ein Ring mit Eins e, und ist E die Eins in $R \times \mathbb{Z}$, so gilt $\varphi(e) \neq E$.
- (ii) Geben Sie ein weiteres Beispiel für Ringe R mit Eins e und R' mit Eins E, so daß gilt: $R \subset R'$ und $e \neq E$.
- 2. Sei R ein kommutativer Ring mit Eins. R heißt lokaler Ring dann und nur dann, wenn R genau ein maximales Ideal besitzt. Zeigen Sie:
 - (i) R ist ein lokaler Ring genau dann, wenn die Nichteinheiten von R ein Ideal bilden.
 - (ii) Ist R ein lokaler Ring und ist $\alpha \neq R$ ein Ideal in R, so ist auch R/α ein lokaler Ring.
- 3. Sei p eine Primzahl. Sei $S = \mathbb{Z} \setminus (p)$ das Komplement des Primideals (p) in \mathbb{Z} . Üblicherweise schreibt man $\mathbb{Z}_{(p)}$ anstatt \mathbb{Z}_S für den Quotientenring von \mathbb{Z} nach S.
 - (i) Zeigen Sie:
 - (α) $\mathbb{Z}_{(p)}$ ist ein lokaler Ring mit dem maximalen Ideal $p\mathbb{Z}_{(p)}$. (Aufgabe 2 darf benutzt werden)

Bitte wenden!

 (β) Die durch $n+p\mathbb{Z}\mapsto n+p\mathbb{Z}_{(p)}$ definierte Abbildung

$$\varphi: \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}_{(p)}/p\mathbb{Z}_{(p)}$$

ist ein Isomorphismus.

(ii) Für p=5 schreiben wir für $x\in\mathbb{Z}_{(5)}$

$$\overline{x} = x + 5\mathbb{Z}_{(5)}.$$

Finden Sie $u \in \{0, 1, 2, 3, 4\}$, so daß gilt $\overline{u} = \frac{\overline{1}}{3} + \frac{\overline{1}}{4}$.

- 4. In $\mathbb{Z}[\sqrt{-5}]$ sei y das Ideal $(2, 1 + \sqrt{-5})$. Zeigen Sie:
 - (i) y ist kein Hauptideal.

Anleitung: Untersuchen Sie, ob 2 irreduzibel ist.

(ii) y ist ein maximales Ideal.

Frohe Weihnachten und einen guten Start ins neue Jahr!!