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A New Class of Check-Digit Methods for Arbitrary
Number Systems

H. PETER GUMM

Abstract—For arbitrary number systems we present a new check-digit
method that detects all single-digit errors and all transpositions of adjacent
digits using a single check digit from the given number system. In previous
methods at least one type of transpositional error had to remain unde-
tected. The key to this method lies in using the dihedral groups together
with appropriate transformations in the important cases, where the num-
bers are represented in base 2r with r odd.

I. INTRODUCTION

Empirical studies have shown [9], [10] that the most common
typing errors that occur when data are entered on a keyboard are

e single-digit errors (one digit wrong)
e format errors (one digit inserted or left out)
e transpositions (interchanging of two adjacent digits).

To detect such errors, the original string of data is supplied with
one check digit, where digit now means a “digit” in the chosen
number system, i.e., the check digit is numerical for numerical
data and may be alphanumeric for alphanumeric data. Various
check-digit methods have been designed for the decimal number
system. Each method is able to detect all *single-error mistakes,”
but they fail to detect all transposition errors. At least one (and
often not more than one) erroneous transposition is undetectable
with those methods, see [1]-[3].!

The format errors principally cannot all be detected by only
one check digit, and every method that detects single-digit errors
will automatically detect about 90 percent of all format errors.
The use of two check digits as proposed in [3] and [11] is not
advised since the previously mentioned studies have also shown
that the absolute number of errors that occur roughly doubles
when the number of digits increases by two. Thus generally
specifying and checking for a fixed format seems appropriate to
detect format errors. We therefore concentrate on methods to
detect single-digit errors and transposition errors.

Clearly, for numbers to the base 2 such a check digit method is
impossible since the numbers 00, 01, 10 would have to be
supplied with mutually different check digits from the set {0,1}.

If a number n has the digits d,,d,_,,---,d, in base r, ie.,
n=2xd; !, then using p = —Ld, (in modulo r arithmetic) for
a check digit will detect every single-digit error. The secured
number then has the digit representation d,,d, _,, - -,d;, p, and
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to check for correctness, we check whether the digits add to zero
(modulo r). Since addition (modulo ) is commutative, a trans-
position error --- ab -+ = --- ba --- will never be detected.
Therefore, conventional methods impose a weight on every digit
position before adding, or, more generally, use permutations g, of
the base digits {0,1,---,r — 1} on every digit position [1]-[3].
Thus the check digit is computed as p = —X0,(d,) (modulo r).
Again single-digit errors will be detected for any chosen sequence
g; of permutations, but the particular choice of the sequence

(0y,0,, -+ ) will determine the properties in detecting transposi-
tions.

If r is prime, then it is easy to see that choosing numbers
a, €{l,--,r—1} with a, # g;,,, and defining o,(x) 2 a,x

(modulo r) will detect all transposition errors. Let us call this
method a “weighted parity check method”.

The method fails when # is even; e.g., in the case » = 10. First,
only those numbers a that are relatively prime to 10 may be used
for weights, to guarantee single-error detection. As a conse-
quence, (a; — a; _,) will be even, so (a;, — a,_,) is a zero-divisor
in the ring of integers modulo10, which implies that those
transpositions --- d;d,_; +-- — ---d,_,d, --- will not be de-
tected where (d; — d;_;) = 5 (modulo 10).

Choosing different kinds of permutations o, will not solve the
dilemma. To detect the transposition ---d,d,_, -+ —= ---
d;,_,d, ---, the g;,0,_, will have to satisfy

0,(d;) + 0, 1(d; 1) # 0,(d;_,) + 0,_,(d;) (mod10)

for every pair d, # d,_,, d,,d;_, € {0,---,9}. This means that
T(x) £ g;(x) — 0,_,(x) must be a permutation of the set
{0,---,9}. In [7] we have shown that for any two permutations
a,B on the numbers {0,---,9} the map a — 8 (modulo10) can
never be permutation again. The proof is valid for every number
system with base r = 2k.

Some conventional methods pretend that the unsecured deci-
mal numbers were written in base 11 and use a check-digit
method in base 11, but then the methods have to take non-
numerical “digits” into account to represent the 10th digit in
base 11. The International Standard Book Number (ISBN) clas-
sification of books, for example, uses the letter “X™ as a last
“digit” in such cases.

II. GENERAL RESULTS

According to the previous discussion, we arrive at the following
abstract definition,

Definition: A check-digit method base r is a set D with
|D| = r together with a family F £ (f,,f,,---,f,, ) of oper-
ations f,: D" — D such that the following axioms are satisfied
for all n € N:

f,,(x,,,---,x,,---,xl) =ﬁ,(x,,,---,x,-’,---,x1) =3 = %!
(1)
f,;(x,,,"‘,X,,xkl-"'sxl) =f,;(x,,,'",X,-_px,-,"',xz)
=X T X (2)
fn(xn’“'lx21f;l(xn"“1xl)) =xp = [ Wy ) =y

(3)

Clearly, f,(d,, - -,d,) is to be interpreted as the check digit for
the number that has the digit representation d,,- - -, d; in base r.
Without loss of generality, we may assume that D = {0,1,- -,
r — 1}. Clearly, axiom (1) guarantees single-error detection, while
(2) and (3) guarantee detection of transposition errors. Note that
(3) is needed to detect transposition of the check digit with its left
neighboring digit. The above definition specifies a universal alge-
bra 4 = (D, F). (We refer the interested reader to the mono-
graphs of Cohn [4] or Gratzer [6].) Since the axioms are univer-
sally quantified implications, standard universal algebraic results
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tell us that they are inherited in passing to direct products. The
following proposition presents this idea more concretely.

Proposition: II there exist check-digit methods base r and base
s, then there is a check-digit method base rs.

Simply represent every digit base rs uniquely as a pair (d;, d5),
where d, is a digit base r and 4, a digit base 5. Then compute
check digits p, and p, separately for both components in their
respective bases and reconvert the pair ( p,, p,) into the corre-
sponding number base rs. It is easily checked that the properties
(1)-(3) are preserved. Since there are check-digit methods avail-
able for base g, where g is an odd prime, the Proposition yields
check-digit methods for every odd number base. Note that there
is also a different way to obtain check-digit methods for base »
when r is a prime power, including the case that r = 2" with

m > 1. If r = p* then choose, as before, weights
(aj,az3,7--,a,.---) with q, € {1,---,r — 1) and a, # a,,,. If
the number n is expressed as d,,d, ,,---,d, in base r, then
compute the check digit for n as f,(d,,d, |, -,d;) 2 —Ya,d,,

where multiplication and addition now are performed in the
Galois field GF(p®). The properties of a check-digit method
follow from the field properties just like in the standard weighted
parity check methods.

Again we see why the case p* = 2 is excluded: there is no way
to choose the sequence (a;, a,, - - - ) with the required properties
in GF (2). Nevertheless, the important cases of hexidecimal-num-
bers (r = 16) and alphanumeric data (r = 36 = 4%9) are thus
covered, yet others like numerical (r = 10) or alpha-strings (r =
26) still are not captured.

III. THE CASE r = 25 WITH ODD s

In view of the results of the previous section, we still need a
check-digit method for numbers base r = 25, where s is an odd
prime. Here we give a method for r = 25, where s is any odd
number greater than or equal to three. A weighted parity check
based on addition modulo r is impossible, as was argued in
Section I. Thus, we want to replace addition by a different kind
of operation, which we shall call *. Clearly, * will have to be
cancellative at both sides, i.e,, a* x = a x y implies x = y and
x*a=y+a implies x =y for any a,x,y € {0,1,---,r — 1}.
Thus * must be a quasi-group operation [5], and to be able to
discard brackets when “adding” more than two numbers, we
demand associativity, i.e.,, a *(x * y) = (a * x) * y. It follows that
* must be a group operation, since it acts on the finite set
{0,1,---,r — 1}. In case r = 2p, with p an odd prime, there are
precisely two groups on r clements, namely the cyclic group Z,
and the dihedral group D, [8].

Thus again let s be an odd number greater than 2 and r = 2.
The dihedral group D, of order r = 2s may be represented as the
set of all pairs (e, x) withe € {—1,1} and x € {0,1,---,s5 — 1%,
where * is defined as

(e,x)*(f,y) = (ef, ey + x)

and the inner multiplications and addition are evaluated in the
cyclic group Z, of order s. This notation is shorthand for the
matrix representation
(6 1)
0 1

of the elements of D, with * being matrix multiplication. For
a,b € Z with a # 0 let us define a map : D, - D, by

(e, x) =(e,e(a— x)+b).
Then we have the following lemma.

Lemma:  is a permutation on D and satisfies for all u,v € D;:
T(u)*v = 7(v)*u implies u = v.

Proof: If u = (e,x) and v = (f, y), then t(u) = r(v) im-

plies e = f and e(a — x)+ b=f(a—y)+b. Thus x =y, s0 7
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is a permutation. Suppose that 7(u)* v = 7(v)* u, then with the
same notation

(ese(a—x)+b)s(f,9) =(f.f(a—y)+b)*(e,x)
50
(ef,ey +e(a—x)+b)=(ef,fx+fla—y)+b).
Hence
e(a+y—x)=f(a+x—y)

ie, (e —fla=(e+ f)x—y) If e+ f, then the right-hand
side becomes zero, so we get 2a = 0, which is impossible since s
is odd and multiplication takes place in the cyclic group Z,. Thus
e = f, which again implies 2(x — y) = 0; hence x = y.

Now we may define a check-digit method for r = 2s, using 7

and its iterates 7,72,7% ---. (Here [-] ! denotes the inverse in

the dihedral group.

Theorem 1: With any 7 as in the Lemma the definition

frr(xnt‘ : 'sxl) B [T"(xll)‘ Tn_l('xll—l) RO T('xl)] k&
yields a check-digit method base r = 2.

Proof: Verifying axiom (2) is easy.
[7(x)* - s () s ri(x) o N ()
-1
er(x)]
= [r(x) et xn) e (x ) 2 (X))

*'r(x,)] !

yields after taking inverses and cancellation of equal terms

T{x) w7 W) = P ) w T ()

*Tf_z(x:—2)‘ i

Thus
T(Ti_l(x,))* %, )= T(T”l(x,_ 1))=l“r""1(_wc{).
By using the Lemma we get
T ) =7 (xm)

and since T is one-to-one, this results in x, = x,_,.
Axiom (3) requires a few more calculations. Assuming that

For € '9x25f;:(xn" S X)) = X, ie.,

[ ()% -

*"'z(xz)

*T([T"(X")*

we infer, using the group laws

*72(3‘2)*7()51)] _1)] - 1

'r"(x")* *TZ(xz)
sr([r(x)e 2 ()] ) =
([ () e o) er(a)] )

=[x e ()] e

Multiplying with 7(x,)”' from the left, we get
m(x) *1'([1'”():,,)*
() ([ (x) e o
(ELENTRS
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Now the conclusion of the Lemma can be used to yield

[, )% - 202 (x)*r(2)] ™ = xy,
JACTEE

Combining with the Proposition we obtain the following theo-
rem.

Theorem 2: For every number r # 2 there exists a check digit
method for the base » number system.

ie. LX) =X,

IV. MODIFICATIONS

Given a number system with base r, where r is composite,
there usually exist many different product decompositions of r to
design different check-digit methods. Moreover, the method just
given for r = 25 with odd s allows modifications. For example,
as a corollary to the proof of the Theorem we obtain the
following.

Corollary: Let r = 25 with s odd, and let (1, 7,---,7,, ")
be any sequence of permutations of {0,1,---,r — 1}, all satisfy-
ing the conclusion of the Lemma. Define o, £ 7, and o, 2
T,oe; , for i > 1, then

"“"1(-"1)]_l

yields a check-digit method for base r. Morcover, if the base r
digit 0 is assigned to the pair (1,0) in the representation of the
dihedral group D, and if we choose a = — b in the definition of
7, we get 7(0) = 0, so leading zeros in the number to be encoded
will have no effect on the check digit.

fu(xu’xn 1" -"xl) £ [an('xn)*an—l(xn—l)* o

V. AN EXAMPLE

The following example shows that our method is easy to use
and implement on a computer. Let Dy be the dihedral group of
order 10, and let the elements (1, x), resp. (—1, x) be represented
by the decimal digits x, resp. 5 + x. Then Table I describes the
image of the operation * in the decimal digits. With the same
correspondence the permutation 7: Dy — D;, given by 7(e, x) £
{e,e(l — x) — 1), corresponds to the permutation o of the deci-
mal digits, which is given by (14) (23) (58697) in cycle notation.

TABLEI
THE MULTIPLICATION TABLE OF D;
* 0 1 2 304 5 6 7 8 9
0 0 )i 2 34 s ® 7 & 9
1 1 2 3 4 0 6 7 8 9 5
2] 2 3 4 0 1 7 & 9 5 6
3 3 4 0 1 2 8 9 35 6 7
4 4 0 1 2 3 9 3 6 T 8
3 3 9 8 76 0 4 3 2 1
6 6 ) 9 8 7 1 0 4 3 2
7 7 6 5 9 8 ) 1 0o 4 3
8 8 7 6 5 9 B3 2 1 0 4
9 9 8 7 6 5 4 3 2 1 0

For example, the number 1793 will then obtain the check digit
[6%(1)*0?(T)*0?(9)#a(3)] ' =[1%6%5%2] '=[4] '=1.

Thus the secured number will be 17931.

*72(x2)*7(xl)]_1) = [T”(xn)*
*Tz(xz)*'r(xl)]il)*xl =

wr2(x) o r(x)] o= 1(x)#[(x)

s () xr(x)] e
er?(x)*r(x)]

w1 (x)er(x)] .

[.,.rr(x”),
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Checking a number for correctness is as easy as this meth-

od.

The number 17931 is found to be correct, since

o*(1)* 0*(7)* a?(9) = a(3) =1 evaluates to zero. A simple trans-
positional error, 19731 say, would be detected, since
at(1)= 63(9)* a>(T)* 0(3)*1 results in 4 # 0.

(1]
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(4]
(31
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