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The purpose of the present note is to prove (in Section 5) a Cancellation
Theorem for algebras in congruence modular varieties satisfying the ascending chain
condition on congruences and the descending chain condition on subcongruences of
the center — generalizing J. D. H. Smith [16; 424] for finite algebras in congruence
permutable varieties. Here, the concept of commutation used to define the center is
that introduced in [11].

In the proof we need the existence of “special refinements” in the sense of R.
Baer [1,2] for direct decompositions A X B = C X D. In the congruence permutable
case such a Special Refinement Theorem can be proven by direct use of “Fitting
Methods™ (see -R. Baer [1] and A. W. Goldie [6]) or by appealing to lattice theoretic
versions such as those of M. Grayev [17], L. A. Hostinsky [181, or E. N. Mod&ul’skil
[19]. Unfortunately, these results are stated with hypotheses making them not
applicable in our context. Thus we base our approach on the analysis of modular
lattices generated by elements a,b,c,d with a® b= c® d =1 which has been given in
[12]. Such a lattice has a cartesian direct decomposition inducing special refinements
of the pair {a,b}, {c,d} of “direct decompositions of 1,” as long as the decomposition
center

(atc)(atd)(btc)(b+d)

has finite rank - weaker conditions modelling those in R. Baer [1] suffice.

Additional advantage is taken from the fact that the refinements are given via
lattice words in a,b,c,d: We can use results on permutability in congruence modular
varieties from [9] and [13] to show (in Section 2) that in the case of a congruence

lattice the special refinements yield direct decompositions of the algebra indeed. We
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point out that the tools provided in this paper suffice to prove the existence of
exchange isomorphic refinements of finite direct decompositions of algebras in
congruence modular varieties: Modify e.g. the proof in A. G. Kurosh [15; §47]. On
the other hand it seems hard to establish results as powerful as P. Crawley, B. Jdnsson
and A. Tarski [3,14] did for their kind of algebras.

Returning to the Cancellation Theorem, we have to observe that, if there are no

(4

1-element subalgebras, then cancellation is only possible up to “isotopy.” Here, we
define two algebras A and B to be C-isotopic if there is an algebra C in a given class C
of algebras and an isomorphism between A X C and B X C which commutes with the
projections onto C. A characterization of C-isotopy in terms of congruence lattices is
given in Section 3. The structure of A, B and C is then described in more detail in the
following Section 4: C can always be chosen an affine algebra and the structure of C is
inherited in A and in B. In fact, the latter may be linearized and their linearizations are
isomorphic.

There are two different methods we use to study algebras in {(congruence)
modular varieties. One is an algebraic approach as introduced in [11] and in [12]
which is rather technical in some parts; the other is a geometric approach developed in
[8] and in [9] which often is more intuitive. Basically, most results could be obtained
either way. However, in Chapters 2 and 5 we used the algebraic method, and in
Chapters 3 and 4 the geometrical one, thus choosing the technique that seemed most
natural to us in the specific circumstances.

§81. Baer refinements in modular lattices. In a lattice we write ab for the meet
and atb for the join of a and b. Brackets are omitted as usual. 0 and 1 stand for the
smallest and the greatest element. If atb=1 and ab = ¢ then we write a Xb=c. If
b <a we denote by a/b the interval sublattice {x|b <x <a}. We write a/b 7 c¢/d (a/b
transposes upwards to c¢/d) and ¢/d \ a/b (c/d transposes downwards to a/b) if a+d = ¢
and ad = b; a/b and c/d are projective (a/b ~ c/d) if they are connected by a sequence
of 7#and \.

DEFINITION. Fora X b=c¢ X d =0 we define

Z(a,b,c,d): = (atc)(atd)(btc)(b+d),

and call it the decomposition center of ab,c,d.
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Elements p; ;b7 induce the special refinements ap,ap,by,by and ¢q,c9,dy.d, if the
following hold:
(1) py + Py <Z(a,b,c,d);
(2) a1 X g9 =0 with
qp: = (atp))(dtpy) + (b+py)(ctpy)
and
qp: = (atpy)(ctpy) + (btpy)(d+py);
(3) a;=atq;, b; = b+q;, ¢; = ctq; and d; = d+q; fori €{1,2};
(4) a=a; Xay, b=b; Xby,c=cy Xcpand d=d; X dy;
(5) qp=ay Xby=cy; Xdy=a; Xd;=b; Xcy;
(6) qy =ay Xb2=c2><d2=a2 Xc2=b2Xd2.

1 1

“q1 Figure 1 “q2
The relations in (5)-and (6) are visualized by the partial lattice diagrams in Figure

1: Nontrivial joins and meets are defined only for elements of height 2.

DEFINITION. A quotient z/a in a lattice is said to satisfy Condition (B) if a/0
satisfies the ascending chain condition and if, for all u <v < a with u/0 projective to
v/0 in z/0, we get u = v; z/a satisfies Condition (C) if a/0 satisfies the descending chain
condition and, for all w < v << a with v/w projective to v/0 in z/0, we have w = 0.

1.1. THEOREM. In a modular lattice M, if aXb= ¢cXd=0 and, for
Z:=12(ab,c,d), the interval Z/aZ satisfies (B) or (C), then there are P1.P> inducing
special refinements.

A basic tool in the proof are the lattice terms 8,= 8,(W,X,y,2) defined

inductively by

go(W,X,y,2): = wixty+tz, g, .1(Wx,y,z): = (wg,txg,)(yg,tzg,),



506 H. PETER GUMM and CHRISTIAN HERRMANN

as well as

h(w,x,y,2): = g (W,x,y,2)g, (W,y,X,2)g,(W,2,X,y)
and their duals g#(w,x,y,z) and hl"{(w,x,y,z).
In Day and Wille [4], the lattice FM(J‘I‘) of Figure 2 has been introduced as the
modular lattice freely generated by ao’bo’co’do satisfying
ay Xby=ay Xcy=ay Xd,=b, Xdy=cy Xdy=b,c,=0.
In particular this lattice is subdirectly irreducible and {ao,bo,co,do} is the only four

element generating set. With en: = hp(ag ;05:Co:dg) one sees that

{aoen,boen,coen,doen}

generates a sublattice isomorphic to FM(J ‘1").

Figure 2.
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Figure 3.

On the other hand one gets, for each n, the interval sublattice S(n,4) = 1/en,

which is selfdual and subdirectly irreducible, and has

an=ao+en,bn=bo+en,cn=co+en,dn=do+en

as its unique four-element generating set. Evidently, if {w x,y,z} is this set then
h,(w,x,y,z) =0 (h;“n(w,x,y,z) = 1) if and only if n <m.

Let now M4 be the lattice given in Figure 3.

1.2. CLAIM. [12] The Ilattices My, S(nd) (for n€EN), FM(J?), its dual
FM(J‘ll)* form a complete list of subdirectly irreducible modular lattices generated by
elements w,X,y,z suchthat w X x=y X z=0.

1.3. CLAIM. Assume the hypothesis of 1.1 and, in addition, that M is generated
by a,b,c,d. Then there is a positive integer N such that the subdirectly irreducible
homomorphic images of M are among M 4 and the S(n,4) with n <N.

PROOF. Let L be the sublattice generated by aZbZ.cZ,dZ. Let ¢ be a
homomorphism from M onto a subdirectly irreducible S. If S is M 4 0T FM(J?)* then
o(Z) = lg, whence (L) =S. If §= FM(J?) or S =S(n,4) with n = 1, then o(Z) = €]
whence (L) = FM(J '14) in the first and p(L) = S(n-1,4) in the second case. It suffices
to show that there is an N’ such that the subdirectly irreducible homomorphic images
of L are among M4 and the S(n,4) with n < N'. In other words, to simplify notation
we may suppose that 1/a satisfies (B) or (C). We write h,=h,(a,b,c,d) and
h¥ = h(a,b,c,d).

CASE 1. Let 1/a satisfy (C). Due to the descending chain condition, FM(J?) is
not a homomorphic image of M. Moreover, since the h, (n €N), form a descending

chain, there is an N such that h,=hy for all n=N. Now consider the
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homomorphisms ¢ onto S, S subdirectly irreducible. If S = S(n,4) then ¢(hyy) =0 and
n <<N.

On the other hand p(hy) =1 if S=M4 or §S= FM(J?)*. Therefore, defining
e': =ehy for e €E: ={a,b,c,d}, we get '+’ = hy; for e #f in E, and a'b' =¢'d' = 0.
Assume that there is a homomorphism ¢: M > S = FM(J‘I‘)*. Then without loss of
generality ¢(ad) #0 or ¢(bc) #0. Since ¢(e')=g(e) for e €E, it follows that
a'(d'+b'c’) # 0. But in view of (C) and the projectivities

a'/0 72a'+b'/b N J/b'c’ 2 d'+b'/d+b'c
\ a'/a'(d'+b'c")
this is a contradiction.

CASE 2. Let 1/a satisfy (B). Due to the ascending chain condition, FM(JLI")* is
not a homomorphic image of M. Moreover, since the h}, n €N, form an ascending
chain there is an N such that h;"1 = h‘;I for all n = N. Now consider homomorphisms ¢
of M onto S, S subdirectly irreducible. If S =S(n,4) then p(hpp) =0 and n<N.
Therefore, with e’ as before we get ¢'f’ =0 for e #f in E, and a'+b’ =¢'+d’ =hy.
Assume that there is a homomorphism

o1 M—>S = FM(J).
Without loss of generality, p(atd)# 1 or p(b+c)# 1. Let M' be the sublattice
generated by {a',b',c’,d'}. Then p(M') = FM(J}) and
p(a'(b'+c'(a'+d"))) < p(a').
But this is impossible due to (B) and the projectivities
a'/0 #a'+d'/d’ \ c'(a’+d")/0 7 b'+c'(a"+d")/v
\ a’'(b'+c'(a’+d'))/0.

PROOF OF 1.1. Obviously, it suffices to consider the case where M is generated
by ab,c,d. Let Sl be the subdirect product over the p: M —> S = S(n,4) such that
w(@) X p(d) = ¢(b) X ¢(c) =0, 82 the subdirect product over those with ¢(a) X ¢(c) =
¢(b) X p(d) =0, and S3 = M if this is a homomorphic image and trivial otherwise. By
Claim 1.3, M can be considered as a sublattice of S1 X S9 X'S3. We infer that
M=§; X 8,5 X 83, since
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gN(a,c,b,d) = (0,1,1), gn(ad,b,c) = (1,0,1), hif(a,b,c,d) = (1,1,0)

are in M. For ;, the projection of M onto S;, define Z;: = 7;(Z). In order to construct
our special refinement, we set py:= (0,22,23) and py: =(Z1,0,0), and we define the
q; according to (2), i.e. qa; =(0,1,1) and qs = (1,0,0), since ¢(q1) =0and ¢(q2) =] for
all p: M—> S factoring through S{, and ¢(qy)=1 and ¢(q7) =0 for all ¢ factoring
through 8, or S3. To check this, observe firstly that p(Z) is either 1 or a dual atom. In
particular, qp and qy are complementary central elements of M. (4) - (6) follow
immediately.

§2. Baer refinements for congruence modular algebras. For this and the
following sections, let all algebras be contained in a fixed modular variety, i.e. a
variety V all of whose algebras have modular congruence lattices. We extend Baer’s
refinement Theorem [1] to algebras in V. To do so, we use the concept of
commutation introduced in [11]. Given A in V and b ¢ in the congruence lattice L(A)
of A, there is a smallest a in L(A) having the following property: There are B in
HSP(A), a homomorphism ¢ from B onto A, and st in £(B) such that st<$a,
s+$a >§5b, and t+$a = $c where $x is the inverse image qp'l X ¢'l(x) of x. We write
a=[b,c] and call a the commutator of b and c.

Commutators distribute over joins, [b,Z¢;] = Z[b,c;l, whence, for each A, there
is a greatest congruence z A (the center of A)such that [z Al A]= Op where | Aand 0y
denote the greatest and smallest element of £(A).

We write a-b for the relational product of a and b, and a® b=ab if atb=1 A
and a and b permute, i.e. if A/ab is canonically isomorphic to A /a XA /b

2.1. THEOREM. Let A be an algebra in a modular variety, and let a,b,c,d be
congruences on A such that a®b=c®d=0 A Assume that the center of A/b has
finite rank in £(A/b) or that the quotient zA/azA of L(A) satisfies one of ihe
conditions (B) or (C) from Section 1. Then the direct decompositions a,b and c,d have
“special refinements,” i.e. there exist congruences 31’32’b1’b2 and CI’C2’d1’d2 on A
such that

a=a ®az,b=b1 ®b2,c=c1 ®@cy,d=d; ®d,y,
a1 ®b;=c1®d;=a;®d; =b; B¢y,

32®b2=02®d2=32®02=b2®C2.
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In order to apply Theorem 1.1, we have to show that the decomposition center is
contained in the center, and that permutability is granted wherever it is needed.
Concerning the latter we use Korollar 5 from [9] :

2.2. PROPOSITION ([91). Let a,b,c be congruences of A in V such that a and b
permute and ab < c<atb. Then any two congruences in the sublattice of L(A)
generated by a,b,c permute with each other.

Moreover, we define for a congruence a of A, inductively:

a%: =a, altl.=[a0,n],

We call a solvable if there is an n such that a" =0, .

2.3. LEMMA. Any solvable congruence of A in V permutes with every
congruence of A.

PROOF. We proceed by induction on the number n such that a =0 A- For
n=1, let V' be the idempotent reduct of V, i.e. the variety with fundamental
operations corresponding to the algebraic terms idempotent in V and satisfying all
identities valid in V. Due to A. Day [4], V' is congruence modular, too. Consider A as
a member of V'. Since any congruence with respect to V is also a congruence with
respect to V', [a,a] = 0 is still valid. Surely, we will be done if we prove the claim with
respect to V'. Let b be an arbitrary congruence of A. Then [atb,atb] <b by
distributivity. Let B be a class of a+b. B is a subalgebra of A, and for the restrictions to
B we find

(atb)lg=1lpgand [1g,1g] <blg.

Thus B /b is abelain in the sense of [13], and by Corollary 5 loc.cit., blg permutes with
every congruence of B. In particular blB permutes with aIB. Since this is true for every
class B of atb, we conclude that a and b permute. Now, for n>2, we have al' =

(al)n-l =04, hence al

permutes with every b in £(A) due to the inductive hypothesis.
By distributivity, we have

[bta,b+a] <b + [a,a] = b+al.
Applying the case n = 1 to the images of a and b+a1 in A ;1> We get the permutability
i a
of a and b+al. It then follows that asb=a-al-b=a-(al+b) = atal+b = a+b. 2.2 can

also be obtained from this lemma.

PROOF OF 2.1. First we show that the decomposition center
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Z = (atc)(atd)(btc)(b+d)

lies in the center z A of A. By distributivity we have [at+c,1] = [atc,atb] <a+ [c,b] <

a+cb. Hence [Z,1] < dr!-cb and, by symmetry, [Z,1] < m where
m = (a+bc)(at+bd)(b+ac)(b+ad).

But, looking at the subdirectly irreducible homomorphic images of the sublattice
generated by a,b,c,d (Claim 1.2), one sees that m =0 A

Now let t in 1/b correspond to the center of A /b Then at = az,, since the center
of a product is the product of the centers. In particular, if t/b has finite length, then so
has az,, and (B) or (C) hold for z Alaz A trivially. Thus, for a,b,c,d in M = £(A), the
hypotheses of 1.1 are satisfied. Let p;»9;-3;,b;,¢;,d; (1 = 1,2) be given according to 1.1.
Due to 2.2, any two elements e,f from {a,b,c,d} permute, hence so do e; and f. It
remains to show that, for any e € {a,b,c,d}, ey and ey  permute. For this, it is
clearly enough to show that qq and q- permute. Clearly, we are done if we know that
any two of the summands of q; and q- (as given in (2) of the first definition in §1)
permute. Since p1 and pyarein Z<z A» they permute with every congruence. Thus
the given summands are of the form h = (1+p)(s+p) and k = (m+q)(t+q), with p and q
permuting with every congruence, with st = 0, and s- t = s+t. First we easily check that
(1+p)(stp) is equal to ((1°p)Ns)cp= ((1+p)s)-p, simply because 1,p and s are
equivalence relations, and p permutes with 1 and with s. Similarly, (m+q)(t+q) =
(m+tq)t-q. Since 0=st <(l+p)s, (m+qQ)t <s-t= s+t, we get by 2.2 that (m+q)t
permutes with s. Again by 2.2, since s(m+q)t < (1+p)s < s° (m+q)t, we find that

(m+q)t permutes with (1+p)s. And finally,
hek = (1+p)s-p- (m+q)t-q = (1+p)s- (m+q)t-p-q
= (mtq)t-q- (1+p)sep=k-h.
Hence q1 and q, permute.
§3. Isotopy. Let all algebras be of a fixed type A. Let C be a class of algebras,
closed under formation of direct products. Let C be an algebra in C.
For arbitrary algebras A and B, not necessarily in C, we define:

3.1. DEFINITION. A and B are isotopic via C if for every ¢ € C there exists a

bijective mapping «.: A —> B such that, for every n-ary fundamental operation f, and
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for any ap,---3 €A, €1,---¢p € C, we have
f(acl(al )rnsacn(an)) = af(cl ’._.,cn)(f(al "--9an))-

A and B are affine isotopic via C if additionally, for any two ¢ # ¢’ and any a € A, we
have

a.(a) # a.(a).

In other words: A and B are isotopic via C if there is a homomorphism o: C X A > B
such that, for every c € C, the mapping a(c,-) is a bijective mapping from A to B. A
and B are affine isotopic via C if, additionally, a(-,a) is injective for every a € A.

Notice that this definition of isotopy is much more restrictive than the one given
in [7]. In particular, the above definition does not distinguish fundamental operations
from term-functions.

Clearly the above definitions are symmetric, i.e. if A and B are (affine-) isotopic
via C, then B and A are (affine-) isotopic via C, using the inverse mappings a;l. And A
and B are isomorphic iff they are isotopic via a one-element algebra C.

3.2. DEFINITION. A and B are C-isotopic (affine-C-isotopic), and we write
A~B(A~B),
C C
if, for some C € C, A and B are isotopic (affine-isotopic) via C.

Clearly E

transitivity note that, if A and B are isotopic via C, and if B and D are isotopic via C,

is an equivalence relation on classes of isomorphic algebras. For

then A and D are isotopic via C X C’, using the mapping
Xc )t = 00 for (c,c)eC X C'.

3.3. PROPOSITION. A is isotopic to B via C iff there is an isomorphism

¢: A X C—> B X Cwhich commutes with the second projections.

AXC 4 >BXC
1(2 0 72
C

PROOF. If A and B are isotopic via C by way of the mappings o, ¢ € C, define
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v: AXC—->BXCby ¢(ac): = (ac(a),c). It is easy to check that ¢ is an isomorphism
commuting with the second projections. On the other hand, given such a mapping yp,
define a: AXC~>B by a: =my-¢. If (a) = o (2'), i.e. 7 * p(a,c) = my - p(a’,c), one
has Ty p(a,c) = my(ac)=c= 1r2(a',c) =7y° ¢(a’,¢) hence p(a,c) = p(a’,c) and therefore
a=a'. So clearly « is an isotopy between A and B via C.

We will from now on assume that A, B and C are contained in a fixed
congruence-modular variety. What we eventually are going to prove is that in this case
C has to carry a module-structure which is in some specific sense inherited in A and in
B. Intuitively (the size of) C measures how far apart A and B are from being
isomorphic, cf. Theorem 4.3 and Corollary 4.4,

3.4. THEOREM. For algebras A, B and C contained in a congruence-modular
variety the following are equivalent:

(i) Aand Bare isotopic via C.

(ii) A and B are affine isotopic via a homomorphic image of C.

(iii) There is a congruence $ on A X C such that (A X C)/ﬁg B, and B is a

complement of the kernel of .

(iv) For a homomorphic image C' of C there is a congruence 8 on A X C' such

that (A X C')/B = B, B is a complement of ker Ty, and § A ker 7y =0.

PROOF. (i) = (iii) = (iv) = (i) = (i).

(i) = (iii). Let A and B be isotopic via C, let o, CE C, be the bijections between

A and B establishing the isotopy. Define a congruence fon A X C by

(0,0B(@ ) iff a(a) = a (@),
By Proposition 3.3, 8 =ker(m) °y) and therefore (A X C) 8= B. For arbitrary (a,c)
and (a',c') € A X C one has, by the surjectivity of o, that there is an a” € A with
ay(a'’) = a(a'). Hence, one has (a,c) ker m5(a” ©)B(a’ "), so ker Ty v B=(AX C)2.
Suppose (a,c) ker 7y A f(a’,c’). Then c=c' and a.(a) = a ('), so (ac)= (a',c) by
injectivity of o, thus ker my A B=0.

(iii) = (iv). Since ker 7 A ker Ty < B < ker m v ker LD} and by modularity, the
sublattice generated by ker 7 .ker 79 and B must be a homomorphic image of the
lattice in Figure 4. The fact that 8 is a complement of ker my collapses this lattice to
the lattice in Figure 5.
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Figure 5.

kerm kerm;

We define

v:=kermy v(kermy A B),

and C': =(A X C) /,),.C' is a homomorphic image of C by the isomorphism theorem.
Since y permutes with ker | according to Korollar 5 of [9] (see also Proposition
2.2), we get: (A X C) ey T A B =~ AXC.

(iv) = (ii). We may suppose § # ker m{, otherwise A = B and with a one-lement
algebra C' our claim is true. Again, with Korollar 5 of [9] we have that 8 permutes
with ker m{ and ker my. For any arbitrary ¢ € C’, define a map a.: A= B in the
following way: ac(a) = b iff (a,c) € b (here we consider the elements of B as f-classes).
Obviously, « is a mapping from A to B. a(a) = a,(a') would imply (a,c)B(a’,c). Since

B Aker my =0 we conclude a = a’, hence «. is one-to-one. For any b € B there is an

c
element a € A with (a,c) €b since ker 1y permutes with . Hence « is onto. Clearly,
if aci(ai) =b;, i.e. (a;,¢)) €Eb; fori=1,2,....n, and if f is an n-ary operation, it follows
that

fl@ay.ep)s-(@ncy)) = (fay,....apf(cy,....0)) Efby,...by),
i.e. we have

f(acl(al)""’acn(an)) = af(cl ,.."Cn)q‘(al )""an))’

so A and B are isotopic via C. Finally, suppose that a.(a) = a(a) for some a € A and
c,c' €C. Then (a,c)B(a,c’), hence ¢ = ¢’ since ker 7y A B=0. Thus A and B are affine
isotopic as claimed.

(ii) = (@). If C' is a homomorphic image of C, and if A is isotopic to B via C’,
then A is isotopic to B via C. Namely, if ¢ is the epimorphism from C onto C’, then
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define for each c € C: Ot = ey

Let us finally show how the congruence relations of isotopic algebras have to be
related.

3.5. PROPOSITION. Let A be isotopic to B via C, with A, B and C contained in
a modular variety. Then there is an isomorphism \ between the congruence lattices of
A and B which sends pairs of permuting congruences into pairs of permuting
congruences. Moreover, for any congruence 0 on A, we get that A/O is isotopic to
B [ W(8) via C.

Before we prove this we need the following lemma:

3.6. LEMMA. Let b/a and d/c be two intervals in a sublattice of the congruence
lattice of an algebra in a modular variety. If b/a is transposed upwards (respectively
downwards) to dfc, and if b and c (respectively a and d) permute, then this
transposition carries permuting pairs of congruences in b/a into permuting pairs in d/c.

PROOF. Suppose b/a is transposed upwards onto d/c and b and ¢ permute. Let
X1, X7 be permuting elements in b/a. Then, since b A ¢ < X1,X9 < btc , and since b
and c permute, by Korollar 5 of [9] or Proposition 2.2, we have that X1 and X1

permute with b and with ¢. We get:
(c+x1) + (c+x2) =c+ (xl ° x2) =C°X1° Xy
=CeXp°Co Xy =(ctxp) (ctxq),
hence ctxg and ctx, permute, which we had to show.
Suppose now that b/a is transposed downwards to d/c, and choose X1,X9 € b/a
with Xy°X9 = X9°Xj. Since a A d < X1s X9 <at+d, we get that xl,xz,d A X and
d A x5 generate a sublattice D% as shown in the figure below. Moreover, another

application of Proposition 2.2 shows that d A (x1*X9) permutes with x| A X5.

X1 +Xs
dA(x;+xp ) X2

dAax, dAxs X] AXo

Figure 6.
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Now we may forget the algebra we are working in and we may suppose, without
loss of generality, that x 1+X9 is the universal relation whilst d A X] A X9 is the
identity relation on the set A. Since X] A Xgandd A(x1+X5) are complementary and

permute, they give rise to a product decomposition

Ajd A(X1*X9) X A/xl A X9
of A. Moreover A/xl A%y is by the same reasons a direct product of A/xl and A/XZ.
Hence A= Aq X A2 X A3 with d /\(X1+X2) = ker Ty, X = ker T and Xq = ker m3
with respect to this decomposition. Hence d a x1 = kermy A kermy and d A Xy =
ker m{ A ker w3 with respect to this decomposition. Since ker my A ker Ty commutes
with ker | A ker m3,80dod Axpandd A X9 which was to be proved.

Finally to verify Proposition 3.5, we assume A and B to be isotopic via C. By
Proposition 3.3 there is an isomorphism ¢: A X C— B X C commuting with the
second projections. ¢ induces in a natural way an isomorphism c; between the
congruence lattices L£(A X C) and L(B X C) such that a(ker ﬂéxc) = ker ﬂ%xc,
Clearly, $ carries pairs of permuting congruences into pairs of permuting congruences.
Now let « be the mapping given by transposing the interval (A X C)2/ker 7y in the
congruence lattice of A X C down onto the interval ker 1r2/0, and let 8 be the map
transposing the interval ker my/o in the congruence lattice of B X C up onto the
interval (B X C)2/ker my. Then, together with Lemma 3.6, we get that the
composition ﬁ°$°a is an isomorphism between (A X C)2/ker my in L(A X C) and
(B X C)2/ ker my in LB X C) carrying pairs of permuting congruences into permuting
pairs again. By the isomorphism theorem of course, the first interval is canonically
isomorphic to L(A) whilst the second interval is canonically isomorphic to £(B). Let
be the isomorphism so constructed. For arbitrary 6 in £(A) we have to show that A/G
is isotopic via C to B/ll/(e)' Viewing 6 and y(0) as congruences on A X Cand B X C,
respectively, one gets product decompositions of (A X ) /6 Aker Ty and
(BXO /$(6) Aker Ty’ Moreover, Y agrees with 3 on 0 A ker 7y as well as on ker LO®
(Use Proposition 2.2 and modularity to verify this.) Hence, there is an isomorphism
between (A X C)/B Aker 7y and (B X C)/\,l;(B) Aker 4 i.e. between A/O X C and
BN/(@) X C,so A/G and BN/(O) are isotopic via C, by 3.3.

§4. The structure of isotopic algebras. We keep on working within a fixed
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congruence-modular variety V. Suppose A, B and C are algebras in V such that A is
isotopic to B via C. By Theorem 3.4 we may as well suppose that A and B are affine
isotopic via C. In the case that C has a one-element subalgebra, we immediately see
that A and B have to be isomorphic; in particular, if C is a one-element algebra, this
will be the case. If however C is bigger, then A, B and C will be equipped with an
interesting structure, similar to a module structure. For this sake, let us define:

4.1. DEFINITION. An algebra A is affine with respect to an abelian group G, if
A is the underlying set of an abelian group G such that, for every n-ary fundamental

operation (every term-function) f of A, we have

f(x1-y1+21, XY tzy) = £(xg,xp)- £y {50y )t (2 500002),
for every x;,y;,2;, Aand 1 <i<n.
Suppose A is an affine algebra. We define a new algebra Av on the same base set
in the following way:

For any fundamental operation f on A define a new operation £V by
V(X | e Xp): = £(X ] ek ) - £O,..,0),
where 0 is the neutral element of G. For A = (A,(f);ep we set now:
AV: = (A ep-
Obviously, AV is affine 1sotopic to A via A.

Let now a be an arbitrary element of A. Define a new group G’ on A by setting
x+y: = x-aty. Then a is the neutral element of G'. Clearly, G is isomorphic to G’ and,
if we define

fv'(xl yeenX)t = f(X] 000X - f(a,...,2),
then we easily see that AV = AV Hence we will talk about AV without specifying
which element we pick for a zero-element.

Let now A and B be affine isotopic via C. By Theorem 3.4, the congruence lattice

of U: = A X C contains a 0-1-sublattice as indicated in the following figure:

Pkerm,

kerm o

Figure 7.




