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Abstract� Assuming only boundedness of the type functor� we
give a syntactical description of coequations� and we prove a coal�
gebraic version of Birkho��s variety theorem�

�� Introduction

State based systems play an important role in computer science�
Finite automata are used as language recognizers� Kripke�Structures
and many variations of labeled transition systems model concurrent
behaviour� An important aspect of many such models is nondetermin�
ism� Nondeterministic models represent a lack of predictability of the
next system state� This unpredictability may originate in communica�
tion events between systems far apart from each other and not coordi�
nated with a common clock� or it may result from systems made up of
subprocesses and threads which are being scheduled by the operating
system� dependent on current system load and requests�

It is common to all such state based systems that the state is impor�
tant in the implementation� but not in the speci�cation of the system�
Rather� the user expects a certain behaviour� without insisting on how
this behaviour is implemented� As an example� consider object oriented
programs� The state of such systems is �private� and not observable by
the user� only certain attributes and methods are �public� and thereby
observable� In order to judge whether a system satis�es a speci�cation�
it is only the observable behavior that counts� In particular� two sys�
tems are supposed to be equivalent� if they show the same observable
behaviour�

It is only through a rather abstract view on universal algebra� that
it can be seen that the above systems are actually dual to universal
algebra� they are instances of what has been termed coalgebras� This
insight is due to H� Reichel �Rei	
� and has been the starting point for
a rapidly developing theory of coalgebras� Computer scientists have
realized that many notions and results scattered in automata theory�
in the theory of object oriented programming� in process theory� and
in modal logic �nd a common framework in the emerging theory of
�universal coalgebra��

As a mathematical exercise� by dualizing universal algebra� coalge�
bras had already been studied in the sixties� A straightforward dual�
ization of classical universal algebra� however� merely yields coalgebras

�
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consisting of a set A together with a family of maps fA � A � n � A�
where n � A is an abbreviation for

U
i�nA� the n�fold disjoint union of

A� It is not clear whether such structures might be of much use� cer�
tainly� they will not be able to describe automata� transition systems�
or object oriented programs�

The key to revealing the coalgebraic nature of the relevant systems
is a more general viewpoint on universal algebras� A universal algebra
is just a set A with a map fA � F 
A� � A� where F � Set � Set is
a functor on the category of sets� This de�nition extends the classical
notion� since given any type � � 
ni�i�I � we can de�ne

F 
X� ��
�

i�I

Xni�

so a universal algebra of type � is just a set A together with a single
map fA � F 
A�� A�

Dualizing this more general concept� we obtain a notion of coalgebra
that encompasses all the mentioned applications� For instance� an au�
tomaton with state set S� alphabet M � transition map � � S�M � S�
and set of terminal states T � S can be encoded into a single map

� � S � SM � f�� �g�

hence can be seen as a coalgebra for the functor F 
X� �� XM �f�� �g�
Similarly� a nondeterministic transition system where for every state
s � S and every input m � M a certain set �
s�m� � S of successor
states are possible� can be coded as a map

� � S � P
S�M �

that is� as a coalgebra for the functor F 
X� �� P
X�M � where P is the
powerset functor�

As is often the case with rather general de�nitions� there are in�
stances and applications that arise somehow unexpectedly� For exam�
ple� by choosing the �lter functor F � Set� Set which associates with
every set X the set of F
X� of all �lters on X� we �nd that topological
spaces are just F �coalgebras�

It is surprising that a rich structure theory of universal coalgebra can
be developed from the seemingly abstract de�nition� The standard in�
troduction to the subject has been by J� Rutten �Rut���� however� it
should be noted that many of his proofs depend on a further condi�
tion imposed on the type functor F � it is supposed to preserve weak
pullbacks�

Rutten introduced the notion of covariety and cofree coalgebra and
showed that under a further �boundedness��condition on F � covarieties
could be represented by subcoalgebras of a certain cofree structure SX �

Under the very same hypotheses on F � covarieties were characterized
in �GS	�� by means of closure under sums� substructures and homo�
morphic images� Furthermore� we analyzed the conditions under which
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a pair 
U �A� of a coalgebra A with subcoalgebra U � A gives rise to a
covariety� Finally� in �Gum		b�� we showed how these results could be
seen as a coalgebraic version of Birkho��s theorem� when elements of
the cofree coalgebra SX were interpreted as �behaviour patterns�� or
�coequations��

When preparing lecture notes for an introductory course on coalge�
bras 
�Gum		a�� we realized that with an appropriate reformulation
of the notion of �boundedness�� the results mentioned above could be
proven without assuming on �weak pullback preservation��

A shortcoming of the notion of �behaviour� or �coequation� had al�
ways been the lack of any syntactical description� preventing anything
resembling an equational calculus� It was only recently� in joint work
again with T� Schr�oder �GS��b�� and with the help of J� Ad�amek� that
we came across results of Trnkov�a �Trn�	�� which led us to a detailed
description of bounded functors 
see �GS��b��� As a result� coequa�
tions can now be seen as congruence classes of labelled trees� each tree
representing the possible behaviour emanating from a given state�

In this note� we shall give a full account of the coalgebraic version of
Birkho��s theorem� including a syntactical description of coequations�

�� Preliminaries

We collect all de�nitions� which are needed in the sequel� Some basic
results will be quoted� For proofs we shall refer to the literature�

���� Type functors� A type functor F � Set � Set associates with
every set X a set F 
X� and with every map f � X � Y a map
F 
f� � F 
X�� F 
Y �� so that


i� F 
idX� � idF �X�� and

ii� F 
g � f� � F 
g� � F 
f� whenever f � X � Y and g � Y � Z�

We shall assume in the sequel that F is nontrivial� in that F 
X� �� 	
whenever X �� 	� If X �� 	 and f � X � Y is injective� then f has
a left inverse� It follows that F 
f� has a left inverse too� so it is also
injective� Any surjective map g � X � Y has a right inverse by the
axiom of choice� hence F 
g� is surjective� too�

���� Some examples of functors� We shall discuss some examples
of functors that will be used in this article�


 The powerset functor P associates to a set X the set of all its
subsets P
X� �� fU j U � Xg and to a map f � X � Y the
map P
f� � P
X�� P
Y � which is given by P
f�
U� �� f �U � ��
ff
u� j u � Ug�


 A variation of this de�nition yields the �nite powerset functor P�
which assigns to a set X the set P�
X� of all �nite subsets of X�
On maps f � X � Y this functor is de�ned as before�
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 For a �xed set M � the M �th power functor associates to a set X
the set XM �� f� � M � Xg of all maps from M to X� A map
f � X � Y is associated to a map 
f�M � XM � Y M by de�ning

f�M
�� �� f � � �


 For a �xed set C� the constant functor kC associates to every set
X the �xed set C� and to every map f � X � Y the identity map
idC �


 New functors can be obtained from old ones by composition� sums
and products� As an example� the functor C�
��M � which assigns
to a set X the set C �XM and to a map f � X � Y the obvious
map idC�f � 
��� is obtained as the cartesian product of kC with
the M �th power functor�

���� Natural Transformations� A natural transformation � from a
type functor G to a type functor F consists of a map �X � G
X� �
F 
X� for every set X� so that for every map f � X � Y the following
diagram commutes� � is called surjective� if �X is surjective whenever
X �� 	�

X

f

��

G
X�

G�f�
��

�X
�� F 
X�

F �f�
��

Y G
X�
�Y �� F 
X�

���� Coalgebras� A coalgebra of type F 
also called F �coalgebra� is
a pair A � 
A� �A� consisting of a set A and a map � � A � F 
A��
We call A the carrier set and �A the structure map� A homomorphism
between coalgebras A � 
A� �A� and B � 
B� �B� is a map � � A� B
for which the following diagram commutes�

A
� ��

�A
��

B

�B
��

F 
A�
F ���

�� F 
B�

F �coalgebras with their homomorphisms form a category which will be
denoted by SetF �

Epimorphisms in SetF are just those homomorphisms which are sur�
jective maps� but monomorphisms need not be injective� see �GS��a��
If � is a bijective homomorphism� then its inverse ��� is a homomor�
phism too� so � is an isomorphism 
see �Rut����� We write A �� B if
they are isomorphic� i�e� if there exists an isomorphism between them�

��
� Colimits� The forgetful functor from SetF to Set� associating
with an F �Coalgebra A � 
A� �A� its underlying set A� creates colim�
its� that is to say� Every colimit exists in SetF and its underlying set
is given by forming the colimit in Set and equipping it with the unique
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structure map� given by the colimit property 
see �Rut����� Two par�
ticular cases are of importance� sums and pushouts�

��
��� Sums� Given a family 
Ai�i�I of coalgebras� their sum �i�IAi is
obtained by forming the disjoint union

U
i�I Ai and equipping it with

the unique structure map � �
U
i�I Ai � F 


U
i�I Ai� which turns all

embeddings ei � Ai �
U
i�I Ai into homomorphisms�

��
��� Pushouts� Given coalgebrasA� B�� and B� with homomorphisms
�� � A � B� and �� � A � B�� their pushout is obtained by �rst
forming the pushout of �� and �� as set maps� This yields a set C with
maps �� � B� � C and �� � B� � C� On C there is a unique coalgebra
structure �C � C � F 
C� turning �� and �� into homomorphisms�
It follows that C � 
C� �C� is the pushout of the �i in SetF � If ��

is surjective� then so is ��� If A �� 	 and �� is injective� then it is a
left�invertible in Set� It follows that �� is left�invertible� in particular�
injective�

B�
��

����� C

A

��

OO

��
�� B�

��

OO�
�
�

We shall later need pushouts of an arbitrary collection �i � A � Bi
of epimorphisms� By the same reasoning as above� this will yield us a
coalgebra C� together with a collection of epimorphisms �i � Bi � C�

���� Subcoalgebras� We write U � A� if U � 
U� �U� is a subcoalge�
bra of A� that is if U � A and the natural inclusion map �A

U � U � A
is a homomorphism� Given a subset U � A� there is at most one struc�
ture map �U � U � F 
U� making U the carrier set of a subcoalgebra
of A� Therefore� we use the term �subcoalgebra� both for U and for
its carrier set U � Arbitrary unions and �nite intersections of subcoal�
gebras are again subcoalgebras 
see �GS��b��� If U � A and ��U � � U
for every homomorphism � � A � A� then we say that U is invariant�

���� Homomorphic images� If � � A � B is a surjective homo�
morphism� then B is called a homomorphic image of A� Any ho�
momorphism � � A � B factors as a Set�map through its image
��A� � f�
a� j a � Ag� Let � � �B

��A� � �
� be this factorization� and let

� � ��A�� A be a right�inverse to ��� then �� �� F 
�����A�� uniquely
de�nes a structure map on ��A� making it into a subcoalgebra ��A� � B
and a homomorphic image of A� Thus any homomorphism � � A� B
factors uniquely as A � ��A� � B� Any surjective homomorphism
� � A � B induces a coalgebra structure� isomorphic to B� on the
quotient set A	ker�� The quotient map 
ker� with 
ker�
a� � �a�ker�
is a surjective homomorphism�
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���� Conjunct sums� A coalgebra A is a conjunct sum of a fam�
ily 
Ai�i�I � provided that there is a family of embeddings 
injective
homomorphisms� �i � Ai � A so that A is the union of the sub�
coalgebras �i�Ai�� Equivalently� there is a surjective homomorphism
� � �i�IAi �A� so that all compositions � � ei � Ai � A are injective�

De�nition ���� A coalgebra A is called residually �� if it is a conjunct
sum of coalgebras of cardinality at most �� If K is a class of coalge�
bras� we shall denote with K�� the class of all members of K which are
residually ��

��	� Bisimulations� Bisimulations are the compatible relations be�
tween coalgebras� A relation R � A� �A� between coalgebras A� and
A� is a bisimulation� if R can be equipped with a coalgebra structure
so that the projection maps 
i � R� Ai become homomorphisms�

The union of bisimulations is again a bisimulation� hence there is
always a largest bisimulation� denoted by �A�	A�

between any two coal�
gebras A� and A�� We write �A instead of �A	A�

����� Examples� We discuss three examples which are relevant in
computer science� Kripke models are used to model nondeterminis�
tic behaviour of processes� and they provide a standard semantics for
modal logic� Deterministic automata model �black boxes� whose in�
ternal states are hidden� Their behaviour can only be inferred from
the output generated� When the output set is restricted to the ��
element set fTrue� Falseg� deterministic automata are used to de�ne
languages� Nondeterministic automata generalize both of the above
structures�

������� Kripke Models� For a �xed set C of �propositions�� a Kripke
model is usually introduced as a set A of states together with a tran�
sition relation R � A � A and a valuation map V � C � P
A�� The
latter assoiates to a proposition c the set of states in which c is to hold�
Obviously� we can combine these data into a single map�

� � A� P
C�� P
A��

hence a Kripke Model is just a coalgebra of type kP�C��P� where kP�C�

is the constant functor with value P
C� and P the powerset functor�

������� Deterministic Automata� An automaton with input set M and
output set C consists of a set A of states� and two maps

�A � A� C

�A � A�M � A


�A is called the output map and �A the state transition map� We can
combine � and � into a single map

�A � A� C � AM
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by setting

�A
a� �� 
�A
a�� ���

where


m �M
 �
m� �� �A
a�m�


Thus automata with input set M and output set C are nothing but
coalgebras for the functor C � 
��M �

It is straightforward to check that a coalgebra homomorphism �
between two C�
��M �coalgebrasA and B is the same as an automaton
homomorphism� i�e� it is required to satisfy

�A
a� � �B
�
a��

�
�A
a�m�� � �B
�
a�� m�


In the sequel we shall drop the indices to �� � and �� whenever there
is no danger of confusion�

Considering M as a 
possibly in�nite� alphabet� we let M� denote
the set of all words with letters from M � Let � denote the empty word
and for m � M and w � M� let m � w be the word with �rst letter m
and remaining word w�

Now � can be extended to a map �� � A �M� � A by inductively
de�ning�

��
a� �� �� a� and

��
a�m � w� �� ��
�
a�m�� w�


Then it is easy to see that a subset U � A is a subcoalgebra of A i� it
satis�es� 
u � U

w �M�
��
u� w� � U


A bisimulation between two automata A and B is easily seen to be
a relation R � A� B satisfying for all 
a� b� � R�

�
a� � �
b�� and


m �M
 �
a�m� R �
b�m�


The largest bisimulation is given as

�A	B � f
a� b� � A� B j 
w �M�
 �
��
a� w�� � �
��
b� w�� g


In case A � B and C � f�� �g� this is also known as the Nerode�
congruence of language theory� It is a coincidence that in this case �A

is an equivalence relation� In general coalgebras� �A is re�exive and
symmetric� but not necessarily transitive 
see �GS��a���

������� Nondeterministic automata� Nondeterministic automata with
input set M and output set C are obtained as coalgebras for the func�
tor that associates to a set X the set C � P
X�M � Obviously� nonde�
terministic automata generalize both Kripke models and deterministic
automata�
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�� Covarieties� cofree coalgebras� and Birkhoff�s

theorem

It is our aim to specify classes of coalgebras in a way analogous to
the equational speci�cation of varieties of universal algebras given by
Birkho��s theorem�

���� Covarieties� Covarieties will be introduced as classes closed un�
der structural closure operators�

De�nition ���� Given a class K of F �coalgebras� we denote by


 I
K� the class of all isomorphic copies� by

 H
K� the class of all homomorphic images� by

 S
K� the class of all subcoalgebras� by

 �
K� the class of all sums� and by

 �C
K� the class of all conjunct sums

of coalgebras in K� A class K of coalgebras is called a covariety� if it
is closed under the operators �� H� and S�

Obviously� all operators are idempotent� up to isomorphism� in that
O
O
K�� � I
O
K�� for each of the operators introduced above and
for all classes K� The following lemma was shown in �GS	��� Even
though� the article assumed that F should �preserve weak pullbacks��
this assumption was not invoked in the original proof�

Lemma ���� For an arbitrary class K� we have


i� I
S
K�� � S
I
K���

ii� H
S
K�� � I
S
H
K����

iii� �
S
K�� � S
�
K���

iv� �
H
K�� � H
�
K���

There are two essential ingredients for the proof of this lemma� One
is that every homomorphism � � A� B factors through its image ��A�
which is a subcoalgebra of B� and the other is the fact that the forgetful
functor from SetF to Set creates colimits� as dicussed in section ��
�
For instance� to prove 
ii�� we start with U � A and � � U � B where
A � K� Let P be the pushout of � with the inclusion homomorphism
�A
U � U � A� Then the remarks in section ��
�� imply that there is a

surjective homomorphism � � A� P and an injective homomorphism
� � B � P� Hence B is isomorphic to the subcoalgebra ��B� of P�

U

�
����

�
� �� A

�
����

B




���� �� �� ��B� �
� �� P

From the lemma it follows immediately�

Theorem ���� SH�
K� is the smallest covariety containing K�
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Even though the above may seem to be perfectly dual to the universal
algebraic situation� by switching the role of the operators H and S
and by replacing products with sums� we caution the reader� that the
situation is not that clear cut� For one thing� we are talking here about
type functors F that are more general than the type functors �i�I
��ni

of universal algebra� On the other hand� it was shown in �GS��b� that
the intersection of �nitely many subcoalgebras of a given coalgebra is
again a subcoalgebra� From this it can be concluded that

S�
K� � �S
K�

holds for arbitrary classes of coalgebras� The dual� in the above sense�
of this result is false for universal algebras� We shall later need another
consequence of the closure of subcoalgebras under �nite intersections�

Lemma ���� For an arbitrary class K of coalgebras

S�C
K� � �CS
K�


Proof� If A � S�C
K�� then there is a coalgebra C and there are sub�
coalgebras Bi � C so that A �

S
i�I Bi � C� and each Bi � K� By

�GS��b�� each A �Bi is a subcoalgebra of C� so A �
S
i�I
A � Bi� is a

conjunct sum of subcoalgebras of the Bi�

���� Terminal Automata� We consider an automaton with input set
M and output set C as a black box� The states are not visible� but only
the output that is generated via �� We can enter a sequence w � M�

of inputs and observe the resulting output� In this way� every state s
of such an automaton gives rise to a map �
s� � M� � C de�ned by

�
s�
w� �� �
��
s� w��


In an intuitive sense� the function �
s� encodes every possible �observ�
able behaviour� arising from state s� Hence we can view T �� CM�

as
the set of all possible behaviours of automata� T can itself be made
into an automaton T by de�ning for any � � CM�

�

�T 
�� �� �
��

�T 
��m� �� �m� where �m
w� � �
m � w�


It is now easy to verify that for every automaton A with input set M
and output set C� the map � is the unique homomorphism � � A� T �
Thus� T is terminal in the sense of the following section�

���� Terminal Coalgebras� An F �coalgebra T � 
T� �T � is called
terminal 
or �nal�� if for every A � SetF there is a unique homomor�
phism � � A � T � If the uniqueness requirement is dropped� then T
is called weakly terminal�

As in the above automata example� terminal coalgebras� if they exist�
play an important role� since they embody all possible �behaviours�
from a whole class of coalgebras� To be precise� for every coalgebraA �
SetF and any a � A� there is precisely one element �
a� of the terminal
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coalgebra which is bisimilar to a� In particular� no two elements of the
terminal coalgebra are bisimilar� that is �T� �T �� f
x� x� j x � Tg�

Given just a weakly terminal coalgebra� the terminal one can be
constructed as the smallest homomorphic image�

Lemma ���� Let W be weakly terminal and let P be the pushout of
all quotients of W� Then P is terminal�

Proof� The pushout yields an epimorphism � � W � P � Note that P
is also weakly terminal� To see that it is indeed terminal� consider a
parallel pair ��� �� � A � P of homomorphisms� We must show that
�� � ���

Consider their coequalizer � � P � P �� It is surjective� for such is the
case in Set� Hence ��� �W � P � is an epimorphism� By construction
of P� there must be a homomorphism � � P � � P with � � � � � � ��
It follows that � � � � idP � so �� � � � � � �� � � � � � �� � ���

W

�
���� ��B

B
B

B

A
�� ��
��

�� P
� ��

P �
�

oo� � �

���� Cofree coalgebras� Our standard examples of coalgebras � au�
tomata and Kripke models � came equipped with a notion of �output��
The possible outputs arising from a given state can be combined in a
structure representing the �behaviour� arising in this state� In specify�
ing classes of coalgebras� it is natural to de�ne them by means of their
permitted� or their forbidden behaviours�

For a general type functor F � Set � Set� there may be no stan�
dard notion of �output� available� therefore� we consider what would
happen� if we would adjoin a �xed set X of outputs�

De�nition ��	� Let X be a set� An F �coalgebra TX together with a
Set�map �X � TX � X is called cofree over X� if for every coalgebra
A and every map � � A � X� there is exactly one homomorphism
�� � A� TX with �X � �� � ��

X

A

�
����������

��
����� TX


X

OO

An F �coalgebra A � 
A� �A� together with a coloring � � A� X is
just a kX�F �coalgebra A� � 
A� 
�� �A��� and conversely� In the same
way� the coalgebra TX � 
TX � �TX � with coloring �X is cofree over X
i� T �

X � 
TX � 
�X � �TX �� ist terminal as kX � F �coalgebra�
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In this way� X may be seen as an added output set and an X�
coloring as an output map� TX is then the set of all behaviours with
respect to this output set� Therefore� we shall call each element of TX
a �behaviour pattern��

Let K be a class of F �coalgebras� and let TX be cofree over X� Every
map � � A � X where A � K� determines a subcoalgebra ���A� � TX �
Put

TX
K� ��
�
f ���A� j A � K� � � A � Xg�

then this de�nes a subcoalgebra of TX which is moreover invariant� in
that it is closed under every endomorphism of TX � If K is closed under
sums and homomorphic images� we even have TX
K� � K�

Conversely� if U is a subcoalgebra of TX � then from �GS	�� it follows
that

Q
U� �� fA � SetF j 
� � A� X
 ���A� � Ug

is a covariety� Only for showing closure under S will the cofreeness of
TX be needed�

It is now natural to combine the constructions� Let VX
K� ��
Q
TX
K��� then

Lemma ��
� For any � � jXj� if TX exists� then

VX
K��� � SH�
K���


Proof� Since VX
K� is a covariety containingK� it must contain SH�
K��
Conversely� let A � VX
K���� Then A is a conjunct sum of Ai� each
of size at most �� It su�ces to show that Ai � S�C
K�� Choose any
injective map � � Ai � X� it extends to an injective homomorphism
�� � Ai � TX � Consequently� Ai is isomorphic to a subcoalgebra of
TX
K� � �CH
K�� Hence A � �CIS�CH
K� � H�SH�H
K� �
SH�
K��

As a corollary to the proof and by invoking lemma ��� we get�

Corollary ���� If the cofree F �coalgebras TX exists for some jXj � ��
then V
K��� � �CSH
K����

�� Bounded Functors

It follows from an observation of Lambek 
for a proof see �Rut�����
that the structure map �T � T � F 
T � on a terminal coalgebra must be
bijective� Consequently� a terminal coalgebra cannot exist� for instance�
when F is the powerset functor� Fortunately� however� most functors
of relevance in computer science do not grow in such an uncontrollable
way� that is� we can put a bound on their growth�

De�nition ���� A functor F � Set � Set is bounded� if there is a
set X such that for every F �coalgebra A and every a � A there is a
subcoalgebra U � A with a � U and jU j � jXj�
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Many functors F have the property that F �subcoalgebras are closed
under arbitrary intersections� In this case� for every A � SetF and
every a � A� there exists a smallest subcoalgebra hai containing a� Such
subcoalgebras are called �one�generated�� Functors F � as described
above� are therefore bounded� i� there is a cardinal bound jXj on the
size of one�generated F �subcoalgebras�

From this remark it follows that all of the previously mentioned
functors� with the exception of P� are bounded� Every one�generated
subautomaton is of size at most jM�j� and similarly� every P��coalgebra
has a substructure of size at most ��

Obviously� F is bounded if and only if SetF is residually small� Thus
there is a set of generators� consisting of coalgebras of size at most ��
so with the help of the �special adjoint functor theorem�� it can be
shown that cofree F �coalgebras exist� For a straightforward proof� see
�GS		��

At the same time� if F is bounded by X� we have K�jXj � K for any
class K of F �coalgebras� Combining these� we have�

Theorem ���� Let F be bounded by X� then the cofree coalgebra TX
exists and


 for every covariety K� there exists a invariant subcoalgebra U of
TX with Q
U� � K�


 for every invariant subcoalgebra U of TX � there exists a covariety
K with U � TX
K��


� Coequations

Covarieties correspond uniquely to fully invariant subcoalgebras of a
cofree coalgebra� hence it is natural to de�ne a coequation with covari�
ables in X as an element of the cofree coalgebra TX � i�e� as a behaviour
pattern with variables in X�

Starting with a set E � TX of coequations� then a natural conse�
quence relation is given by forming the largest fully invariant subcoal�
gebra contained in E� Then� however� an element e � E need not be in
the set of consequences of E� In particular� it is unlikely that a single
equation e will have any consequence�

For this reason� we have opted to de�ne validity as exclusion� An
element of TX is a �forbidden behaviour pattern� and an element a
of a coalgebra A satis�es obeys the coequation� if the corresponding
pattern is avoided� Such speci�cations by avoidance are common in
many �elds of mathematics� Planar graphs� for instance are de�ned by
avoidance of two speci�c graphs� K�	� and K	� modular� resp� distribu�
tive� lattices by the avoidance of the special lattices N	� resp� N	 and
M�� Therefore� we de�ne for a coequation e � TX � any coalgebra A�



BIRKHOFFS VARIETY THEOREM FOR COALGEBRAS ��

element a � A and any coloring � � A� X�

A� a j�� e ��� ��
a� �� e

A� a j� e ��� 
� � A� X
 A� a j�� e

A j� e ��� 
a � A
 A� a j� e


For a set E of coequations� we de�ne their model class� and for a class
K of coalgebras their 
avoided� behaviour patterns as

Mod
E� �� fA � SetF j 
e � E
 A j� eg� and

BehX
K� �� fe � TX j 
A � K
 K j� eg


Combining these de�nitions with lemma ���� we now obtain the follow�
ing coalgebraic version of Birkho��s theorem�

Theorem ���� Let the type functor F be bounded by X� Then for any
class K of F �coalgebras we have

SH�
K� �Mod
BehX
K��



��� Syntax� In spite of the formal dual analogy to Birkho��s theo�
rem� one essential ingredient seems to be missing� that is the syntactical
nature of coequations� and with it a syntactical style of reasoning� In
universal algebra� the syntactical nature of equations is a direct conse�
quence of the restricted nature of the type functor as F � �i�I
��

ni �
So at �rst� the generality in the type functors permitted for coalgebras�
seems to forbid any syntactical description� It was only after J� Ad�amek
pointed us to some relevant work of Trnkov�a� which in �GS��b�� we were
able to use for characterizing bounded functors as follows�

Theorem ��� 
�GS��b��� A functor F is bounded� i� there exist sets
C and M and a surjective natural transformation � � C � 
��M � F �

In the basic case� when F � C � 
��M � we have already seen that
the cofree F �coalgebra over X has TX � 
C � X�M

�

as underlying
set� Coequations are in�nite trees with nodes labelled by pairs 
c� x� �
C �X� each node having precisely jM j many sons�

In the general case� when F is bounded� there are sets C and M
and a surjective natural transformation � � C � 
��M � F � It follows
that every F �coalgebra is of the form A� � 
A� �A � �A� for some C �

��M �coalgebra A � 
A� �A�� If W is 
weakly� terminal as C � 
��M �
coalgebra� then W� is weakly terminal as F �coalgebra�

Consequently� the terminal F �coalgebra is a factor of T� where T is
the terminal C � 
��M �coalgebra� The latter is the set of all in�nite
M �branching trees with nodes labelled from C� Hence the terminal
F �coalgebra consists of equivalence classes of in�nite trees�

Quite similarly� the elements of the F �coalgebra cofree over X con�
sists of equivalence classes of M �branching in�nite trees with labels
from C � X� Hence every coequation is an equivalence class of some
�syntactic object��
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We shall give an example that shows the role of covariables in coequa�
tions� As mentioned before� they can be interpreted as an additional
output by which previously indistinguishable states can be told apart�
Let� for instance� M � fmg and C � f�� �g� If we want to distinguish
the following two coalgebras�

u 


m

��
v �

m

DD

 a m

�� b �

m

��
� c

m

OO

d 

moo

where the indices at the states denote their respective ��values� we shall
need at least two covariables� By di�erently labelling nodes with the
same output� we can enforce a distinction� The ��variable coequation�
for instance� which is obtained by unfolding the following diagram at
node 
�� x�� distinguishes the above coalgebras�


�� x�
m

�� 
�� x�

m

��

�� y�

m

OO


�� y�
moo

It is obviously avoided by the �rst one� but not by the second one� as
witnessed by the coloring � with �
a� � �
b� � x and �
c� � �
d� � y�


��� Coequational Implication� For a coequation f and a set of
coequations E� we de�ne

E j� f

to mean that every coalgebra A satisfying all coequations in E must
also satisfy f � Let us restrict ourself to the case of the functor F �
C � 
��M � In this case� coequations are in�nite C �X�labelled trees�
rather than equivalence classes of such trees� For any tree � � a word
w �M� determines a subtree ��
�� w� of � �

Theorem ���� E j� f if and only if there is an endomorphism � �
TX � TX mapping a subtree of f into E�

Proof� Suppose E j� f � then hfi �� f��
f� w� j w � M�g is a subcoal�
gebra of TX � containing f � Thus hfi �j� f � hence hfi �j� e for some
e � E� hence there is an element a � hfi and a map � � hfi � X with
��
a� � e� Obviously� � can be extended to a map TX � X with the
same property and a � ��
f� w� for some w � M� is a subtree of f �

Conversely� let an endomorphism � � TX � TX be given� mapping a
subtree of f into E� Thus� �
��
f� w�� � E for some w � M�� Assume

A �j� f � then there is an a � A and a map � � A� X with ��
a� � f � It

follows with � �� � � �� � A� TX that �
��
a� w�� � �
��
 ��
a�� w�� �
��
��
f� w�� � E� so A �j� E�



BIRKHOFFS VARIETY THEOREM FOR COALGEBRAS ��

References

�GS�	
 H�P� Gumm and T� Schr�oder� Covarieties and complete covarieties� Coal�
gebraic Methods in Computer Science �B� Jacobs et al� ed�
� Electronic
Notes in Theoretical Computer Science� vol� ��� Elsevier Science� ���	�
To appear in Theoretical Computer Science�

�GS��
 H�P� Gumm and T� Schr�oder� Products of coalgebras� Algebra Univer�
salis� to appear� �����

�GS��a
 H�P� Gumm and T� Schr�oder� Coalgebraic structure from weak limit pre�

serving functors� Coalgebraic Methods in Computer Science �H� Reichel�
ed�
� Electronic Notes in Theoretical Computer Science� vol� ��� Elsevier
Science� ����� pp� ��������

�GS��b
 H�P� Gumm and T� Schr�oder� Coalgebras of bounded type� Tech� Re�
port ��� FG Informatik� Philipps�Universit�at Marburg� �����

�Gum��a
 H�P� Gumm� Elements of the general theory of coalgebras� LUATCS ���
Rand Afrikaans University� Johannesburg� South Africa� �����

�Gum��b
 H�P� Gumm� Equational and implicational classes of coalgebras� Theo�
retical Computer Science� to appear� �����

�Rei��
 H� Reichel� An approach to object semantics based on terminal co�

algebras� Math� Struct� in Comp� Sci� �����
� no� �� ��������
�Rut��
 J�J�M�M� Rutten� Universal coalgebra� a theory of systems� Theoretical

Computer Science ��� �����
� no� �� ��	��
�Trn��
 V� Trnkov�a� Some properties of set functors� Comm� Math� Univ� Car�

olinae �� �����
� no� �� ��������

Philipps�Universit�at Marburg� ����	 Marburg� Germany

E�mail address � gumm�mathematik�uni�marburg�de


