BIRKHOFFS VARIETY THEOREM FOR COALGEBRAS

H. PETER GUMM

ABSTRACT. Assuming only boundedness of the type functor, we
give a syntactical description of coequations, and we prove a coal-
gebraic version of Birkhoff’s variety theorem.

1. INTRODUCTION

State based systems play an important role in computer science.
Finite automata are used as language recognizers, Kripke-Structures
and many variations of labeled transition systems model concurrent
behaviour. An important aspect of many such models is nondetermin-
ism. Nondeterministic models represent a lack of predictability of the
next system state. This unpredictability may originate in communica-
tion events between systems far apart from each other and not coordi-
nated with a common clock, or it may result from systems made up of
subprocesses and threads which are being scheduled by the operating
system, dependent on current system load and requests.

It is common to all such state based systems that the state is impor-
tant in the implementation, but not in the specification of the system.
Rather, the user expects a certain behaviour, without insisting on how
this behaviour is implemented. As an example, consider object oriented
programs. The state of such systems is “private” and not observable by
the user, only certain attributes and methods are “public” and thereby
observable. In order to judge whether a system satisfies a specification,
it is only the observable behavior that counts. In particular, two sys-
tems are supposed to be equivalent, if they show the same observable
behaviour.

It is only through a rather abstract view on universal algebra, that
it can be seen that the above systems are actually dual to universal
algebra, they are instances of what has been termed coalgebras. This
insight is due to H. Reichel [Rei95] and has been the starting point for
a rapidly developing theory of coalgebras. Computer scientists have
realized that many notions and results scattered in automata theory,
in the theory of object oriented programming, in process theory, and
in modal logic find a common framework in the emerging theory of
“universal coalgebra”.

As a mathematical exercise, by dualizing universal algebra, coalge-
bras had already been studied in the sixties. A straightforward dual-

ization of classical universal algebra, however, merely yields coalgebras
1
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consisting of a set A together with a family of maps f4: A — n - A,
where n - A is an abbreviation for [4),_, A, the n-fold disjoint union of
A. Tt is not clear whether such structures might be of much use, cer-
tainly, they will not be able to describe automata, transition systems,
or object oriented programs.

The key to revealing the coalgebraic nature of the relevant systems
is a more general viewpoint on universal algebras. A universal algebra
is just a set A with a map f4: F(A) — A, where F : Set — Set is
a functor on the category of sets. This definition extends the classical
notion, since given any type A = (n;);cr, we can define

F(X) = [Hx™,
iel
so a universal algebra of type A is just a set A together with a single
map f4: F(A) — A.

Dualizing this more general concept, we obtain a notion of coalgebra
that encompasses all the mentioned applications. For instance, an au-
tomaton with state set S, alphabet M, transition map 6 : S x M — S,
and set of terminal states 7' C S can be encoded into a single map

a:S — SMx{0,1},

hence can be seen as a coalgebra for the functor FI(X) := X x {0,1}.
Similarly, a nondeterministic transition system where for every state
s € S and every input m € M a certain set §(s,m) C S of successor
states are possible, can be coded as a map

a:S —PS)M,

that is, as a coalgebra for the functor F'(X) := P(X)M, where P is the
powerset functor.

As is often the case with rather general definitions, there are in-
stances and applications that arise somehow unexpectedly. For exam-
ple, by choosing the filter functor F : Set — Set which associates with
every set X the set of F(X) of all filters on X, we find that topological
spaces are just F-coalgebras.

It is surprising that a rich structure theory of universal coalgebra can
be developed from the seemingly abstract definition. The standard in-
troduction to the subject has been by J. Rutten [Rut00], however, it
should be noted that many of his proofs depend on a further condi-
tion imposed on the type functor F, it is supposed to preserve weak
pullbacks.

Rutten introduced the notion of covariety and cofree coalgebra and
showed that under a further “boundedness”-condition on F', covarieties
could be represented by subcoalgebras of a certain cofree structure Sx.

Under the very same hypotheses on F', covarieties were characterized
in [GS98] by means of closure under sums, substructures and homo-
morphic images. Furthermore, we analyzed the conditions under which
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a pair (U, A) of a coalgebra A with subcoalgebra U < A gives rise to a
covariety. Finally, in [Gum99b], we showed how these results could be
seen as a coalgebraic version of Birkhoff’s theorem, when elements of
the cofree coalgebra Sx were interpreted as “behaviour patterns”, or
“coequations”.

When preparing lecture notes for an introductory course on coalge-
bras ([Gum99a]) we realized that with an appropriate reformulation
of the notion of “boundedness”, the results mentioned above could be
proven without assuming on “weak pullback preservation”.

A shortcoming of the notion of “behaviour” or “coequation” had al-
ways been the lack of any syntactical description, preventing anything
resembling an equational calculus. It was only recently, in joint work
again with T. Schréder [GS00b], and with the help of J. Addmek, that
we came across results of Trnkova [Trn69], which led us to a detailed
description of bounded functors (see [GS00b]). As a result, coequa-
tions can now be seen as congruence classes of labelled trees, each tree
representing the possible behaviour emanating from a given state.

In this note, we shall give a full account of the coalgebraic version of
Birkhoff’s theorem, including a syntactical description of coequations.

2. PRELIMINARIES

We collect all definitions, which are needed in the sequel. Some basic
results will be quoted. For proofs we shall refer to the literature.

2.1. Type functors. A type functor F : Set — Set associates with
every set X a set F(X) and with every map f : X — Y a map
F(f): F(X)— F(Y), so that

(1) F(Zd)() = ZdF(X), and

(ii) F(go f)=F(g9)o F(f) whenever f: X Y and g:Y — Z.
We shall assume in the sequel that F' is nontrivial, in that F(X) # ()
whenever X # (. If X # () and f : X — Y is injective, then f has
a left inverse. It follows that F'(f) has a left inverse too, so it is also
injective. Any surjective map g : X — Y has a right inverse by the
axiom of choice, hence F(g) is surjective, too.

2.2. Some examples of functors. We shall discuss some examples
of functors that will be used in this article.

e The powerset functor P associates to a set X the set of all its
subsets P(X) := {U | U C X} and to amap f : X — Y the
map P(f) : P(X) — P(Y) which is given by P(f)(U) := f[U] :=
{f(u) |ueU}.

e A variation of this definition yields the finite powerset functor P,
which assigns to a set X the set P, (X) of all finite subsets of X.
On maps f: X — Y this functor is defined as before.
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e For a fixed set M, the M-th power functor associates to a set X
the set XM := {7 : M — X} of all maps from M to X. A map
f: X — Y is associated to a map (f)” : X” — Y™ by defining
(HM(r) = for.

e For a fixed set (', the constant functor k¢ associates to every set
X the fixed set C, and to every map f : X — Y the identity map
ide.

e New functors can be obtained from old ones by composition, sums
and products. As an example, the functor C'x (=) which assigns
to a set X the set C'x XM and to amap f : X — Y the obvious
map idc X fo(—), is obtained as the cartesian product of ko with
the M-th power functor.

2.3. Natural Transformations. A natural transformation n from a
type functor G to a type functor F' consists of a map nx : G(X) —
F(X) for every set X, so that for every map f: X — Y the following
diagram commutes. 7 is called surjective, if nx is surjective whenever

X # 0.

2.4. Coalgebras. A coalgebra of type F' (also called F-coalgebra) is
a pair A = (A, ) consisting of a set A and a map a : A — F(A).
We call A the carrier set and a4 the structure map. A homomorphism
between coalgebras A = (A,a4) and B = (B,ap)isamap ¢ : A — B
for which the following diagram commutes:

CMA\L laB
F(p)

F(A) — F(B)

®

F-coalgebras with their homomorphisms form a category which will be
denoted by Setp.

Epimorphisms in Setg are just those homomorphisms which are sur-
jective maps, but monomorphisms need not be injective, see [GS00a].
If ¢ is a bijective homomorphism, then its inverse ¢! is a homomor-
phism too, so ¢ is an isomorphism (see [Rut00]). We write A = B if
they are isomorphic, i.e. if there exists an isomorphism between them.

2.5. Colimits. The forgetful functor from Setr to Set, associating
with an F-Coalgebra A = (A, ay) its underlying set A, creates colim-
its, that is to say: Every colimit exists in Setr and its underlying set
is given by forming the colimit in Set and equipping it with the unique



BIRKHOFFS VARIETY THEOREM FOR COALGEBRAS 5

structure map, given by the colimit property (see [Rut00]). Two par-
ticular cases are of importance: sums and pushouts.

2.5.1. Sums. Given a family (A;);cs of coalgebras, their sum X;c1.A; is
obtained by forming the disjoint union |#,.; A; and equipping it with
the unique structure map a : |,.; 4i — F(lt),c; A;) which turns all
embeddings e; : A; = |#,-; A; into homomorphisms.

2.5.2. Pushouts. Given coalgebras A, By, and B, with homomorphisms
o1+ A — By and ¢y 1 A — Bs, their pushout is obtained by first
forming the pushout of ¢, and ¢, as set maps. This yields a set C' with
maps ¢, : By — C and 15 : By — C. On C' there is a unique coalgebra
structure a¢ : C' — F(C) turning ¢ and ty into homomorphisms.
It follows that C = (C,a¢) is the pushout of the ¢; in Setp. If ¢
is surjective, then so is 1. If A # () and ¢, is injective, then it is a
left-invertible in Set. It follows that v is left-invertible, in particular,
injective.

Bi-j-¢

LPIT | Yo
|

A= B

We shall later need pushouts of an arbitrary collection ¢; : A — B;
of epimorphisms. By the same reasoning as above, this will yield us a
coalgebra C, together with a collection of epimorphisms v; : B; — C.

2.6. Subcoalgebras. We write U < A, if U = (U, ay) is a subcoalge-
bra of A, that is if U C A and the natural inclusion map Ci+: U — A
is a homomorphism. Given a subset U C A, there is at most one struc-
ture map o : U — F(U) making U the carrier set of a subcoalgebra
of A. Therefore, we use the term “subcoalgebra” both for ¢4 and for
its carrier set U. Arbitrary unions and finite intersections of subcoal-
gebras are again subcoalgebras (see [GSO00b]). If i < A and ¢[U] C U
for every homomorphism ¢ : 4 — A, then we say that U is invariant.

2.7. Homomorphic images. If ¢ : A — B is a surjective homo-
morphism, then B is called a homomorphic image of A. Any ho-
momorphism ¢ : A — B factors as a Set-map through its image
o[A] ={p(a) | a € A}. Let p = gfj[A] o ¢’ be this factorization, and let
Y : p[A] — A be aright-inverse to ¢, then o/ := F(¢') o401 uniquely
defines a structure map on p[A] making it into a subcoalgebra ¢[A] < B
and a homomorphic image of A. Thus any homomorphism ¢ : A — B
factors uniquely as A — ¢[A] < B. Any surjective homomorphism
¢ : A — B induces a coalgebra structure, isomorphic to B, on the
quotient set A/kery. The quotient map Tyer, With myer,(a) = [alkery
is a surjective homomorphism.
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2.8. Conjunct sums. A coalgebra A is a conjunct sum of a fam-
ily (A;)icr, provided that there is a family of embeddings (injective
homomorphisms) ¢; : A4; — A so that A is the union of the sub-
coalgebras ¢;[A;]. Equivalently, there is a surjective homomorphism
¢ YierA; — A, so that all compositions poe; : A; — A are injective.

Definition 2.1. A coalgebra A is called residually &, if it is a conjunct
sum of coalgebras of cardinality at most k. If IC is a class of coalge-
bras, we shall denote with K<, the class of all members of K& which are
residually k.

2.9. Bisimulations. Bisimulations are the compatible relations be-
tween coalgebras. A relation R C A; x As between coalgebras A; and
As is a bisimulation, if R can be equipped with a coalgebra structure
so that the projection maps 7; : R — A; become homomorphisms.

The union of bisimulations is again a bisimulation, hence there is
always a largest bisimulation, denoted by ~ 4, 4, between any two coal-
gebras A; and A;. We write ~ 4 instead of ~ 4 4.

2.10. Examples. We discuss three examples which are relevant in
computer science. Kripke models are used to model nondeterminis-
tic behaviour of processes, and they provide a standard semantics for
modal logic. Deterministic automata model “black boxes” whose in-
ternal states are hidden. Their behaviour can only be inferred from
the output generated. When the output set is restricted to the 2-
element set {True, False}, deterministic automata are used to define
languages. Nondeterministic automata generalize both of the above
structures.

2.10.1. Kripke Models. For a fixed set C of “propositions”, a Kripke
model is usually introduced as a set A of states together with a tran-
sition relation R C A x A and a valuation map V' : C' — P(A). The
latter assoiates to a proposition ¢ the set of states in which ¢ is to hold.
Obviously, we can combine these data into a single map:

a:A—P(C) xP(A),

hence a Kripke Model is just a coalgebra of type kpc) x P, where kp(c)
is the constant functor with value P(C') and P the powerset functor.

2.10.2. Deterministic Automata. An automaton with input set M and
output set C' consists of a set A of states, and two maps

Y4 - A=C
o4 ¢+ AxXM— A.

v4 is called the output map and 04 the state transition map. We can
combine v and ¢ into a single map

as : A—CxAM
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by setting
aa(a) := (ya(a), 7),
where
Vm € M. 7(m) := da(a, m).

Thus automata with input set M and output set C' are nothing but
coalgebras for the functor C' x (—)M.

It is straightforward to check that a coalgebra homomorphism ¢
between two C x (—)M-coalgebras A and B is the same as an automaton
homomorphism, i.e. it is required to satisfy

va(a) = vp(p(a))
p(0a(a,m)) = dp(p(a),m).
In the sequel we shall drop the indices to «, 6 and 7, whenever there
is no danger of confusion.

Considering M as a (possibly infinite) alphabet, we let M* denote
the set of all words with letters from M. Let € denote the empty word
and for m € M and w € M* let m - w be the word with first letter m
and remaining word w.

Now 0 can be extended to a map 0* : A x M* — A by inductively
defining:

d*(a,e) = a,and
3 (a,m-w) = 6 (0(a,m),w).
Then it is easy to see that a subset U C A is a subcoalgebra of A iff it
satisfies: Vu € UNVw € M*.0*(u,w) € U.

A bisimulation between two automata A and B is easily seen to be
a relation R C A x B satisfying for all (a,b) € R:

v(a) =~(b), and

Vm € M. 6(a,m) R 6(b,m).
The largest bisimulation is given as
~ap = {(a,b) e Ax B|Vwe M*. v(§*(a,w)) = v(0*(b,w)) }.

In case A = B and C = {0,1}, this is also known as the Nerode-
congruence of language theory. It is a coincidence that in this case ~ 4
is an equivalence relation. In general coalgebras, ~ 4 is reflexive and
symmetric, but not necessarily transitive (see [GS00a]).

2.10.3. Nondeterministic automata. Nondeterministic automata with
input set M and output set C' are obtained as coalgebras for the func-
tor that associates to a set X the set C' x P(X)M. Obviously, nonde-
terministic automata generalize both Kripke models and deterministic
automata.
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3. COVARIETIES, COFREE COALGEBRAS, AND BIRKHOFF’S
THEOREM

It is our aim to specify classes of coalgebras in a way analogous to

the equational specification of varieties of universal algebras given by
Birkhoft’s theorem.

3.1. Covarieties. Covarieties will be introduced as classes closed un-
der structural closure operators.

Definition 3.1. Given a class IC of F'-coalgebras, we denote by

e Z(K) the class of all isomorphic copies, by

e H(K) the class of all homomorphic images, by
e S(K) the class of all subcoalgebras, by

e X(K) the class of all sums, and by

e X (K) the class of all conjunct sums

of coalgebras in K. A class K of coalgebras is called a covariety, if it
s closed under the operators ¥, H, and S.

Obviously, all operators are idempotent, up to isomorphism, in that
O(O(K)) C Z(O(K)) for each of the operators introduced above and
for all classes . The following lemma was shown in [GS98]. Even
though, the article assumed that F' should “preserve weak pullbacks”,
this assumption was not invoked in the original proof.

Lemma 3.2. For an arbitrary class IKC, we have
(i) Z(S(K)) € S(Z(K)),

(ii) H(S(K)) CZ(S(H(K))),

(iii) X(8(K)) € S(S(K)),

(iv) (H(K)) € H(E(K)).

There are two essential ingredients for the proof of this lemma. One
is that every homomorphism ¢ : A — B factors through its image ¢[A]
which is a subcoalgebra of B, and the other is the fact that the forgetful
functor from Setp to Set creates colimits, as dicussed in section 2.5.
For instance, to prove (ii), we start with & < A and ¢ : Y — B where
A € K. Let P be the pushout of ¢ with the inclusion homomorphism
Ci: U — A. Then the remarks in section 2.5.2 imply that there is a
surjective homomorphism ¢ : A — P and an injective homomorphism
t: B — P. Hence B is isomorphic to the subcoalgebra [B] of P.

U ¢ A

/\
From the lemma it follows immediately:

Theorem 3.3. SHX(K) is the smallest covariety containing K.
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Even though the above may seem to be perfectly dual to the universal
algebraic situation, by switching the role of the operators H and S
and by replacing products with sums, we caution the reader, that the
situation is not that clear cut. For one thing, we are talking here about
type functors F' that are more general than the type functors X;c;(—)™
of universal algebra. On the other hand, it was shown in [GS00b] that
the intersection of finitely many subcoalgebras of a given coalgebra is
again a subcoalgebra. From this it can be concluded that

SS(K) = BS(K)

holds for arbitrary classes of coalgebras. The dual, in the above sense,
of this result is false for universal algebras. We shall later need another
consequence of the closure of subcoalgebras under finite intersections:

Lemma 3.4. For an arbitrary class IKC of coalgebras
556(K) € SeS(K).

Proof. If A € SX¢(K), then there is a coalgebra C and there are sub-
coalgebras B; < C so that A < Uiel B; < C, and each B; € K. By
[GS00b], each AN B; is a subcoalgebra of C, so A = J,c;(AN B;) is a
conjunct sum of subcoalgebras of the B;. O

3.2. Terminal Automata. We consider an automaton with input set
M and output set C' as a black box. The states are not visible, but only
the output that is generated via v. We can enter a sequence w € M*
of inputs and observe the resulting output. In this way, every state s
of such an automaton gives rise to a map w(s) : M* — C' defined by

w(s)(w) = 7(6"(s,w)).
In an intuitive sense, the function w(s) encodes every possible “observ-
able behaviour” arising from state s. Hence we can view T := CM" as
the set of all possible behaviours of automata. 7' can itself be made
into an automaton 7 by defining for any 7 € CM":

() = )
dr(t,m) := 7, where 7,(w)=T1(m - w).

It is now easy to verify that for every automaton A with input set M
and output set C', the map w is the unique homomorphism w : A — T.
Thus, T is terminal in the sense of the following section.

3.3. Terminal Coalgebras. An F-coalgebra 7 = (T, «ar) is called
terminal (or final), if for every A € Setp there is a unique homomor-
phism w : A — 7. If the uniqueness requirement is dropped, then T
is called weakly terminal.

Asin the above automata example, terminal coalgebras, if they exist,
play an important role, since they embody all possible “behaviours”
from a whole class of coalgebras. To be precise, for every coalgebra A €
Setr and any a € A, there is precisely one element w(a) of the terminal
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coalgebra which is bisimilar to a. In particular, no two elements of the
terminal coalgebra are bisimilar, that is ~y= Ap := {(z,2) |z € T}.

Given just a weakly terminal coalgebra, the terminal one can be
constructed as the smallest homomorphic image:

Lemma 3.5. Let W be weakly terminal and let P be the pushout of
all quotients of W. Then P is terminal.

Proof. The pushout yields an epimorphism v : W — P. Note that P
is also weakly terminal. To see that it is indeed terminal, consider a
parallel pair ¢1, 3 : A — P of homomorphisms. We must show that
Y1 = P2.

Consider their coequalizer x : P — P'. It is surjective, for such is the
case in Set. Hence Yot : W — P’ is an epimorphism. By construction
of P, there must be a homomorphism p : P’ — P with pox oty = 1.
It follows that o x =idp, S0 Y1 = o X 0P = L0 X O Py = Po.

O

3.4. Cofree coalgebras. Our standard examples of coalgebras - au-
tomata and Kripke models - came equipped with a notion of “output”.
The possible outputs arising from a given state can be combined in a
structure representing the “behaviour” arising in this state. In specify-
ing classes of coalgebras, it is natural to define them by means of their
permitted, or their forbidden behaviours.

For a general type functor F' : Set — Set, there may be no stan-
dard notion of “output” available, therefore, we consider what would
happen, if we would adjoin a fixed set X of outputs:

Definition 3.6. Let X be a set. An F-coalgebra Tx together with a
Set-map ex : Tx — X is called cofree over X, if for every coalgebra
A and every map ¢ : A — X, there is exactly one homomorphism
O A— Tx with ex o = .

e
A-->Tx
7

An F-coalgebra A = (A, a4) together with a coloring ¢ : A — X is
just a kx x F-coalgebra A" = (A, (¢, @4)), and conversely. In the same
way, the coalgebra Tx = (Tx, ar,) with coloring ex is cofree over X
iff 7y = (Tx, (ex, ary)) ist terminal as kx x F-coalgebra.
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In this way, X may be seen as an added output set and an X-
coloring as an output map. 7x is then the set of all behaviours with
respect to this output set. Therefore, we shall call each element of T
a “behaviour pattern”.

Let IC be a class of F-coalgebras, and let Tx be cofree over X. Every
map ¢ : A — X where A € K, determines a subcoalgebra ¢[A] < Ty.
Put

Tx(K) == U{@[A] |Ae,p: A— X},

then this defines a subcoalgebra of Tx which is moreover invariant, in
that it is closed under every endomorphism of 7x. If IC is closed under
sums and homomorphic images, we even have 7x(K) € K.

Conversely, if U is a subcoalgebra of Ty, then from [GS98] it follows
that

Q) :={A € Setp |V : A— X.¢[A] CU}

is a covariety. Only for showing closure under § will the cofreeness of
Tx be needed.
It is now natural to combine the constructions. Let Vx(K) :=

Q(Tx(K)), then
Lemma 3.7. For any k < |X|, if Tx exists, then
Vx(K)<x = SHE(K) <.

Proof. Since Vx (K) is a covariety containing I, it must contain SHY(KC).
Conversely, let A € Vx(K)<,. Then A is a conjunct sum of 4;, each
of size at most x. It suffices to show that A; € SX-(K). Choose any
injective map ¢ : A; — X, it extends to an injective homomorphism
¢ A; = Tx. Consequently, A; is isomorphic to a subcoalgebra of
Tx(IC) S ECrH(IC) Hence A € EC:[SE(,*%(IC) - %ES%EH(’C) -
SHY(K). O

As a corollary to the proof and by invoking lemma 3.4 we get:

Corollary 3.8. If the cofree F-coalgebras Tx ezists for some |X| > k,
then V(K)gn = Ecgﬁ(lc)g,ﬁ

4. BOUNDED FUNCTORS

It follows from an observation of Lambek (for a proof see [Rut00]),
that the structure map ar : T'— F(T') on a terminal coalgebra must be
bijective. Consequently, a terminal coalgebra cannot exist, for instance,
when F' is the powerset functor. Fortunately, however, most functors
of relevance in computer science do not grow in such an uncontrollable
way, that is, we can put a bound on their growth:

Definition 4.1. A functor F' : Set — Set is bounded, if there is a
set X such that for every F'-coalgebra A and every a € A there is a
subcoalgebra U < A with a € U and |U| < |X|.
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Many functors F' have the property that F-subcoalgebras are closed
under arbitrary intersections. In this case, for every A € Setr and
every a € A, there exists a smallest subcoalgebra (a) containing a. Such
subcoalgebras are called “one-generated”. Functors F', as described
above, are therefore bounded, iff there is a cardinal bound |X| on the
size of one-generated F'-subcoalgebras.

From this remark it follows that all of the previously mentioned
functors, with the exception of P, are bounded: Every one-generated
subautomaton is of size at most | M*|, and similarly, every P,-coalgebra
has a substructure of size at most w.

Obviously, F'is bounded if and only if Set is residually small. Thus
there is a set of generators, consisting of coalgebras of size at most &,
so with the help of the “special adjoint functor theorem”, it can be
shown that cofree F'-coalgebras exist. For a straightforward proof, see
[GS99.

At the same time, if I is bounded by X, we have K<|x| = K for any
class KC of F-coalgebras. Combining these, we have:

Theorem 4.2. Let F be bounded by X, then the cofree coalgebra Tx
exists and

e for every covariety IC, there exists a invariant subcoalgebra U of
Tx with Q(U) =K,
e for every invariant subcoalgebra U of Ty, there exists a covariety

IC with U = Tx(IC)

5. COEQUATIONS

Covarieties correspond uniquely to fully invariant subcoalgebras of a
cofree coalgebra, hence it is natural to define a coequation with covari-
ables in X as an element of the cofree coalgebra Ty, i.e. as a behaviour
pattern with variables in X.

Starting with a set £ C Tx of coequations, then a natural conse-
quence relation is given by forming the largest fully invariant subcoal-
gebra contained in E. Then, however, an element e € F need not be in
the set of consequences of E. In particular, it is unlikely that a single
equation e will have any consequence.

For this reason, we have opted to define validity as ezclusion. An
element of 7y is a “forbidden behaviour pattern” and an element a
of a coalgebra A satisfies/obeys the coequation, if the corresponding
pattern is avoided. Such specifications by avoidance are common in
many fields of mathematics. Planar graphs, for instance are defined by
avoidance of two specific graphs, K33 and K5, modular, resp. distribu-
tive, lattices by the avoidance of the special lattices N5, resp. N5 and
Mj3. Therefore, we define for a coequation e € Ty, any coalgebra A,
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element a € A and any coloring ¢ : A — X:
AalEy,e (<= ¢la) #e
AjalEe <= VYp:A-X Aal,e
AEe <= Vac A Aafke.

For a set E of coequations, we define their model class, and for a class
IC of coalgebras their (avoided) behaviour patterns as

Mod(E) = {A€ Setp |Vee E. Ak e}, and
Behx(K) = {ee€Tx |[VAe K. K [=e}.

Combining these definitions with lemma 3.7, we now obtain the follow-
ing coalgebraic version of Birkhoff’s theorem:

Theorem 5.1. Let the type functor F' be bounded by X. Then for any
class IC of F'-coalgebras we have

SHY(K) = Mod(Behx (K)).

5.1. Syntax. In spite of the formal dual analogy to Birkhoff’s theo-
rem, one essential ingredient seems to be missing, that is the syntactical
nature of coequations, and with it a syntactical style of reasoning. In
universal algebra, the syntactical nature of equations is a direct conse-
quence of the restricted nature of the type functor as F' = X;cr(—)™.
So at first, the generality in the type functors permitted for coalgebras,
seems to forbid any syntactical description. It was only after J. Adamek
pointed us to some relevant work of Trnkovd, which in [GS00b], we were
able to use for characterizing bounded functors as follows:

Theorem 5.2 ([GS00b]). A functor F is bounded, iff there exist sets
C and M and a surjective natural transformation n: C x (=)™ — F.

In the basic case, when F' = C' x (=)™, we have already seen that
the cofree F-coalgebra over X has Ty = (C' x X)™" as underlying
set. Coequations are infinite trees with nodes labelled by pairs (¢, z) €
C x X, each node having precisely | M| many sons.

In the general case, when F' is bounded, there are sets C' and M
and a surjective natural transformation n : C' x (—)M — F. It follows
that every F-coalgebra is of the form A, = (4,74 0 a4) for some C' x
(—)M-coalgebra A = (A, a4). If W is (weakly) terminal as C' x (—)M-
coalgebra, then W, is weakly terminal as F'-coalgebra.

Consequently, the terminal F'-coalgebra is a factor of 7, where T is
the terminal C' x (—)M-coalgebra. The latter is the set of all infinite
M-branching trees with nodes labelled from C. Hence the terminal
F-coalgebra consists of equivalence classes of infinite trees.

Quite similarly, the elements of the F'-coalgebra cofree over X con-
sists of equivalence classes of M-branching infinite trees with labels
from C' x X. Hence every coequation is an equivalence class of some
“syntactic object”.
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We shall give an example that shows the role of covariables in coequa-
tions. As mentioned before, they can be interpreted as an additional
output by which previously indistinguishable states can be told apart.
Let, for instance, M = {m} and C' = {0, 1}. If we want to distinguish
the following two coalgebras,

s g1
m> b

u? 0q
m< m Tm ml
U1 1 C <m— d 0
where the indices at the states denote their respective y-values, we shall
need at least two covariables. By differently labelling nodes with the
same output, we can enforce a distinction. The 2-variable coequation,
for instance, which is obtained by unfolding the following diagram at

node (0, x), distinguishes the above coalgebras.

(07 $) “m (lv x)

-
(1,y) =— (0, y)

It is obviously avoided by the first one, but not by the second one, as
witnessed by the coloring ¢ with ¢(a) = p(b) = z and ¢(c) = ¢(d) = y.

5.2. Coequational Implication. For a coequation f and a set of
coequations E, we define

Bk

to mean that every coalgebra A satisfying all coequations in £ must
also satisfy f. Let us restrict ourself to the case of the functor F' =
C x (—)M. In this case, coequations are infinite C' x X-labelled trees,
rather than equivalence classes of such trees. For any tree 7, a word
w € M* determines a subtree §*(7, w) of 7.

Theorem 5.3. E = f if and only if there is an endomorphism ¢ :
Tx — Tx mapping a subtree of f into E.

Proof. Suppose E = f, then (f) := {§*(f,w) | w € M*} is a subcoal-
gebra of Ty, containing f. Thus (f) = f, hence (f) [~ e for some
e € E, hence there is an element a € (f) and a map ¢ : (f) — X with
¢(a) = e. Obviously, ¢ can be extended to a map Tx — X with the
same property and a = §*(f, w) for some w € M* is a subtree of f.
Conversely, let an endomorphism ¢ : Ty — T'x be given, mapping a
subtree of f into E. Thus, ¢(0*(f,w)) € E for some w € M*. Assume
A [~ f, then thereisan a € A and amap ¢ : A — X with 1/;(a) =f. It
follows with x := p o) : A — Ty that x(6*(a,w)) = p(0*(¢(a), w)) =
Q(0*(f,w)) € E, so A= E. O
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