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ABSTRACT. If T' : Set — Set is a functor which is bounded and preserves
weak pullbacks then a class of T'-coalgebras is a covariety, i.e closed under
H (homomorphic images), S (sub-coalgebras) and X (sums), if and only if
it can be defined by a set of “coequations”. Similarly, classes closed under
H and ¥ can be characterized by implications of coequations. These results
are analogous to the theorems of G.Birkhoff and of A.I.Mal’cev in classical
universal algebra.

1. INTRODUCTION

The recently developed theory of coalgebras under a functor 7" provides a highly
attractive framework for describing the semantics and the logic of various types of
transition systems. In contrast to the algebraic semantics of abstract data types
where data objects are constructed recursively and equality is proven by induc-
tion, coalgebras support definitions by co-recursion and define equivalence by co-
induction. This view is appropriate in many contexts, prominently when modelling
objects and classes in object-oriented languages ([Rei95, Jac96]) or infinite data
objects such as processes and streams.

1.1. Transitions and transition systems. A transition © is nothing but a bi-
nary relation on a set S,i.e. © C S x S. O is called image finite, if for every s € S,
the set s© = {t € S | sOt} is finite. O is called deterministic if it is the graph of a
function 0 : S — S, i.e. @ = {(s,0(s)) | s € S}.

A transition system is a family T' = (0,)qe of transitions on S. Related to this
notion is that of an automaton where additionally one may have a set FF C S of
accepting states or an output function v :S — B.

In order to emphasize the dynamical aspect of transitions or transition systems,
we describe them by a map « from S to some structured set. Unary relations will
be modelled by a map into Bool = {true, false} and binary relations R C S x X
by a map from S into the powerset P(X). With Py;,(S) we denote the lattice of
finite subsets of S.

In particular, a map « of type :
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S—>S is a deterministic transition,

S — P(S) is a nondeterministic transition (relation),

S = Prin(S) is an image finite nondeterministic transition,

S — 84 is a deterministic transition system,

S — me(S)A models a nondeterministic transition system
in which all transitions are image finite,

S — B xS is an automata with output, and

S — Prin(S)* x Bool models an automaton with bounded
nondeterminism and an acceptance condition.

2. COALGEBRAS

In all of the examples we are given a functor 7' : Set — Set and amap a: S —
T(S). Any pair (X,ax) where ax : X — T(X) will be called a coalgebra of type
T.

A homomorphism between coalgebras (X, ax) and (Y,ay)isamap ¢ : X =Y
for which the following diagram commutes:

14
X Y

ax ay

Thus the class of all coalgebras of a fixed type T" becomes a category Setr. From
this a number of standard coalgebraic constructions can be derived. In particular,
(X, ax) is a subcoalgebra of (Y,ay) if X C Y and the natural embedding “C” is
a homomorphism. In this case, the coalgebra structure on X is unique, so we also
refer to the set X as a subcoalgebra of (Y, ay). X is called fully invariant in Y, if
¢(X) C X for every endomorphism ¢ : Y — Y. A coalgebra is called simple, if it
does not have any proper homomorphic image.

2.1. Preservation of weak generalized pullbacks. Under some mild conditions
on the functor T', the class of all coalgebras of type T will be very well behaved and
expose a structure theory which is largely dual to the classical theory of universal
algebra. Specifically, we must assume that T preserves weak generalized pullbacks,
which is to say that T transforms the limit of a collection (p;);er of maps having
a common codomain into a weak limit of the family (7T'(yp;))icr- This concept
is introduced in [Rut96] and criteria for verifying it are studied in [Rut98] and
[Gum98]. All of the functors mentioned above do share this property.

If T preserves weak generalized pullbacks then the following are just some facts
known about the class Setr (c.f. [Rut96]):

e In Sety, monomorphisms are injective, epimorphisms are surjective and bi-
jective morphisms are isomorphisms.

e The subcoalgebras of a fixed coalgebra (S,ag) are closed under unions and
intersections, in particular, for any subset X C S there is a largest subcolage-
bra [X] contained in X and a smallest subcoalgebra (X) containing X. The
latter is called the subcoalgebra generated by X. If X is a one-element set,
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X = {z}, then we write (z) instead of ({z}) and call such a a subcoalgebra
one-generated.

e Images and preimages of subcoalgebras under homomorphisms are subcoal-
gebras.

2.2. Covarieties and Coquasivarieties. We will particularly be interested in
certain subclasses of Setr which are called covarieties. Here a covariety is a class
of T-coalgebras closed under the operators

H homomorphic images,

S subcoalgebras, and

3 sums.

Classes closed under H and under ¥ are called coquasivarieties.

If a coalgebra B has subcoalgebras A;,i € I so that B is the union of the A;,
then B is called a conjunct sum of the A;. If K is a class of T-coalgebras, denote
by X.(K) the class of all conjunct sums and by S; (K) the class of all one-generated
subcoalgebras of members of K. It was shown in [GS98] that the covariety generated
by a class K can be obtained as ¥.HS; (K), and that in general the operators H
and & commute, i.e. that HS(K) = SH(K).

2.3. Bounded functors and cofree coalgebras. Let C' be a set. We refer to
the elements of C' as “colors” and and to every set map from a coalgebra A to C
as a “coloring”. A coalgebra Sc(K) together with a coloring € : S¢(K) — C'is
called cofree over C', with respect to a class K, if for every coalgebra A in K and
any coloring ¢ : A — C there exists exactly one homomorphism ¢ : A — S¢(K)
such that ¢ = e o @. We write S¢ for S¢(Setr).

Cofree coalgebras exist, provided that there is a bound on the cardinality of
one-generated T-coalgebras. In this case, the functor 7" is called bounded. All of
the functors mentioned above, except for P(—), are bounded.

If T is bounded then Sc¢(K) can be constructed as a conjunct sum of one-
generated subcoalgebras in K, in particular, if K is a covariety then So(K) is in
K.

However, there is another useful way of looking at cofree coalgebras: A “colored
T-coalgebra”, i.e. a coalgebra A together with a coloring ¢ : A — C may be viewed
as a coalgebra for the functor C' x T'(—). A cofree coalgebra S¢(K) with its coloring
¢ is then nothing but a a final object in the category of C x T'(—)-coalgebras.
The elements of S¢(K) therefore correspond uniquely to colored one-generated
subcoalgebras of coalgebras in K which, considered as C' x T'(—)-coalgebras, are
simple.
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3. Co-EQUATIONS

A coequation is defined as an element of a cofree coalgebra Sc(K). More pre-
cisely, each e € S¢(K) is called a coequation with colors in C.

Since for any subset C' C C we get a a canonical embedding C : Scr(K) —
Sc(K), there will be a smallest set C. C C such that e € S¢, (K). This will be
called the set colors occurring in e.

Given any coequation e with colors in C and a coalgebra A, we shall say that e
holds in A, in symbols

AEe

if for every coloring ¢ : A — C we have e ¢ @(A).

In order to check e locally on the elements of A, note that e can be identified
with the simple colored subcoalgebra it generates. Therefore, to check whether e
holds at a in A, we simply have to check that for no coloring of (a) we obtain (e)
as a color preserving homomorphic image. We shall use this observation later when
studying an example.

For a set E of coequations we define Mod(E), the coequational class of E as !

Mod(E) ={A € Setyr | Ve € E. A |=e}.

Conversely, let K be a class of T-coalgebras, and let C' be a bound for 7. We
define

Ceq(K)={ec Sc|VAe K. A|=e}.
The following lemma is easy to check:

Lemma 3.1. Let E be a set of coequations, then Mod(E) is closed under H, S
and X, i.e. a covariety.

But the converse turns out to be true too. This is the coequational version of
Birkhoff’s theorem:

Theorem 3.1. Cowvarieties are the same as coequational classes, specifically, for
any class K of coalgebras,

Mod(Ceq(K)) = HSE(K).

On the equational side, we can define a consequence relation, also denoted by

((':77 as
EE=f:oVAcSetr. Vec E.Alme)=>AEf

Using results from [GS98] we can infer an internal description for this conse-
quence relation. To this end define < f >> as the smallest fully invariant subcoal-
gebra of S¢(K) generated by f. Then we have:

Theorem 3.2. E | f if and only if K f > NE £

LOf course this is an abuse of set notation
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4. Co-IMPLICATIONS

If E is a set of coequations and f a single coequation then the expression E = ¢
is called a co-implication. Let C' be the set of colors occurring in E or in f. We say
that £ = f holds in some coalgebra A if for any coloring ¢ : A — C' we have

EN@(A) =0 implies f & o(A).
Given a set @) of co-implications, we can define Mod(Q) as the class of all
coalgebras satisfying all co-implications in (). Similarly, let Cimp(K) be the set of
all co-implications satisfied in all members of K.

We can now show that the classes definable by co-implications are precisely the
co-quasivarieties:

Theorem 4.1. Let K be any class of T -coalgebras, then
HE(K) = Mod(Cimp(K)).
5. AN EXAMPLE

We elaborate a simple example. Let Z be the identity functor on Set. An Z-
coalgebra is a map a : S — S. Consider the subclass K of Setz consisting of all
(S,ag) such that Vs € S. In € N. a™(s) = s. It is easy to check that K is a
covariety, i.e. it is closed under H, S, and X.

K can be described by the following two-color coequation:

$)

O

The figure represents a simple colored one-generated Z-coalgebra which cannot
be obtained as a color preserving homomorphic image of any colored coalgebra in
K. Conversely, if A € K, there exists a € A such that a € B, where B, is defined
as {a"(a) | 0 < n € N}. For a coloring ¢, painting every element in B, black and
painting a white, we shall obtain the coequation as ¢(a).
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