
Halting sets of programs over an algebra

H. Peter Gumm

Abstract

We show that the halting set of a program over a (possibly partial)
universal algebra A is a countable directed union of basic sets, where
a basic set is a subset of (a power of) A, definable by a conjunction of
atomic and negated atomic formulae in the first order language of A.

IfA is “satisfaction semicomplete”, and standard Peano arithmetik
can be defined in A then the halting sets of programs over A are the
same as the output sets of programs over A.

This generalizes and also simplifies a result of Blum, Shub, and
Smale [BSS], and thus provides an elementary proof for the fact that
most familiar fractals are undecidable sets.

1 Introduction

In [BSS] Blum, Shub and Smale have defined the notion of a “machine over
R”, where R is an ordered ring or field. Amongst many other interesting
results they show that most Julia sets are not halting sets of machines over
IR, and further, that for real closed fields IK the output sets of machines over
IK coincide with the halting sets of machines over IK.

Their definition of machines over R as connected graphs with input nodes,
computation nodes, decision nodes and output nodes is rather difficult to treat
theoretically. Essentially those machines are flowchart schemes over the data
type R = (R; +,−, ∗, /, (r)r∈R; <) in the sense of Manna [M].

Loops in such flowcharts are the biggest hurdle in their theoretical treat-
ment, since there is not a natural way of uniquely decomposing an arbitrary
machine into smaller units.

For this reason, we shall consider a while-language over R (or over any
universal algebra, for that matter). While-programs are inductively defined

1

so each program can be uniquely decomposed into smaller programs, with
simple assignments forming the atomic constituents. It is not surprising
then that all definitions and proofs are done inductively and proceed rather
straightforwardly, once the right concepts are prepared. The theory of while-
programs over arbitrary data types, their semantics and their proof theory
is well developed, see [MS], [B], [H], or the survey by Apt [A]. We will,
nevertheless, develop here all notions and lemmata needed for our results
which will generalize the following two results from [BSS]:

Theorem 1 (Blum, Schub, Smale) The halting set of a machine over a
ring R is a countable union of basic sets, where a basic set is given by a finite
number of polynomial inequalities:

hi(~x) ≤ 0, i = 1, . . . m
hj(~x) < 0, j = 1, . . . , n

Theorem 2 (Blum,Schub, Smale) If IK is a real closed field, then the
output sets of machines over IK are precisely the halting sets of machines
over IK.

For an interesting application, consider the construction of the familiar
Cantor set C. To construct it, start with the closed interval [0, 1] ⊆ IR and
call it C0. From C0 remove the middle third (the open interval (1

3
, 2

3
)) and

obtain C1 = C0 − (1
3
, 2

3
). C1 now consists of two disjoint intervals, so in the

next step remove the “middle thirds” of each of these intervals, obtaining C2.
In general then Cn consists of 2n disjoint closed intervals and Cn+1 is obtained
by removing the “middle thirds” of each of these intervals. The Cantor set
C is defined as the intersection of all Cn. C has uncountably many elements
and is totally disconnected. The following figure shows C4.

0 1
3

2
3 1

Thinking in terms of actually computing C (disregarding problems of real
number representations or computing errors,) it seems clear that for a point
p outside of C we shall after a finite time have determined that p 6∈ C, but
for a point q ∈ C we shall at no finite time be able to say with certainty that
q ∈ C. In short: One needs an eraser to draw a Cantor set.

2

The above two theorems indeed make this situation precise: We cannot
have a machine over IR that stops if and only if its input is from C, nor
can we have a machine over IR whose potential outputs (when inputs range
over all of IRn) form precisely C. This follows from the above theorems and
the observation that each basic set over IR has only finitely many connected
components.

One might conjecture that the halting set H(P) of a program P over IR
could somehow be determined by its intersection with Q. For Q we could
then simply refer to the standard notion of computability. To see that this
is not the case, consider the following two examples:

Example 1.1 Let r ∈ IR so that the sequence of digits of r (in its standard
representation) is a non-computable sequence. Then both the set (−∞, r] and
its complement are halting sets over IR. If their intersections with Q were
enumerable in the sense of classical recursive function theory, they would be
decidable, allowing us to construct an algorithm generating the sequence of
digits of r.

Example 1.2 Clearly IR is a halting set for a program over IR. The set of
all irrational numbers is not a halting set over IR, though its intersection with
Q is trivially decidable.

In the following we shall give a generalization of theorems 1 and 2, re-
placing the ring R with an arbitrary algebra. For theorem 2 the condition
of being ”real closed” will be replaced by the condition of “satisfaction semi-
completeness”, a notion coming from “Constraint Logic Programming”.

2 While-programs over universal algebras

Assume a first order language L be given where L consists of collections of
operation symbols F and relation symbolsR, each associated with a fixed ar-
ity. For simplicity of exposition we shall work with homogeneous (one-sorted)
structures only, although in practice most (data)-structures are heteroge-
neous (many-sorted). There is no obstacle other than the more complex no-
tation when treating the heterogeneous case. Also we shall allow our algebraic
structures to be partial, in that for some f ∈ F or some r ∈ R, fA(a1, . . . , an)
or rA(a1, . . . , an) could be undefined for certain elements (a1, . . . , an).

3

Assume a countable set X = {x1, . . . , xn, . . .} of variables be given. We
refer to [BS],chapter V, for a definition of terms of type L over X, atomic
formulas of type L over X and first order formulas of type L over X, (also
called L-formulas). We shall only have to deal with open L-formulas, i.e.
L-formulas without quantifiers. An L-formula that is atomic or the negation
of an atomic formula is called a literal, and a finite conjunction of literals is
called a ∧-clause.

Next define a programming language over L using the the following in-
ductive definition of programs :

Definition 2.1 (Assignment) An L− assignment is an expression of the
form “x:= t”, where x is a variable and t an L-term

Definition 2.2 (L-Programs)
(i) Every L-assignment is a program over L.

If P and Q are programs over L, and if c is an open L-formula, then the
following are programs over L :

(ii) P ; Q, (sequencing)
(iii) IF c THEN P ELSE Q, (conditional)
(iv) WHILE c DO P (while loop)

In the next section we shall supply a precise definition for the meaning
M of a program P. The following remarks, however should already be clear
from an intuitive understanding:

(1) The right hand side of an assignment could be restricted to be either a
variable or a function symbol applied to variables. Together with (ii)
all term-functions can still be computed.

(2) The condition c in the if-then-else construction could be restricted to
be an atomic formula. The constructions

IF c1 THEN P ELSE IF c2 THEN P ELSE Q,
IF c1 THEN IF c2 THEN P ELSE Q ELSE Q,
IF c1 THEN Q ELSE P,

4

could be used in place of IF c THEN P ELSE Q when c is of the form
c1 ∨ c2, c1 ∧ c2, ¬c1, respectively. This is also known as “short circuit
evaluation”.

(3) We shall frequently refer to the following two trivial programs :

SKIP stands for the program “x:= x” , and
LOOP stands for the program “WHILE x = x DO SKIP”,

moreover we use
“IF c THEN P” as a short form of “IF c THEN P ELSE SKIP”.

3 Semantics

Given an L-structure A = (A,F ,R), the meaning of terms and formulas
is defined relative to interpretations of the variables from X in A. An in-
terpretation is any map σ : X → A. This map naturally extends to a
homomorphism σ : TL(X) → A, where TL(X) is the algebra of all L-terms
over X, and further to a (homo)morphism σ : FL(X) → IB, from the set
(Lindenbaum-algebra) of all open L-formulas over X to the Boolean algebra
IB = ({T, F};∨,∧,¬, F, T) of truth values.

In the context of programming an interpretation is called a state. In its
most trivial form, a variable can be thought of as a memory location.

We set S = [X → A], the set of all maps from X to A. The only way a
state can be changed is by modifying the value of a variable. If σ is a state
and a in A, then we denote by σ + {x → a} the updated state σ0 with

σ0(v) =

{
a, if v = x
σ(v), otherwise.

The following is a preliminary definition of the meaning M of programs
not containing while, and where all operations and relations of A are as-
sumed total. As is common practice, we enclose the program argument to
M in double brackets.

5

Definition 3.1 (Meaning) :

(i) M[[x:= t]](σ) = σ + {x → σ(t)}
(ii) M[[P ; Q]](σ) = M[[Q]](M[[P]](σ)),

(iii) M[[IF c THEN P ELSE Q]](σ) =

{
M[[P]](σ), if σ(c) = T
M[[Q]](σ), if σ(c) = F

Note that (ii) states thatM[[P ; Q]] = M[[Q]]◦M[[P]], and thatM[[SKIP]] =
M[[x:= x]] = M[[y:= y]] = idS for any x, y ∈ X.

The while-construct may introduce nonterminating programs, hence the
meaning function M may become partial. We shall make it formally total by
adding a new fictitious state ⊥S to the set of all states. Operationally, ⊥S
represents the state the machine is in when it is caught in an infinite loop.
In a similar vein, we shall make partial operations and relations over A total
by adding to A the new element ⊥A and to IB the new element ⊥IB, thus we
get S+ = S ∪ {⊥S}, IB+ = {⊥IB, T, F} and A+ = A ∪ {⊥A}. We shall set
⊥S(t) = ⊥A and ⊥S(c) = ⊥IB for every term t and every open formula c.

A complete partial order (cpo) can be defined on each of these sets, that
is a partial order v (less defined than) with the ⊥-element as the smallest
element, so that suprema of directed sets always exist. We simply define

x v y ⇔ (x = y) ∨ (x = ⊥).

The resulting cpo is called flat. The operations (f ∈ F) and relations
(r ∈ R) are extended to the ⊥-element by setting f(a1, . . . , an) = ⊥A (resp.
r(a1, . . . , an) = ⊥IB), if ⊥A ∈ {a1, . . . , an} or if f (resp. r) is undefined on
(a1, . . . , an). An important point is that the operations become continuous
with respect to v. For the boolean operations ∨ and ∧ there is a second
natural way of continuously extending them to IB+ as

x ∨ y =

T if x = T
F if x = F and y = F
⊥IB otherwise

.

∧ is extended analogously. In computing practice this extension of the
boolean operations is called short circuit evaluation. This is the interpreta-
tion of ∧ and ∨ that we adopt. Note that now T = T ∨⊥IB 6= ⊥IB∨T = ⊥IB.
Thus, for instance, (x 6= 0) ∧ (1/x 6= 0) is never ⊥IB, even though 1/x = ⊥A
for x = 0. The distributive laws and deMorgan’s laws remain valid, so that
we still can write each open formula as a disjunction of ∧-clauses.

6

If all operations and relations of A were total, or if their domain could
be described by an open formula, (as is the case for division in IR) then
we would not need ⊥A, nor ⊥IB. An assignment x:= t could be replaced
with IF defined(t) THEN x:= t ELSE LOOP, similarly could the test in an
if-then-else be protected.

The updating operation for states is extended by setting σ + {x → a} =
⊥S in the cases where σ = ⊥S or a = ⊥A.

The new meaning function M will belong to [S+ → S+], the cpo of
continuous maps from S+ to S+. Its least element Ω is given by Ω(σ) = ⊥S
for all σ ∈ S+.

Definition 3.2 (Meaning) :

(i) M[[x:= t]](σ) = σ + {x → σ(t)}
(ii) M[[P ; Q]] = M[[Q]] ◦M[[P]],

(iii) M[[IF c THEN P ELSE Q]](σ) =

M[[P]](σ), if σ(c) = T
M[[Q]](σ), if σ(c) = F
⊥S if σ(c) = ⊥IB

(iv) M[[WHILE c DO P]] =
⊔

φi, where
φ0 = Ω

φk+1(σ) =

⊥S if σ(c) = ⊥IB

σ if σ(c) = F
φk(M[[P]](σ)) if σ(c) = T

In order for the supremum in (iv) to exist, one must check that the φi

form an increasing chain. Since S+ is flat, this is equivalent to

∀σ ∈ S+φi(σ) = τ 6= ⊥S ⇒ φi+1(σ) = τ.

Note that in particular M[[LOOP]] = Ω. Also, by induction over the struc-
ture of programs it is easily seen that M[[P]](⊥S) = ⊥S for every program
P.

It is shown in [B] that the above denotational semantics M[[P]] is equiv-
alent to the operational semantics O[[P]] where O[[P]] = M[[P]] for the case
where P is an assignment, a sequencing or an if-then-else. For a while-loop
the operational semantics is defined as

7

(iv′) O[[WHILE c DO P]](σ) =

τ if there exists an n and σ0, . . . , σn ∈ S
such that σ0 = σ, σn = τ , σn(c) = F ,
σi(c) = T and O[[P]](σi) = σi+1

for i = 0, . . . , n− 1
⊥S otherwise

For the next chapter we shall need a better understanding of the φi in
the previous definition. First let us define for any program P and natural
number k the k-fold iterate of P as:

P0 = SKIP

Pk+1 = P; Pk

Lemma 3.3 With the notation of definition 3.2 we have:

φi+1 = M[[(IF c THEN P)i ; IF c THEN LOOP]]

Proof: Use induction over i. In the inductive step we need to use asso-
ciativity of “;” as follows :

M[[(IF c THEN P)k+1; IF c THEN LOOP]]
= M[[IF c THEN P; (IF c THEN P)k; IF c THEN LOOP]]
= φk+1 ◦M[[IF c THEN P]]
= φk+2.

4 Halting Sets

We shall now define the halting set of a program P as the set of all states
σ ∈ S such that P will eventually halt when started in state σ. (If P contains
variables x1, . . . , xn the halting set may be considered as a subset of An).

Definition 4.1 (Halting set) H(P) = {σ ∈ S|M[[P]](σ) 6= ⊥S}

Note that H(LOOP) = {}, H(SKIP) = S and ⊥S 6∈ H(P).
A first order description of H(P) in the language Lmay well be impossible.

M. Wand in [W] gave an example of a data structure whose Hoare logic is
incomplete. A simplified version of this datatype can be used to construct a
program whose halting set H(P) is not first order definable:

8

Example 4.2 Let N = (IN;p) be the natural numbers with the predecessor
operation : p(0) = 0 and p(n + 1) = n. Let N +N be the algebra consisting
of two disjoint copies of N and let z0 and z1 be unary relations denoting the
zero-elements in the respective copies. Then the halting set of the program
”WHILE not z0(x) DO x:= p(x)” is the first copy of N which is not first
order definable within N +N .

3
p cz0

p
� c

p
� c

p
� c

p
� c

p
� . . .

3
p cz1

p
� c

p
� c

p
� c

p
� c

p
� . . .

Definition 3.2 and lemma 3.3 show how the semantics of single while-
loops are approximated by k-fold iterations of conditionals and the LOOP

construct. We shall need to approximate complete programs P (perhaps
containing nested while-loops), by a one-parameter family of programs not
containing while-loops. To do this we introduce LOOP as a primitive construct
with the semantic definition M[[LOOP]] = Ω. A program that is constructed
from assignments, sequencing, conditionals and LOOP will be called almost
straight line. For any natural number k we define now :

Definition 4.3 Let P be a while-program and k a natural number, then we
define an almost-straight-line program P(k) inductively as:

(x:=t)(k) = x:=t
(R ; S)(k) = R(k) ; S(k)

(IF c THEN R ELSE S)(k) = IF c THEN R(k) ELSE S(k)

(WHILE c DO R)(k) = (IF c THEN R(k))
k ; IF c THEN LOOP

Then we get :

Theorem 4.4 For each program P we have

(i) H(P(k)) ⊆ H(P(k+1))
(ii) H(P) =

⋃
H(P(k))

Before we can prove this we need the following lemma:

9

Lemma 4.5 For all programs P and natural numbers k we have:

(i) M[[P(k)]] vM[[P(k+1)]]
(ii) M[[P]] =

⊔M[[P(k)]]

Proof : We shall show by induction on the structure of programs that

M[[P(k)]](σ) = τ 6= ⊥S ⇒M[[P(k+1)]](σ) = τ.

If P is an assignment, then the claim is obvious. If P is a sequencing, P =
R ; S, then M[[(R ; S)(k)]](σ) = τ 6= ⊥S implies that M[[R(k)]](σ) = α 6= ⊥S
and M[[S(k)]](α) = τ 6= ⊥S , hence M[[R(k+1)]](σ) = α and M[[S(k+1)]](α) = τ ,
so M[[(R ; S)(k+1)]](σ) = τ . The case where P is a conditional is similar. Now
let P = WHILE c DO S.

M[[P(k)]](σ) = M[[IF c THEN S(k))
k; IF c THEN LOOP]](σ)

= M[[IF c THEN LOOP]](M[[(IF c THEN S(k))
k]](σ))

= τ 6= ⊥S .

Hence M[[(IF c THEN S(k))
k]](σ) = τ 6= ⊥S and τ(σ) = F , so

M[[(IF c THEN S(k))
k]](σ) = M[[(IF c THEN S(k))

k+1]](σ)
= M[[((IF c THEN S)k+1)(k)]](σ)
= τ

By the previous cases, and using the induction hypothesis on S this is
equal to

M[[((IF c THEN S)k+1)(k+1)]](σ) = M[[(IF c THEN S(k+1))
k+1]](σ)

= M[[P(k+1)]](σ)
= τ.

(ii) : From (i) it follows that
⊔M[[P(k)]] exists. It is a simple exercise

to show by induction that M[[P(k)]] v M[[P]]. We now show by structural
induction that

M[[P]](σ) = τ 6= ⊥S ⇒ ∃k M[[P(k)]](σ) = τ.

With (i) the conclusion is actually equivalent to

∃k ∀k′ ≥ k M[[P(k′)]](σ) = τ.

10

The cases where P is an assignment, sequencing or conditional are again easy.
Now suppose M[[WHILE c DO S]](σ) = τ 6= ⊥S . Then there exists a φk (see
definition 3.2) such that φk(σ) = τ 6= ⊥S . By lemma 3.3

M[[(IF c THEN S)k; IF c THEN LOOP]](σ) = τ 6= ⊥S ,

hence
M[[(IF c THEN S)k]](σ) = τ 6= ⊥S ,

and σ(c) = F . This means that there exist σ = σ1, . . . , σn = τ so that
M[[IF c THEN S]](σi) = σi+1. By induction hypothesis, for each i there is a
ki so that M[[IF c THEN Ski]](σi) = σi+1. For m = max(k1, . . . , kn) we have
M[[IF c THEN S(m)]](σi) = σi+1, and, finally M[[P(m)]](σ) = τ .

Lemma 4.6 Let P be an almost straight line program. Then there exists an
open L-formula hP so that H(P) = {σ ∈ S |σ(hP) = T}.

Proof: For any program P and first order formula q define H(P, q) =
{σ ∈ S |M[[P]](σ) = τ 6= ⊥S and τ(q) = T}. Now for any almost straight
line program P and any open formula q we define an open formula pre(P, q)
inductively as follows:

(i) pre(x:= t,q) = (t = t) ∧ q{t/x}
(ii) pre(P ; Q,q) = pre(P,pre(Q, q))

(iii) pre(IF c THEN P ELSE Q,q) = (c ∧ pre(P,q)) ∨ (¬c ∧ pre(Q,q))
(iv) pre(LOOP,q) = F

q{t/x} is the formula obtained from q by substituting each occurrence of
x in q by t. Note that σ(t = t) is T iff σ(t) is defined, and ⊥IB otherwise.

It can now be checked that for any almost-straight-line program P and
any state σ we have that σ ∈ H(P, q) ⇔ σ(pre(P,q)) = T . To finish the proof
of the lemma, note that H(P) = H(P, T), so H(P) can be axiomatized by the
open formula pre(P,T).

Theorem 4.7 Let P be any program in the language L. Let x1, . . . , xn be
the variables occurring in P. The halting set of P over A is a directed union
of subsets of An, each of which can be axiomatized by an open formula.
Equivalently, the halting set can be axiomatized by an countable disjunction
of ∧-clauses.

11

5 Output Sets

Dually to halting sets we could define the “output-set” of a program P as

O(P) = {τ ∈ S|∃σ ∈ S M[[P]](σ) = τ}.

It is more common though, to restrict O(P) to a certain subset of variables,
say z1, . . . zk which are designated as output variables. We define :

Definition 5.1 (output set) A subset O ⊆ An is an output set for a pro-
gram P, if for some variables z1, . . . , zn ∈ X we have

O = {(τ(z1), . . . , τ(zn)) | ∃σ ∈ S [M[[P]](σ) = τ 6= ⊥S]}.

We denote this set by O(P : z1, . . . , zn)

Halting sets can also be viewed as subsets of Ak, in particular if x1, . . . , xk

are the only variables occurring in P. (If more variables occurred in P, we
would have to make sure that the execution of P does not depend on these
variables, e.g. by having them initialized at the beginning.) We may now
ask, whether halting sets and output sets coincide.

Classical recursive function theory uses the data type (IN; succ, pred, 0; =
). In this case the halting sets are the same as the output sets of programs
over the same data structure. This fact is due to the enumerability of INk.
Given any output set O ⊆ Ak and the associated program P, we let P’ be the
program that takes an element from INk and waits until this element appears
in the output of P. The halting set of P’ is clearly the same as the output set
of P.

We let now A be any data structure with at least two different elements,
named 0 and 1. As noted in [BSS], one direction is always true: Let P be
a machine (program) with halting set H ⊆ Ak, then a program P’ can be
constructed having H as output set: Let x1, . . . , xn be the variables occurring
in P. Let z1, . . . , zn be new variables intended to contain the output when P’
terminates. Simply set

P′ = z1:=x1; . . . ; zn:=xn; P.

The other direction, given an output set O for program P, to construct a
program P’ with halting set H(P) = O, is not quite as easy; indeed we can

12

prove the equivalence only in the case that A is satisfaction semicomplete in
the sense defined below. In the case where A is a real closed field, or where
A = IN, this condition is satisfied.

Definition 5.2 (satisfaction semicomplete) Let L be a language and A
an L-structure. A is satisfaction semicomplete, if there exists a while-program
over A which will recognize all satisfiable ∧-clauses over L.

In other words, for some representation of ∧-clauses by elements of A
there must be a while-program over A that will terminate with output z = 1
if and only if it received as input a representation of a satisfiable ∧-clause.

Note that this is a weakening of the notion of satisfaction completeness
which is of importance in the field of “Constraint Logic Programming”, see
Jaffar, Lassez [JL].

By a result of Tarski [T], real closed fields are satisfaction complete, that
is, the satisfiable open formulas are even decidable. In the data structure
IN, the satisfiable open formulas are semidecidable. Simply enumerate all
elements of the domain until you find one satisfying the formula. For the
same reason, the data structure (6 6 ; +, ∗; <) is satisfaction semicomplete, but
not satisfaction complete, see [C].

We need to do some extra calculations too, so we need to assume further
that programs over IN can be “emulated” by programs over A. To this end
we simply stipulate that a standard model of Peano-arithmetic can be defined
in A. Then we shall show:

Theorem 5.3 Let A be an L-structure that is satisfaction semicomplete.
Further suppose that a standard model of Peano-arithmetic can be defined in
A. Then each output set of a program P over L is the halting set of some
other program P’ over L. Thus halting sets and output sets over A coincide.

Proof: Let P be a program and let u be a variable not occurring in P. For
any natural number k we construct a program P[k] by recursively replacing
every WHILE c DO S by

(IF c THEN S[k])
k ; IF c THEN u:=1

The following lemma can be proven analogous to the results in the previous
chapter:

13

Lemma 5.4 For any program P and any open formula q we have :

(i) H(P, q) =
⋃

H(u:=0 ; P[k], q ∧ (u = 0))
(ii) (a1, . . . , an) ∈ O(P : z1, . . . , zn) ⇔ H(P, z1 = a1 ∧ . . . ∧ zn = an) 6= {}

Using this and lemma 4.6 we find that (a1, . . . , an) ∈ O(P : z1, . . . , zn) iff
for some k, pre(u:=0 ; P[k], (z1 = a1∧, . . . ,∧an = un ∧ u = 0)) is satisfiable.

Our assumptions about A allow us to test this: Since Peano-arithmetic
can be defined in A, we can represent L-formulas in A. We then cal-
culate pre(P, q) according to the algorithm of lemma 4.3, and finally, us-
ing the assumption of satisfaction semicompleteness, we can probe whether
pre(u:=0 ; P[k], T) is satisfiable. By the standard dovetailing technique, we
can arrange it so that the satisfiability of pre(u:=0 ; P[k], T) is tested concur-
rently for increasing k. Thus, if for some k pre(u:=0 ; P[k], T) is satisfiable,
we will eventually know. If it is not, our program will never stop, hence its
halting set is precisely the output set O we started from.

6 Conclusion

We have, by elementary means, characterized the halting sets of programs
over arbitrary universal algebras and have given a criterion for algebras A
whose output sets coincide with their halting sets. These results generalize
and simplify corresponding results of Blum, Shub and Smale [BSS].

7 References

[A] K.R. Apt, Ten Years of Hoare’s Logic: A Survey - Part I, ACM Trans.
Progr. Lang. and Systems, 3, (1981), 431-483.

[B] J. de Bakker, Mathematical Theory of Program Correctness Prentice
Hall International, 1980.

[BSS] L. Blum, M. Shub, S. Smale, On a theory of computation and complex-
ity over the real numbers: NP-completeness, recursive functions and
universal machines. Bulletin of the AMS 21 (1989), 1-46.

[BS] S. Burris, H.P. Sankappanavar, A Course in Universal Algebra, Springer
Verlag, 1981.

14

[C] J. Cohen, Constraint Programming Languages,Communications of the
ACM,33 (1990),52-68.

[H] C.A.R. Hoare, An axiomatic basis for computer programming, Commu-
nications of the ACM, 12 (1969), 576-580.

[JL] J. Jaffar, J-L. Lassez, Constraint Logic Programming, in: Proceedings
of the Fourteenth ACM Symposium of the Principles of Programming
Languages, (Munich 1987), pp. 111-119.

[M] Z. Manna, Mathematical Theory of Computation, McGraw-Hill Com-
puter Science Series,McGraw-Hill, New York, 1974.

[MS] R.E. Milne, C. Strachey, A Theory of Programming Language Seman-
tics,Chapman and Hall, 1976.

[T] A. Tarski, A decision method for elementary algebra and geometry, 2nd
revised ed., University of California Press, 1948.

15

