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Ideals in universal algebras

H. PereErR GummM and ALDO URrsINI(*)

Dedicated to Alfred Tarski on his 80th birthday

0. Introduction

In many familiar classes of algebraic structures kernels of congruence relations
are uniquely specified by the inverse images ¢~ '(0) ={x | ¢(x) =0} of a specified
constant 0. On the one hand, ¢ '(0) is nothing else but the 0-class of the kernel
congruence of ¢, on the other hand ¢ '(0) can be axiomatized intrinsically,
namely ¢ '(0) is an ideal (in rings, Boolean algebras, or more generally in
Heyting algebras), a normal subgroup, resp. normal subloop (in groups, resp.
loops) or a filter (in Implication algebras or Boolean algebras again, where 0 is
replaced by the unit). In this paper we investigate common features of all the
above structures by using a general notion of ‘“ideal”’, which makes sense in all
universal algebras having a constant 0 and which specializes to the familar
concepts of ideal, normal subgroup or filter in each of the algebras quoted above.
In all universal algebras the O-classes of congruence relations are easily seen to be
ideals, but we shall require that conversely each ideal is the O-class of a unique
congruénce relation. Such algebras, or rather classes of algebras with this property
will be called “classes with ideal determined congruences” or shortly ideal
determined.

In Part 1, after presenting the precise definitions, we shall show that the ideal
determined varieties are characterized by a Mal’cev condition, which turns out to
be a combination of Fichtner’s condition for O-regularity together with a ternary
term r(x, y, z) which is a weakened form of Mal’cev’s permutability term. From a
result of Hagemann it follows that ideal-determined varieties have modular
congruence lattices, so the theory of commutators becomes readily available. In
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Part 2 we study the commutator [I, J] of two ideals. Introducing the concept of
commutator terms we can describe [I, J] as the set of all elements which result
from applying commutator terms to I and J.
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1. Definitions and the Mal’cev type characterization

Let K be a class of universal algebras for a fixed type A. We require
throughout that all algebras do have a constant 0 which is either in A or at least
equationally defined. 0 and K remain fixed throughout. If we agree to abbreviate
the n-tuple (x,, ..., x,) by X we may define:

1.1 DEFINITION. (i) A term p(&, ) is called an ideal term in ¥ if p(% 0)=0
is an identity in ¥.

(ii) A nonempty subset I of an algebra € X is an ideal if for every ideal term
pX,y) in y,de A", ieI™ we have p(d, i)el

These definitions are from Ursini [12]. We note immediately that the composi-
tion of ideal terms yields ideal terms again, so to check whether a subset of an
algebra is an ideal, it is enough to verify Definition 1.1 (ii) with p(%, ¥) ranging
over enough ideal terms from which all others can be obtained by composition.

In the case of rings it is sufficient to use 0, y;— V2, X1 * 1, ¥1 * X3. In the case of
groups we have to consider 1, y; - y2 1, x;y:1x1". The following Lemma is obvious:

1.2 LEMMA. The intersection of ideals is an ideal and for any set Sc A, the
ideal generated by S in A consists of all p(d, S) where p(%, ¥) is an ideal term in 'y,
de A", §eS™. In particular, the set of all ideals of the algebra o is an algebraic
lattice.

Each ideal has to contain 0, so typical examples of ideals are congruence
classes containing O; indeed it is trivial to check for each congruence 6, that
[0]@:={xcA|x@0} is an ideal. The converse fails to hold generally, so we
define.

1.3 DEFINITION. The class ¥ is ideal determined, if every ideal I is the
O-class of a unique congruence relation I ® In this case —® establishes an
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isomorphism between congruence and ideal lattices. We remark that uniqueness
in the above definition is indispensable if trivial examples like e.g. pointed sets are
to be avoided.

If # is an ideal determined class, sums of ideals I and J are easy to describe,
namely setting [I1J%:={se€ A | (i, s) e J® for some ie I}, we find:

1.4 LEMMA. I+J=[I]J°=[J]I? where I+]J is the supremum of the ideals I
and J.

Proof. I+1J is the ideal generated by I'UJ, so for seI+J there is an ideal
term p(%, ¥) such that s=p(d, k) where de A" and ke(ul)™. We may write

s=p(a, iy, .., 14 Jrs1s---,Jm) Where the i’s are in I and the j’s are in J. With
b=p(d,i,...,i 0,...,0) we have beI and (b, s)e J°. The other inclusion is
trivial.

1.4 COROLLARY. Let 6 and ¢ be congruences, then (0, x) € @ v if and only
if (0,x)e@oy

Hence, and since congruence classes are uniquely determined by their O-class,
B. Jonsson’s [8] proof that permutability of congruences implies the arguesian law
carries through without any change, yielding:

1.5 COROLLARY: If ¥ is an ideal determined class, then the congruence
(ideal) lattices of algebras in ¥ are arguesian, and hence also modular.

We are now going to give a Mal’cev type characterization for varieties ¥ with
ideal determined congruences.

The notion of ideal determined congruences requires that congruences are
uniquely determined by their O-classes. A class % is called O-regular if congru- -
ences on algebras in U are uniquely determined by their O-classes. Varieties
which are O-regular have been characterized:

1.6 (Fichtner [1]). If % is a variety then % is O-regular if and only if there
exists a natural number n, binary terms d,,...,d, and quaternary terms
di, - - - » 9, such that the equations

di(x,x)=0 for 1=<i=n
x =qq(x, y,0, di(x,y))
@ (%, y, di(x, ),0)= g1 (x, 3,0, d 1 (x, y)) for 1=i<n
qn(x, y, dn(x, y), 0) =y
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Another way to phrase 1.6 is:

1.7 COROLLARY. A variety ¥ is O-regular iff there exist binary terms
d,,...,d, such that the equations

di(x,x)=0 for 1=i=n
and the implication

di(x,y)=dy(x,y)= - =du(x,y) =0 x =Yy
hold in X.

Given a variety of universal algebras, then to check whether it is ideal
determined seems to require the effort of finding all ideal terms. However, the
following theorem, which is the main result of part 1. makes the task of
identifying ideal determined classes very easy:

1.8 THEOREM. A variety ¥ with a constant 0O is ideal determined, if and only
if it is O-regular and there exists a ternary term r(x, y, z) such that

r(x7 x’ Y) = y
r(0,x,x)=0

are equations in K.
P. Kohler helped us to find the following corollary:

1.9 COROLLARY. A variety ¥ with constant 0 is ideal determined iff it is
0-regular and there exists a binary term s(x,y) such that

s(x, x)=0
s(0,x)=x

are equations in ¥.

This follows immediately from 1.8 if one defines s(x,y):=r(0,x,y) and
conversely: r(x,y, z):=s(s(x, ), z). Yet another corollary arises if we take O-
regularity and add the property of 1.4 which we will denote by permutability at O
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for short:

1.10 COROLLARY. A variety ¥ with constant 0 is ideal determined iff it is
0-regular and permutable at 0.

It is easy to see that a variety is permutable at O if and only if a binary term
s(x, y) which satisfies the equations of 1.9 exists. For the proof of 1.8 we assume
that ¥ is ideal determined and look at F,{x, y}, the free 2-generated algebra in %
with generators x and y. Let @ ,, be the smallest congruence relation collapsing
x and y. Since (0, y) € O, ° O, ,, we get from 1.4 that (0, y) € @, ,,° O, s0 the
usual Mal’cev type argument yields a binary term s(x, y) such that the equations
s(x,x)=0 and s(0,y)=y are satisfied in the variety %. Hence
r(x, y, z) := s(s(x, y), z) is the required term satisfying r(x, x, y) =y and r(0, x, x) =
0.

For the converse we have to show that each ideal is the 0-class of some
congruence relation. Let I be an ideal of &. Then by Mal’cev’s description of
congruence classes [10], we only have to verify: If 7 is an algebraic function
mapping one element of I into I, then it maps every element of I into I. So let 7
be an algebraic function, i,jeI and suppose 7(i)eI Then there is a term
t(xy, ..., X, x) and elements a, ..., a, € A with 7(x)=t(a,, ..., a,, x). Consider
the term

S(f’ yla y23 Y3) = r(yla t(xls cee s X Y2), t(xla sy X y3))

Then s(X, y1, y2, y3) is an ideal term in (y;, y,, y3). Hence, substituting a; for x;
and the ideal elements 7(i), i and j for y,, y, and y;, we get that

s(a, (i), i, j) = r(z(i), 7(0), 7(j)) = 7(j) must be in J.

J. Hagemann has shown in [6], that O-regular varieties are modular and
n-permutable. n-permutability means, that the join @ v ¢ of two congruences is
already given by their n-fold relational product, where n is fixed throughout the
variety. Thus, ideal determined varieties are n-permutable. Corollary 1.4 seems
to suggest moreover, that they might already be permutable, since they are
permutable at 0. This, however, is not the case as the following example shows:

1.11 EXAMPLE. An implication algebra is a groupoid satisfying the equa-
tions

(xy)x=x (1
(xy)y=@x)x (2)
x(yz)=y(xz) (3).
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It follows that xx =yy, so 1:=xx is an equationally defined constant, satisfying:
1x = x. The calculations are:

xx =[(xy)x]x =[x(xy)l(xy) = x[[x(xy)]y]= x[[((xy)x)(xy)]y]=
= x[(xy)y]=(xy)(xy). In particular xx =[x(yy)][x(yy)]=
=[y(xy)lly(xy)]=yy.

Thus (xx)y =(yy)y =y. We also note that from ab=1=ba we infer a=1a=
(ba)a =(ab)b=1b=0>b. So with d,(x, y):=xy, d>(x, y):=yx and r(x, y, z):=(xy)z
we may apply our theorem to find that implication algebras comprise an ideal
determined variety. The three-element example from Mitschke [1] shows that
implication algebras do not have permutable congruence relations. Although
implication algebras are O-regular, their congruences are not determined by each
of their classes, so they are not regular. Implication algebras do have 3-
permutable congruences though, and so do all of the examples we mentioned so
far of ideal determined varieties. We do not know, whether this must always be
true in each ideal determined variety.

2. The commutator of ideals

In this chapter we shall assume that % is a variety which is ideal determined.
Since we know that ¥ is congruence modular, we do have the theory of
commutators available (see Hagemann, Herrmann [6], Freese, McKenzie [2] and
Gumm [4], [3]). In short, the commutator is a multiplication of congruences « and
B denoted by [«, B] which reduces to the concept of the classical commutator of
normal subgroups in groups, to the ideal generated by IJ+JI in rings, if I and J
are the ideals corresponding to a and B, and to the intersection of congruences in
lattices, or more generally in distributive varieties. In our framework of ideal
determined varieties we should be able to describe the commutator [I, J] of two
ideals by only referring to I and J without passing first to the congruence relations
I? and J? corresponding to I and to J. Thus we simply write [I, J] for the ideal
which is the O-class of [I°, J?].

First we have to explain the transfer from I to I°. If d,, ..., d, are the terms
from 1.6, we have:

2.1 LEMMA. (i) (a,b)eI® iff Vowi<.di(a,b)el (ii) I® is generated as a
congruence relation by D ={(0, d;(a, b)) | (a, b) e I*}.

Proof. (i) follows immediately from Fichtner’s result 1.6. Similarly, let @ be
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the congruence relation generated by D, then clearly @ contains I X I, so (ii)
follows from (i).

The following characterization of the commutator [a, 8] of two congruences a
and B will serve as our definition, see [3]. _

First think of a as a subalgebra of & X & which happens to be an equivalence
relation. On this algebra a let A% be the congruence generated by all pairs ((a, a),
(b, b)) where (a, b)e B. Then [a, B]={(c, d) | F,ca(a, c)AB(a, d)}. It was shown in
[3], that this is equivalent to

[a, B1={(c, d) | (c, ©)A(c, )} ={(c, d) | F.(a, a)AE(c, d)}.

Hence [, B]= 0, (where 0., denotes the trivial congruence relation “="" in &), if
and only if the sets 85={(c, c)|cBa} are classes of some congruence relation,
which then has to be Af. According to a theorem of Mal’cev [10], the 8% are
congruence classes if and only if for every algebraic function 7(x) and u, v € 85 we
have: 7(u) € 8§ implies 7(v) € 8%. Keeping in mind that the underlying algebra is «

so 7(x) is actually given by (t(ay, . .., a,x,), t(b;, ..., b,, x,)) where t is a term and
(a;, b)) € a we get (see [4]): [, B] =0 iff for every term t(x,, ..., X,, y), elements
Ay, ...,0, by,...,b, €4 with aq,ab;, and elements ¢, d with c¢Bd we have the
implication:

t(ay,...,a, c)=t(by,...,b, c) implies
t(ab vy Qs d) = t(bla see bn7 d)'

This is called the “Term condition” by several authors. Since the commutator
operation is respected by homomorhisms, it is indeed enough to know, when
[a, B]=0,4. The following three propositions describe that case, the first one
assumes only O-regularity.

2.2 PROPOSITION. Let V' be a 0-regular variety, and o, B congruences on the
algebra o from V. Let I and J be the ideals [0]a and [0]B. Then the following are
equivalent.

(@) [e, B]1=0, (L, J]={0})
(i) A7:={(x,x)|xeJ} is a class of a congruence relation on the algebra «.
(iii) If (%, y) is a term, 4, be A" with a,ab; and if ¢, d € J, then t(d, ¢) = t(b, ¢)
implies t(d, d) = t(b, d).
(v) If t(X, y) is a term, @, be A" with a,ab; and if ¢ € J then t(a, 0) = t(b, 0) iff
t(a, c) = t(b, c).
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2.3 PROPOSITION. Let ¥ be an ideal determined variety and I, J ideals of
AeK. Then the following are equivalent:

@) [1,J1=10}. )

(i) If t(%,y) is an ideal term in y, a,I®b; and ¢ J™, then t(d, ¢) = t(b, ).

(iii) If t(X, y) is an ideal term in y, a,I®b; and écJ™, then t(d, é) =0 implies
t(b, &) =0.

2.4 PROPOSITION. In an ideal determined variety

[LJ]1={t(d, &) | t(X, ¥) is an ideal term in y,é e I™ and
t(b, &) =0 for some b with a,I®b}.

Proof of 2.2. (i) implies (ii), since A’ = 8§ with B = J2. If (ii) holds, then clearly,
since A’ generates A2, from (c, d) €[, B] we infer d;(c, d)[e, B]O for all i. Hence
(0, 0)AR(0, d.(c, d)) for all 0<i=n, hence (0, d;(c, d)) e A’, thus d;(c,d)=0 for
0<i=n. Hence c¢=d and (i) holds. (iii) and (iv) are obviously equivalent and
follow from (i), since they are special cases of the term condition. For (iii) — (ii),
one modifies (iii) by saying t(d, ¢) = t(b, ¢) € J implies (&, d) = t(b, d) € J, which is
allowed, since ¢J°d, then this statement is the syntactical formulation of (ii). To
prove 2.3, note that (ii) simply states, that A” is an ideal in the algebra I°. (iii) is a
corollary of Proposition 2.4, whose proof is as follows: x[a, 8]0 iff (0, 0)AB(x, 0)
iff (x, 0) is in the ideal generated by A’ in the algebra I?, iff t((ay, b,), . .., (a,, b,),
(c1,¢1), ..., (Cm» Cn)) =(x, 0) for some ideal term t(X, y) in y.

If we recall the example of rings R, the commutator of two ideals I and J is
generated by IJ+JI, so it consists of all elements

Z Acycicbe + Z dk]Tk i—kEka ay, Gy, by, Bk €R, Iy i_k €l and j,j.€J.
k

Hence it is the result of applying the terms m(X, y, Z2) =) X yVzZili + 2. X Zi Vi Ui
with the x, X, u, U replaced with elements from R, the y., ¥, and z,, Z
replaced with elements from I, resp. J. Such terms therefore may be called
commutator terms. Commutator terms in that sense may also be described for
groups. The property that seems to matter is in the following definition.

2.5 DEFINITION. A term m(X, y, Z) is a commutator term in y and Z, if it is
an ideal term in y and an ideal term in Z. The following theorem shows that
indeed the commutator terms describe commutators.
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2.6 THEOREM. Let % be an ideal determined variety, and I, J ideals in
AeH. Then

[LI]={m(d, i, ])|dae A", icI™ eI where m(%, 7y, ?)

is a commutator term in y and Z}.

Proof. Let us abbreviate the right side with (I, J), then we have to show that
(I, J)=[LJ]. Clearly (I, J)<[I, J], since for every commutator term m(Z%, y, 7),
dc A", Tel™ jeJ we have: m(d,o0, /) =0 and, since m(Z%, y, Z) is an ideal term
in Z, we conclude with 2.4, that m(d, i, j) €[I, J]. For the reverse inclusion note
first, that the definition of (I, J) is obviously respected by the homomorphism
theorem, i.e. o(I, J)={¢l, ¢J), so we may restrict ourselves to the case (I, J)=0
and prove that then [I, J]= 0. Hence suppose as in 2.3 (iii), that p(X, ¥) is an ideal
term in ¥, d, b A" with a,I%h; and jeJ™ and p(d, j) =0. Now let d,...,d, and
d; be any of the terms for O-regularity. Then d,(p(y, 2), p(0, 2)) is a commutator
term in y and Z and d;(p(d;(ay, by), ..., d (a,,b,), D), p(0, )))=0. Since this is
true for all j, we have:

(*) pld,(as, by), ..., d(a,b,), ))=p(0,]), hence p(& [)=p(f,j) where ¢ =
d.(a;, b)) and f; = d,(a;, b;) for any arbitrary r and s.

Next we show:

Y If r,,...,7, are arbitrary unary algglz)raic functions, & e I", jeJ™, then
p(7,j)=p(&, j) implies p(7(i), j) = p(r(e), j).
Indeed, since the m(x) come from terms (%, x) with 7(x)=
t(ags, - .., ag, x) we look at

dj(p(tl(ib Ul)’ ] tn(in’ Un)’ 2)7 p(tl(fl’ u1)7 . - ‘o tn(-im un), 2))'

Again, this is a commutator term in (v, ..., V., U3,..., U,) and in Z. As before
we conclude:

p(r1(Q), . .., Tin), N =plriler), . . ., malen), ).

Since the pairs (e, f,) generate I° we conclude from (*) and (**) that p(d,]) =
p(b, /) = 0. Finally, it seems worthwhile to note:

2.7 PROPOSITION. The term r(x,y,z) has the property that r(x,y, z)=
X —y+z in every affine algebra.
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Proof. Using the ‘“‘term condition”, we find:

d;(r(0,y,0), r(0,y,0)=di(r(y, y,0), r0, y, y)),

hence

d;(r(0, x, x), r(x, x, 0)[1, 1]d;(r(y, x, x), r(x, x, y)),

i.e.
0=4d;(0,0)[1, 1]d;(r(y, x, x), y) for all i,

so y[1, 1]r(y, x, x). Thus r(x, y, z) is a Mal’cev term in every affine algebra. The
rest follows from the general theory of commutators.
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