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Is there a Mal’cev theory for single algebras?

H. Perer Gumm

This article solves a problem stated by A. F. Pixley at the conference on
universal algebra in Oberwolfach, 1973. To obtain our solution we prove and
apply a theorem (2.2) on idempotent compatible functions, which might be of
some independent interest.

1.1 DEFINITIONS. A congruence equality e = g 1s an expression where e and
g are terms in variables and binary function symbols A(meet), v(join), and
o (relational product). e =g holds for a concrete sublattice L of the partition
lattice I1(S) on a set S iff e = g is true for every interpretation of the variables in
e = g by partitions from L. e =g holds in an algebra A iff it holds in €(A), the
lattice of all congruences on A. e=g holds in a variety V iff e =g holds in all
algebras from V. For a more precise definition see Wille [8].

1.2 EXAMPLES. (a¢) xoy=yeox (permutability) (8) (xey)a(zex)=
xo(yAz) (arithmeticity). (B) implies permutability and distributivity so it is
immediate that (8) implies every other congruence equality which is not equival-
ent to x =y.

A. 1. Mal'cev (resp. A. F. Pixley) has shown in [3] (resp. [4]) that in a variety
(a) (resp. (B)) holds if and only if there exists a term p (resp. m) in the language
of V such that

(a): p(x,y,y)=p(y. y, x)=x
(resp.
(B): m(x,y, y)=m(y, y, x)=m(x,y, x)=x)

are equations valid in V.,
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Wille [8] and independently Pixley [5] have shown that every set of congru-
ence equalities can be characterized in a similar way by a weak Mal'cev condition.
For the definition of weak Mal’cev conditions and their properties see Taylor [7].

For the sake of brevity let us call a ternary function a “*Mal cev-function™ resp.
a “Pixley-function™ if it satisfies the above equations (a’). resp. (B').

Surprisingly there is a ““local version™ of the characterization of (8), which was
proved by A. F. Pixley in [6]:

1.3 THEOREM (Pixley). Let A be an algebra with C(A) finite. Then A
satisfies (B) if and only if there is a Pixley-function on A which is compatible with
all congruences on A.

Remark. This was extended recently by 1. Korec [2] to algebras A with
|A| =R, dropping thc restriction that €(A) be finite.

In fact there is a stronger theorem proved in Pixley’s and in Korec’s paper
namely:

1.3 THEOREM (Pixley, Korec). Let L be a concrete sublattice of m(S) with
either |L| finite or |S| countable then (B) holds in L if and only if there is a
Pixley-function on S, compatible with all members of L.

The resulting problem, stated by A. F. Pixley at the conference on universal
algebra in Oberwolfach, 1973 is the following:

PROBLEM. Is there a Mal’cev theory for single algebras?

The following definition will be used to give the above problem a precise
formulation:

1.4 DEFINITION. Let e=g be a congruence equality and let M be the
corresponding (weak) Mal’cev condition. e=g is said to be locally Mal’ cev
characterizable if for any finite algebra A, e = g holds in €(A) if and only if there
exist compatible functions on A, corresponding to the function symbols in M and
satisfying the equations given by M.

Before we go further let us note that Mal’cev conditions for congruence
equalities are idempotent, i.e. all compatible functions locally characterizing
congruence equalities have to be idempotent.
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§2. The algebra A,
We define a unary algebra, A, on a six-element set in the following way:
Aqg:=(A.f.g) where A:={0,1,...,5}, fg A— A
with
f(x):= x+2 (mod 6)
and
g(0)=g(5)=1, g(1)=g(4)=0, g(2)=g(3)=S5.

Then it is easy to check that A, has exactly two nontrivial congruences, 6, and 6,
which are given by the partitions:

0,={x, x+1}| x=0(mod 2)}
6,={{x,x +1}| x=1(mod 2)} (+always will denote addition mod 6)

Moreover we have: 6, A 0, =w
and

0,°60,00,=6,°0,°0,=0,v 0,=1

This can be easily checked looking at the diagram below where elements of A
congruent mod #6,, resp. 6,, are connected by straight, resp. waved lines. The
arrows indicate the operation g.

1 2
“AVAVAVAVAVAVAVAVAVAVSS
// e
0 4\\{>>/./ 3
e \\
5 4

Let us from now on always write x—y for x0,y and xmy for x6,y.
Now we investigate admissible operations on A, i.e. mappings h: A" — A
which are compatible with 6, and 6,. In view of our final goal and in view of the

remark at the end of chapter 1, we may restrict our attention to all admissible ]
functions which are idempotent.
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For an arbitrary algebra B= (B, F) we define:

IA,(B):={h:B" — B h is idempotent and compatible with all congruences
on B and h is not a projection}.

2.1 LEMMA. IA,(A)=.

Proof. Suppose m e IA,(A,). We write x - y for m(x, y). By idempotency we
have x - x = x hence xmx - (x+1) for x odd and x—x - (x+ 1) for x even. Thus in
A, we have x - (x+De{x. x+ 1%

Suppose that for some x, we have x,- (x,+1)=x,. The case x, (x,+1)=
x,+ 1 1s handled symmetrically.

Then for x, odd:

Xo=Xo " (Xg+ D—x, - (xg+ 2 (x,+ 1) - (x,+2) € {x,+ 1, x,+2}

Since for x,, odd there is no element y € A, with x,—y~x,+ 2, we must therefore
have (x,+1) - (x,+2)=x,+ 1. Correspondingly, if x, is even, from

Xo =X, (x,+ Diamaxg, - (x()+2)“—(x()+ 1) (xg+2)e {xo+1, xo+2}

we conclude as above that (x,+1) - (x,+2)=x,+1,
hence

VxeA, x-(x+1)=x

It follows:

for x odd: x=x-(x+1)—x-(x+2)m(x+1) - (x+2)=x+1

x even: x=x-(x+Dmx-(x+2)—(x+1)- (x+2)=x+1
SO

VxeA, x-(x+2)=x

Then for x odd:
x=x - x—x-(x—Dm(x+1) - (x=2)—(x+1) - (x=3)=(x+1D- - (x+3)=x+1
and for x even:

x=x-xmx(x—D—(x+1)- (x=2m(x+1) - (x—3)=(x+1)- (x+3)=x+1
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implies x - (x—D=x and (x+1)- (x—2)=x+1 thus x - (x+3)=x
Finally from

X=X (x+3)—x - (x+PHhm(x+1) - (x+4)=x+1 for x odd, and

X=x(x+3)mx - (x+4)—(x+1)-(x+4)=x+1 for x even

we infer x - (x +4) = x.

Hence for all x, ye A, we have x-y=x which means that mé IAL(A,), a
contradiction.

For the second step, to investigate IA, (A,) for n>2 we prove a more general
theorem about idempotent admissible functions:

2.2 THEOREM. Let B be an arbitrary algebra such that IA, (B) # & for some
n=2. Then either IA,(B) # & or IA;(B) contains a Mal’cev-function, in particular
B has permutable congruences.

Proof. Suppose IA;(B) does not contain a Mal’cev-function. Let k be the
smallest integer such that IA, (B) # J. We may suppose k = 3. Take an element
me IA,(B) and define binary operations m; for i <k by

mi(x,y):=m(x, ..., x, y, x, ..., x) where y is at the i’th place.
Claim. j=kVk=s#] mi(x,y)=x (%)
Obviously every m; is compatible and idempotent. Therefore, and because

IA,(B) = J they have to be projections. Suppose m,(x, y)=y and m,(x, y) =y for
s#t then

p(x,y,z):=m(y,...,y,x,y,...,y,z,y,...,y)

where x is at the s’th and z is at the f’th place, satisfies: p(x, x, z)=m,(x, z) =z
and p(x, y, y)=m,(y, x)=x hence p is a Mal’cev-function. Thus the claim is
proved and we can suppose w.l.o.g. that j=1. Since melA, (B), m is not a
projection, in particular there exist elements a, a,, ..., a,€B with m(a,, a,,
cees @) #ay.

For b:= a, define a (k—1)-ary operation m, by

my(Xy, Xoy ooy X)) = m(x,, X5, ..., X_;, b)

Then my(x,...,x)=m(x,...,x, b)=m(x, b)=x by (*). Clearly m, is admissible.
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m,, cannot be a projection on the first argument because
my(a,, a», ..., a_,)=m(a,, ay, ..., a_,, @) #a,.
m,, cannot be an i’th projection for 1 <i=< k-1 Because for any a# b we have
my(b, ..., b,ab, ..., b)=m(b, ..., ba,b,..., bb)=mi(b, a)=b# a.
Thus my, € IA, (B) contradicting the choice of m of minimal arity.

2.3 COROLLARY. IA, (A¢)= for all neN.

Proof. This follows by lemma 2.1, theorem 2.2 and the fact that the congru-
ences 6, and 6, of A, do not permute.

Next we investigate which congruence equalities are satisfied in A,.

2.4 LEMMA. G(A,) satisfies every congruence equality which does not imply
permutability. In particular every lattice equation holds in S(A,).

Proof. The second statement is obvious since C(A,) is distributive. For the first
statement suppose e = g is a congruence equality not holding in €(A,).

Since A4 has only two nontrivial congruences 6, and 6, we may w.l.o.g.
assume that e and g contain only two variables, x and vy.

Then for S:={x,y,xAy,xoy,yox,(xoy)a(yex),xoyox, ...} e and g are
elements from S.

S carries a natural order:

Xoyox: - ‘;yoxoy

(xeyex)a(yoxey)
xoyc -y ox
(xoy)afyex)
Y

XAy

If e<g in S then the congruence equality e = g implies the congruence equalities
e=f and f=g for any fe S with e<f=<g Moreover since in (A,) we have
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0,°6,°6,7A0,°0,°0,=1 and since e =g does not hold in (A,) we may assume
e,g<(xoyox)a(yeoxoy)in S.

Hence e =g implies one of the following equalities: (xecyox)a(yoxoy)=
xoy, xoy=yox, xoy=(xoy)A(yox), (xoy)a(yox)=x, x=y, X=XAY.

All of those, however, trivially imply permutability.

Combining Corollary 2.3 and the preceding lemma we get

2.5 LEMMA. Let e =g be a congruence equality which is locally Mal cev
characterizable, then e = g implies permutability.

§3. The permutable case

The congruence equalities which are left for consideration now have to imply
permutability hence also modularity. In varieties congruence permutability is
characterized by the existence of a ternary polynomial satisfying (a'). Thus if we
can construct a finite algebra A such that

(i) every congruence equality which implies permutability but does not imply
distributivity, holds in C(A)

(ii) there is no Mal’cev function on A which is compatible with all congruences of
A,

then, with the help of lemma 2.5 we will have shown that (B8) is the only
congruence equality which is locally Mal'cev-characterizable.

To get an algebra A as required above we first examine how E(A) should look
like. Since we are dealing with congruence equalities which imply permutability,
hence modularity, €(A) should be a modular lattice and all the elements of C(A)
should permute. Moreover €(A) has to be nondistributive so it must contain the
lattice M, shown in the figure below as a sublattice.

O
N

3.1 LEMMA. Let A be‘an algebra with permutable congruences. If €(A) = M,
then A satisfies condition (i).

Proof. For a congruence equality e = g define é =g to be the lattice equation
which arises by replacing every ¢ in e and in g by v. Then it is obvious that for
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any congruence equality e =g which implies permutability we have that e=g
is equivalent to the conjunction of the congruence equality xey =yex and the
lattice equation é = g. Now let e = g be any congruence equality holding in some
nondistributive lattice of permuting equivalence relations, then é =g holds in
some modular nondistributive lattice. Therefore é=¢ holds in A;, hence e=g¢g
holds for E(A).

Our aim is now, to construct a finite algebra A such that (i’): A has permutable
congruences and E(A)=M;, and (ii) are satisfied.
We cite a lemma from Gumm [1]:

3.2 LEMMA. Let 6,, 0,, 65 be permuting equivalence relations on a set S such
that 6,26, = v and 6, A 6, = w for all i # j. Then there exists a loop Q=(Q,,1) and a
bijection g: QX Q— S such that

(x, y)0,(x', y) iff x=x'
(x, y)O,(x',y") iff y=y'
(x, y)O:(x', ¥y iff x-y=x"-y’,

if we are identifying S and Q X Q via the bijection g.

Moreover from theorem 3.8 of the cited paper we get:

3.3 LEMMA. There exists a Mal’cev function compatible with 6,, 0, and 05 if
and only if Q as above is an abelian group.

Hence an algebra satisfying (i') and (ii) can be constructed in only one way:

We may assume that all fundamental operations are chosen unary and that
every map admitting 6,, 6, and 6; is a fundamental operation. Define Agy: =
(Q X Q, E) where Q is a loop which is not an abelian group and where F is the set
of all maps from QX Q into Q X Q which admit 6,, 6,, 6, from lemma 3.2.

f admitting 6, and 6, means:

f=(f, ) where f,,f,: Q—>Q.

f admitting 6; means (compare [1], lemma 4.1):

(*): filx)-fo(y)=filx-y)-f,(1)  forall x,ye Q.



328 H. PETER GUMM ALGEBRA UNIV.

Note that (=) also implies:
filD) - f-x) = fi(x) - f5(1).

A, is now uniquely determined by Q, hence it remains to choose an appropriate
loop (which is not an abelian group) such that Ag has no other nontrivial
congruences besides 6,, 6, and 6.
1t Q is a group G, then the pairs of maps (f,, f>) satisfying (#) can be easily
determined:
Set a:=f,(1) and b:=f,(1), then (*) implies:

a 'filx)a 'fi(y)=a 'fi(xy)

and

f2000b Tf(y)b ' = folxy)b !

Thus the fundamental operations of A; are precisely the maps f:GXG— G X G
defined by

f(x, y):=(a¥(x), ¥(y)b) for fixed a,beG

and ¥ an endomorphism of G.
Now we use a lemma which is due to B. Wolk:

3.4 LEMMA(Wolk). Let G be a simple nonabelian group. Then Ag satisfies
(i").

Proof. We will show that for any nontrivial congruence I" on A which is
different from 6,, 6, and 6, the definition g(x):=y iff (x, )I(1,y) yields a
nontrivial automorphism g on G which is in the center of the automorphism
group of G. Since the automorphism groups of simple nonabelian groups have
trivial center (see Zassenhaus [9]) such a I cannot exist.

So let I' be a congruence on Ag. By the definition of A we have:

(+): (x, ) (u, v)=> (ag(x), Y(y)b)T'(ay(u), Y(v)b)

for all x,y,u,v,a,be G and Yy End (G).

Define (x, y)-ef"iﬁf (x, )I'(1, y) then it is immediately clear from (+) that
(x, Y)Y (u, v) iff u 'xI'vy ', hence I" uniquely determines I

From xI'y and ul'v we can conclude (x, y DL, DI(u, v™") hence u~'x[v 'y,
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which shows that I is a subgroup of G xG which is morcover fully invariant by
(+).

Thus the projections I:=ixeG | 3y, xI'y} and correspondingly I, are fully
invariant subgroups of G. Since G is simple there are five cases to consider:

|

f::{l}l 2. ﬁlz{l},ﬁzzG; . flst]A‘?.:{l};

1. I, - 3
=G and H,orH.=G 5.1,=I1,=G and H,=H,={1}.

A

4.1,

|

Il

where H, is the normal subgroup consisting of all elements y with 1y, H, is
defined symmetrically.

In the first four cases it is easily checked that I’ has to be w, 6,, 6,, ¢
respectively. In the fifth case it follows that by g(x): =y iff xI'y, a bijective map is
defined which is an automorphism of G since I is a subgroup of G x G. Moreover
g is in the center of Aut(G) since I is a fully invariant subgroup. Hence g has to
be the identity mapping which is equivalent to saying I'= 6;.

Starting with any finite simple nonabelian group G we can therefore construct
the algebra A which by lemmas 3.1, 3.3 and 3.4 satisfy conditions (i) and (ii) at
the beginning of the chapter. Together with lemma 2.5 therefore we get as result:

3.5 THEOREM. The only nontrivial congruence equality which is locally
Mal’cev characterizable is arithmeticity, i.e. permutability together with
distributivity.
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