
Neural Pascal
A Language for Neural Network Programming

H.Peter Gumm
Dept. of Computer Science
SUNY at New Paltz
New Paltz, N.Y. 12561
gummp@snynewba.bitnet

Ferdinand B. Hergert
Siemens – Corporate Research
and Development – ZFE IS INF2
D-8000 Munich 83
hergert@ztivax.uucp

Abstract
Neural Pascal is an extension of object-oriented Pascal, designed to allow easy
specification and simulation of neural networks. Syntactically, just a handful of
extensions to Pascal had to be added. Mainly they are syntax for the declaration
of neurons, links and nets; commands to build (and change) the net topology;
generators to iterate through all elements of a linear datatype.

1. Introduction

Neural network models are frequently visualized as graphs with nodes representing neurons
and edges representing synapses between the neurons. Subclasses of neurons are distinguished
by their functions or by their location within the network. Often these subclasses are arranged
in layers with different layers containing neurons of different functionality. The algorithms
driving such a network will take advantage of the structuring of the net, or of the properties
of neurons when performing calculations or when updating states of neurons.
It seems highly desirable to translate this view of a network into an executable program as
directly as possible with the actual translation of the code into memory accesses and pointer
references shielded from the concern of the programmer. There is no data structure present
in the repertoire of imperative languages, such as Pascal, that would be suitable to represent
this kind of graph-like structure as needed for neural networks.
On the other hand we did not want to design a new language from scratch but rather extend
a widely used language to simplify the use of the new features. In the design of Neural Pascal
it turned out, fortunately, that we could get by with only few new data structures and a
handful of associated new commands. These data structures and commands were built on
top of Turbo Pascal 5.5 which is an extension to standard Pascal mainly in its provision of
object-oriented features. The functionality of NP’s new data structures fits in nicely with
an object- oriented approach. The new data types are objects with their private data and
methods, and with the capability of inheriting properties and methods to subtypes.
Neuro Pascal is currently realized as a preprocessor that translates NP-code into Pascal source
code, which is then compiled using Turbo-Pascal’s efficient compiler. Program development
takes place in a comfortable and intuitive integrated development environment that is similar
in appearance and functionality to the development environment provided by Turbo Pascal.



2. The Language

Links and Ports:
Our underlying concept of a neural network is that of a directed graph whose nodes may be
grouped into nodes of different types. A connection between nodes is called a ‘link’. A link is
a directed edge between two nodes. The main purpose of a link is to provide an access from
one node to another provided there is a link connecting the two. Just as any other Pascal
object, links are typed, so different link types may be required when connecting different
kinds of neurons.
Links of the same type leading into one neuron are collected
together into what is called ‘ports’ (see figure 1). A neu-
ron which is the target for several links from other neurons
will have to provide one or more ports to receive these links.
By grouping incoming links into ports two aims are achieved:
Firstly, strong typing is preserved by requiring links of differ-
ent types to come in through separate ports , and secondly,
network algorithms can appropriately handle the different
kinds of connections or access exactly those nodes that are
connected to a given neuron through a particular port. Ac-
cess through a link is provided from the target neuron to the source neuron of the link. The
reason for this lies in the fact that in updating a neuron N , all those neurons that are directly
linked to N have to be consulted, i.e. for every link L arriving at N we have to access the
node at the source of L. For the same reason, the type of the neuron at the source of a link
is part of the type of the link.

TYPE
inLink = LINK FROM input
weight : real
BEGIN
weight := random - 0.5

END;
Fig. 2

Figure 2 gives an example of the definition of a link
(inLink) that has as source an object (neuron) of type
input. This link type has its own data field weight

and as a matter of illustration we provided inLinks
with an additional initialization code, which is auto-
matically executed when such a link is created.
Figure 3 shows how neurons can be provided with ap-
propriate ports for the links to hook into. This is
done using NPs type constructor PORT. In this ex-
ample the neuron of type hidden possesses two ports:
port entry for links of type inLink, and port lateral
to receive links of type rigid.

Creating a net topology:
A complete network will consist of many different
kinds of neurons, grouped somehow according to their
function in the net and connections between some of
these neurons. In order to connect two neurons with
a link, a SEW statement is supplied. SEW will create
a link between the source neuron and the target neu-
ron and hook the link into the designated port of the
target neuron. The link type is inferred from the type
of the port. At the same time the initialization code
for the created link is executed.

hidden = OBJECT
activation : real;
entry : PORT OF inLink;
lateral : PORT OF rigid;

END;
Fig. 3

The network topology can thus be created dynamically. Accordingly, we provide the CUT
statement for removing links again. CUT causes a link to be removed. Just as with SEW,



the user need not worry about storage allocation and reclamation. This is handled by the
system. The syntax of SEW and CUT is given by:

SEW <source neuron> TO <port id> OF <target neuron>

CUT <source neuron> FROM <port id> OF <target neuron>

A network can now easily be modeled as an object consisting of groups of neurons. Even
though the network topology can be changed dynamically, this will not be needed in many
applications and it should be generally recommended to build the network topology by sup-
plying the network object with an appropriate initialization procedure.

Accessing Neurons Through Links:
The purpose of links is to provide access paths to neurons. Given a link li, its source is
referred to as ”li.?”. Typically, the same kind of processing is done with all links arriving
at a given port. (This must be a rationale for creating an appropriate selection of ports). NP
provides an iterator to do the same kind of
processing with all links arriving at a given
port: ALL <linkId> TO <port> DO <statement>

will execute the <statement> with <linkId> run-
ning through all links arriving at <port>.
Suppose for instance that hidden neurons have
been defined with a private method ”Fire”, this
method could now be defined as given in figure 4.
An important point to observe is that this
method is attached to just a neuron and does not
need to know anything about the the topology of
the network of which this neuron is a part.
A slight variation of the ALL statement is the
WITH ALL statement :

PROCEDURE hidden.Fire;
VAR
sum : real;

BEGIN
sum := 0;
ALL li TO entry DO
sum := sum + li.weight *

li.?.activation;
ALL li TO lateral DO
sum := sum - li.?.activation;

END; { hidden.Fire }
Fig. 4

WITH ALL <linkId> TO <port> DO <statement>,

which is equivalent to

ALL <linkId> TO <port> DO WITH <linkId> DO <statement>.

The order of processing the links in an ALL-statement is unspecified. The linkId need not be
declared; its type is inferred from the type of the <port>. Essentially an ALL statement sets
up a local block with the <linkID> having only the body of the ALL statement in its scope.

Inheritance:

In object oriented Pascal new types of objects can
be defined by extending existing objects by new
fields or methods. Since the instances of a type are
called a ”class” in object oriented parlance, the in-
stances of the so extended type are said to form a
”subclass”. A class may have several different sub-
classes, and eventually the subclass hierarchy will
form a tree. Since subclasses inherit all properties
of their ancestor classes, objects of subclasses may
appear at any place where an object of the parent
class is expected.

TYPE
genericLink = LINK FROM neuron;

dendrite = LINK(genericLink)
weight : real;
BEGIN {init. code}
weight := random - 0.5

END;
Fig. 5



In NP, links are objects too, with the type of the neuron, where the link originates, is part of
its type. Fig. 5 shows the definition of a generic link (genericLink) and a subclass (dendrite)
derived from it.

3. The language environment

NP development takes place in an integrated environment with menu bars, popup windows,
pulldown menus, quite similar to the environment Turbo Pascal 5.5 provides. The main
menu bar provides choices for syntax checking or translating the original program into Turbo
Pascal. The choice ”Compile” creates an executable file by invoking the command line Turbo
Pascal compiler. Some menu choices activate further pulldown menus for dealing with file
handling or even to provide operating system shells, or to set switches and toggles. The
environment is meant to be selfexplanatory to programmers familiar with Turbo Pascal or
similar environments. The ”translate” menu item shows the source code of the intermediate
Turbo Pascal program in an editor window.

4. Planned Extensions

In the current version of NP links are always directed. If symmetrical links are required, we
must use two links, one in either direction. The only problem with this approach is that
data cannot be aliased between the two links. In the next version facilities for the creation of
bidirectional links will be added.

References

1 (Borland International) Turbo-Pascal 5.5. Object Oriented Programming Guide. Scotts
Valley, Ca. 1989.

2 H.P. Gumm, F.B. Hergert, Neural Pascal (NP), Siemens Technical Report, INF2-ANN-5-89,
1989.



P
P N

N N N

N

N

N
N: neuron
P: port

Figure 1




