
Continuations of logic programs

H.Peter Gumm

Dept. of Mathematics and Computer Science
SUNY College at New Paltz, New Paltz, N.Y.,12561

gummp@snynewba.bitnet

0. Background
In the realm of functional programming a wealth of techniques have been ex-

plored to transform a program into another equivalent program with the trans-
formed program exhibiting certain computational advantages over the original. Of-
ten the transformation involves a “generalization” of the original task, where this
generalization requires the addition of further parameters, called “accumulating”
parameters. This technique is particularly useful in transforming functional pro-
grams into tailrecursive form. A typical example of such a transformation is the
generalization of a linearly recursive function such as “factorial” into a tailrecursive
function fact′(n, m) = fact(n) ∗m.

On first sight, such generalizations appear to involve quite an insight into the
particular problem at hand, but they turn out to be instances of a very general
method of transformations based on “continuations”. The transformation always
succeeds on linearly recursive programs, insight is only requested to further simplify
the resulting program.

A continuation is a function of one parameter, representing some remaining
computation necessary to transform an intermediate value into a final outcome. In
the example of the standard definition of the factorial function, after having finished
the inner recursive call to f(n−1) the resulting value still has to be multiplied with
n, so the continuation would be λw.n ∗ w. A representation of this continuation is
all that has to be stored in the accumulating parameter. In the preceding case it
suffices to simply represent λw.n∗w by n. Further optimizations are possible, if the
space of representations can be endowed with a monoid structure so the abstraction
function maps this monoid homomorphically to the monoid of continuations with
composition (denoted by ◦) as operation. In the “factorial” example, the monoid is

the multiplication monoid on the natural numbers, so abs(n∗m) = λw.(n∗m)∗w =
λw.n ∗ (m ∗ w) = λw.n ∗ w ◦ λw.m ∗ w = abs(n) ◦ abs(m). An excellent account of
the technique is given in [W].

The general method of transforming a linearly recursive functional program
into tailrecursive form can then be sketched briefly as follows. Let

f(x) = if g(x) then h(x) else Φ(x, f(r(x)))

be a linearly recursive program. Generalize it to a function cf(x, γ) by introducing
a further parameter γ to represent a continuation with the intention

cf(x, γ) := (γ ◦ f)(x).

Then

cf(x, γ) = if g(x) then (γ ◦ h)(x) else γ(Φ(x, f(r(x)))
= if g(x) then (γ ◦ h)(x) else (γ ◦ λw.Φ(x, w) ◦ f)r(x)
= if g(x) then (γ ◦ h)(x) else cf(r(x), γ ◦ λw.Φ(x,w)),

a function which is now tailrecursive. The original function f can be recreated
using the identity function id in f(x) = cf(x, id).

The second argument to cf , which is a function, can be represented (encoded)
by the pieces of data γ and x as p(x, γ) with some constructor p, and with a
constant id serving as the representation of the identity function. As long as p is
a free constructor, i.e. it essentially pushes values on a stack beginning with the
empty stack id, we can uniquely decode the function it represents. The decoding
map is defined on the space of representations by

decode(id) = λx.x

and
decode(p(x, y)) = decode(y) ◦ λw.Φ(x, w).

In many cases simpler representations can be found by means of a binary operation
∗ defined on the space of representations, so that

decode(p(x ∗ y, z)) = decode(p(x, p(y, z))),

in particular, such a ∗ can always be chosen associative.

1. Logic Programs
In the mathematical semantics of logic programs the order of the predicates in a
clause should not matter, but of course it does make a difference to the termina-
tion properties of a PROLOG program. More importantly, most practical logic
programs contain nonlogical predicates, such as arithmetical predicates, predicates
causing side effects or any system predicates that require certain arguments to be
bound before execution. Clearly, such predicates cannot be freely permuted with
other predicates of the same clause.

Thus the notion of a “tailrecursive” predicate makes sense even in logic pro-
gramming and indeed most PROLOG compilers will generate more efficient code if
a program is tailrecursive. Interpreters will also have to store less backtrackpoints,
if a recursive call is the last call in the last applicable clause in the program. Sev-
eral authors have studied how to apply the unfold/fold technique to transform logic
programs into tailrecursive form [TS], [D].

Here we explore a possible way how to give a meaning to continuations in logic
programming. There are various ways of doing so , and the continuation may either
represent an extra goal to be solved, or a relation between intermediate values and
output values, in the case of a logic program whose intended use is to transform
input into output. Following this, but independent of the method, simplifications
may be applied on the ensuing program, often getting rid of the auxiliary predicate.

A logic program for a predicate q is called linearly recursive, if there is at
most one recursive call to q in each clause . q is called tailrecursive, if it is linearly
recursive and each call to q, if any, occurs as the last goal in the clauses body. Thus
a typical linearly recursive program would be of the form :

qi(rj) :− gi(sj). (1)
qi(tj) :− hi(uj), qi(vj), pi(wj). (2)

where we abbreviate termlists such as t1(x1, . . . , xn), . . . , tk(x1, . . . , xn) by
ti(xj). There may be at most one recursive call to q in the body of each clause,
yet there may be several clauses such as (2).

The following predicate will serve as a prototype to demonstrate the transfor-
mation. The formulation for a general linear recursive program will be obvious, but
tedious.

The predicate relates a list to its length and can be used either to calculate
the length of a list, or to provide a list of a given length. It is obviously linearly
recursive, but not tailrecursive, and reordering of the subgoals in its body is not
possible, since V must be bound, when the predicate “U is V + 1” is encountered.

length([], 0).
length([H|T], U) :− length(T, V), U is V + 1.

The idea corresponding to the continuation transformation in functional program-
ming would be to generalize the ”length” predicate so that it also incorporates the

calculation ensuing after the recursive call in its body, creating a new generalized
predicate that will become tailrecursive. For this we extend length by a further
argument position that is to encode the ”ensuing calculation”.

In functional programs this ensuing calculation is represented as a function
of one argument, the ”continuation”, in logic programming it ought to be a goal,
representing the task yet to be solved. The new predicate, say cLength, is intended
to have the semantics :

cLength(L, N,Γ) ⇐⇒ length(L, N),Γ. (3)

The relationship between length and cLength would then be defined as

length(L, N) :− cLength(L, N, true). (4)

Using (3) as a definition of cLength we shall have to remove the reference to the
old length-predicate. Partial evaluation (see [V],[K]) of length(L,N) in (3) yields
the clauses :

cLength([], 0,Γ) :− Γ. (5)
cLength([H|T], U,Γ) :− length(T, V), U is V + 1,Γ. (6)

Now, we have to fold the right hand side with (3) which is trivial by simply
letting the new continuation be the conjunction of the goals “U is V+1” and “Γ”,
i.e.

cLength([H|T], U,Γ) :− cLength(T, V, (U is V + 1,Γ)). (7)

The new program for length consists of (4), (5), and (7) . Some PROLOG
implementations would need to replace the call to Γ in the body of (5) with an
explicit “call(Γ)”.

It is clear that the new program for length is equivalent to the old version
and also that the new program has become tailrecursive. Instead of creating back-
trackpoints as is necessary in a call to (6), the extra argument in cLength is used
to store the necessary information for the ensuing goals. The necessary information
to recreate the “ensuing calculation” is completely provided by the variables U,V
and Γ, so we choose a function symbol p to encode the continuation as p(U,V,Γ),
with a constant done representing the goal true. Of course, we need a decoding
predicate run now, which is given by

run(done).
run(p(U, V, G)) :− U is V + 1, run(G).

The new cLength then becomes :

cLength′([], 0, G) :− run(G).
cLength′([H|T], U, G) :− cLength′(T, V, p(U, V, G)).

with initial call :
length(L, N) :− cLength′(L, N, done).

Thus, not surprisingly, forming p(U,V,G) amounts to pushing U and V onto the
stack G, with done representing the empty stack. Clearly, also, there are some
savings possible, since not both U and V need to be pushed onto the stack, in
particular, since it is obvious that V is local to the body of (6), but we shall see a
refined version of the transformation and with it an improved version of length in
the next section.

2. List recursion.

There may be several reasons why a linear recursive program cannot be turned into
a tailrecursive program by simply switching the order of the subgoals in the clauses
of (2). In the majority of cases though, there will be some value computed in the
recursive call to q which is subsequently needed by p. (If q and p do not have any
variables in common there is no reason why they could not be interchanged, unless
they create sideeffects.) Taking this fact into account, we can improve upon the
previous transformation. In this chapter we shall demonstrate this for programs
recursing over lists, and in the following chapter we give an example of the same
transformation in the context of graphs.

List recursion seems to be a rather typical case where linear recursive programs
arise. (Stretching this point somewhat, recursion over natural numbers can be seen
as a special case of list recursion). The general form of a program recursing over
lists can be written as

q([], c). (8)
q([H|T], M) :− q(T, K), r(H, K, M). (9)

(Additional nonrecursive clauses or additional goals in (8) and (9) would only com-
plicate notation). The body of (9) can be viewed as a relational product (join) of
the relations q(-,-) and r(H,-,-). Thus continuations should become relations
and they should be composed using relational composition ◦. Augmenting q with
a further argument to hold the representation of a continuation and introducing a
ternary relation abs(-,-,-) that decodes the representation of a continuation, so
that abs(rep(C),−,−) = C, we introduce the generalization cq(-,-,-) of q(-,-)
with the intention

cq(L, M, R) ⇐⇒ q(L, U), abs(R, U, M).

To recover the original predicate, we set :

q(L, M) :− cq(L, M, id).

and
abs(id, X, X).

Next we use the defining clauses for q to partially evaluate the definition of cq :

cq([], M, R) :− abs(R, c, M).
cq([H|T], M, R) :− q(T, K), r(H, K, U), abs(R, U, M).

We need the right hand side to be of the form q(T,K), abs(Ω,K,M), so Ω
must encode H and R. Hence we choose a binary function symbol p and the clause

abs(p(H, R), K, M) :− r(H, K, U), abs(R, U, M).

This gives us the final program

q(L, M) :− cq(L, M, id).

cq([], M, R) :− abs(R, c, M).
cq([H|T], M, R) :− cq(T, M, p(H, R)).

abs(id, X, X).
abs(p(H, R), K, M) :− r(H, K, U), abs(R, U, M).

Here all predicates are tailrecursive. The functor p is free, that is, the data structure
built as representation of the continuation is isomorphic to a stack, with id corre-
sponding to the empty stack. If there were several clauses in the original program
containing a call to q, we would need a constructor pi for each of them, together
with a corresponding clause for abs.

Suppose that q is called with its first argument bound to a list l, then the
role of cq is merely to push the elements of l so they can be retrieved by abs and
processed in reverse order.

In special cases various optimizations are possible. If, for example, r(H,K,M)
does not depend on H, such as in the length predicate of the previous chapter, then
p becomes essentially unary and the continuations can be represented by natural
numbers, id, p(id), p(p(id)),.. . Another important case is when a binary op-
eration � can be defined such that r(x,−,−)◦r(y,−,−) = r(x�y,−,−). W.l.o.g. we
can assume a right unit e with r(e,X,X). Then the transformed program simplifies
to

q(L, M) :− cq(L, M, e).

cq([], M, R) :− r(R, c, M).
cq([H|T], M, R) :− cq(T, M, H � R).

and abs becomes superfluous. (Since any call to the program will be made through
a call to q, the last argument of cq will always be bound.) Examples of programs
amenable to the latter simplification are e.g. programs combining the elements of
a list by an associative operation. The length program, again, is a special case
here, setting e = 0 and H � R := R + 1.

3. Modifying a search program.

The previous transformation is taylored to, but not limited to programs recurring
over lists. As an example, suppose a graph is given by a relation edge(,) relating
pairs of nodes. Reachability can then be defined as the transitive hull of the edge
relation :

reach(X, X).
reach(X, Y) :− reach(X, Z), edge(Z, Y).

The predicate cReach will be introduced again, with the intention:

cReach(X, Y, G) ⇐⇒ reach(X, U), abs(G, U, Y).

This leads to
reach(X, Y) :− cReach(X, Y, done).

abs(done, X, X).

Partially evaluating the body of this definition we get

cReach(X, Y, G) :− abs(G, X, Y).
cReach(X, Y, G) :− cReach(X, Y, p(G)).

abs(p(G), Z, Y) :− edge(Z, U), abs(G, U, Y).

The domain of continuation representations, again, is isomorphic to the natural
numbers, and it seems that renaming abs into distance is more appropriate, we
get :

reach(X, Y) :− cReach(X, Y, 0).

cReach(X, Y, N) :− distance(X, Y, N).
cReach(X, Y, N) :− cReach(X, Y, succ(N1)).

distance(X, X, 0).
distance(X, Y, succ(N)) :− edge(X, U), distance(U, Y, N).

Thus, whereas in the original program a call such as reach(a,b) results in a depth
first search backwards from b, the transformed program will do an exhaustive
search, increasing the boundaries of the search space with each call to cReach.
The original program, by contrast, is likely to be caught in infinite loops. Logically,
though, the two programs are equivalent.

4. Difference lists.

Difference lists are a representation of the list data structure, that is particularly
efficient for the “append” operation, in that appending of two difference lists can
be achieved totally by unification(see [ZG]). A difference list d(A,B) represents a
list that satisfies d(A, B)⊕ B = A, where A and B are lists and A⊕ B denotes the list
obtained by appending A to B. The program

append(d(X, Y), d(Y, Z), d(X, Z)).

appends two difference lists and, obviously, leaves all the work to the unification rou-
tine. Difference lists are particularly useful in parsing, where the append program
is used to split a list of incoming tokens into pieces. Each piece is then parsed by
parsers responsible for the individual nonterminals of the grammar. Applying the
continuation transformation onto a simple minded version of a parser we shall see
that difference lists quite naturally come about as representations of continuations.
Let us take a typical clause of a grammar such as

< sentence >::=< nounPhrase >< verbPhrase >< nounPhrase >

and a corresponding parser that works on a list of tokens to construct an abstract
syntax tree:

pSent(In, mkSent(N, V, M)) :− pNP(A, N),
append(A, R1, In),
pVP(B, V),
append(B, R2, R1),
pNP(C, M),
append(C, [], R2).

together with some simple definitions of pNP and pVP such as e.g.

pNP([the, X], subj(the, X)) :− noun(X).

pNP([Y], person(Y)) :− name(Y).

pVP([eats], verb).
pVP([likes], verb).

The last call to append, in pSent could, of course, be dispensed with, but it serves
to show the regular structure of the parser. Every subparser is now paired with
its own continuation. Since those all have the same structure, we need only one
representation, resp. decoding predicate to work for all. This yields:

cpNP(N, p(R1, In)) :− pNP(A, N), append(A, R1, In).
cpVP(V, p(R2, R1)) :− pVP(B, V), append(B, R2, R1).

pSent(In, mkSent(N, V, M)) :− cpNP(N, p(R1, In)),
cpVP(V, p(R2, R1)),
cpNP(M, p([], R2)).

partial evaluation of cpNP and cpVP gives

cpNP(subj(the, X), p(R1, In)) :− noun(X), append([the, X], R1, In).
cpNP(person(Y), p(R1, In)) :− name(Y), append([Y], R1, In).

cpVP(verb, p(R2, R1)) :− append([eats], R2, R1).
cpVP(verb, p(R2, R1)) :− append([likes], R2, R1).

Next, we can partially evaluate the append subgoals, obtaining:

cpNP(subj(the, X), p(R1, [the, X|R1])) :− noun(X).
cpNP(person(Y), p(R1, [Y|R1])) :− name(Y).

cpVP(verb, p(R2, [eats|R2])).
cpVP(verb, p(R2, [likes|R2])).

Note now, that the previous continuation representation has turned into a difference
list, since p(B,A) can be interpreted as the difference list d(A,B). Actually, one
would probably want to relinquish the constructor p altogether, and simply list the
components in separate argument positions resulting in the final program, that is
a substantial improvement over the initial program, since the calls to append have
disappeared.

pSent(In, mkSent(N, V, M)) :− cpNP(N, R1, In),
cpVP(V, R2, R1),
cpNP(M, [], R2).

cpNP(subj(the, X), R1, [the, X|R1]) :− noun(X).
cpNP(person(Y), R1, [Y|R1]) :− name(Y).

cpVP(verb, R2, [eats|R2]).
cpVP(verb, R2, [likes|R2]).

5. Left recursion

Left recursion is a problem frequently encountered in constructions of recursive
descent parsers. Its solution is well known, we will nevertheless derive it here
again, to show that it may as well be considered an instance of a continuation
based transformation. Let the grammar be given as A ⇐ α | Aβ, and let pA, pα
and pβ be the associated PROLOG predicates. We disregard as inessential here the
fact that pA, pα, pβ usually would have some arguments. The PROLOG program
for the grammar,

pA :− pα.

pA :− pA, pβ.

would suffer from left recursion. Introducing a continuation parameter and a de-
coding predicate abs(), so that

cpA(G) ⇐⇒ pA, abs(G)

we get
pA :− cpA(id).

cpA(G) :− pα, abs(G).
cpA(G) :− cpA(s(G)).

where
abs(id).
abs(s(G)) :− pβ, abs(G).

Once again, the continuations can be represented by the natural numbers, moreover,
the last clause for cpA together with the fact that the original call to cpA is with
argument id, indicate that the argument is really superfluous. We replace it by
“ ”, and it turns out that abs() will also be called with argument “ ”, thus we can
eliminate the continuation parameter from cpA and from abs, obtaining the final
program

pA :− cpA.

cpA :− pα, abs.

abs.

abs :− pβ, abs.

which is the familiar transformation for leftrecursive grammars.

6. Conclusion

We have demonstrated that the concept of continuation based transformations can
be successfully carried over from functional programming to logic programming.
Various known techniques of logic programming, such as removal of linear recur-
sion, parsing by difference lists and removal of left recursion in grammars can be
considered as special instances of the technique.

7. References

[D] S. Debray “Optimizing Almost-Tail-Recursive Prolog Programs,” Proc. IFIP
International Conference on Functional Programming Languages and Com-
puter Architecture. Nancy, France, 1985.

[K] H. J. Komorowski “Partial evaluation as a means for inferencing data struc-
tures in an applicative language : A theory and implementation in the case of
Prolog,” Proceedings of the 9th ACM Symposium on Principles of Program-
ming Languages, Albuquerque, New Mexico, 255–267 (1982).

[TS] S. Tamaki and T. Sato “Unfold/Fold Transformations of Logic Programs,”
Proc. 2nd. Logic Programming Conference, Uppsala, Sweden, 1984.

[V] R. Venken “A Prolog meta-interpreter for partial evaluation and its applica-
tion to source to source transformation and query optimization,” in T.O’Shea
(ed.): ECAI-84. Advances in Artificial Intelligence, Pisa, Italy, 91–100. North-
Holland, 1984.

[W] M. Wand “Continuation based program transformation strategies,” Journal of
the ACM, 27(1980)164–180.

[ZG] J. Zhang and P. W. Grant “An Automatic Difference-list Transformation Al-
gorithm for Prolog,” in Proceedings of ECAI-88. European Conf. on Artificial
Intelligence, Munich 1988.

