Generating Algebraic Laws from Imperative
Programs

H. Peter Gumm

Dept. of Mathematics, Philipps Universitat Marburg
gumm@mathematik.uni-marburg.de

Abstract. The use of verifiers for proving the correctness of concrete
programs is well known and has been amply described in the literature.
Here we focus on further, perhaps more general tasks such verifiers can
perform. Given a program that is assumed to be correct, we derive a
set of axioms for the data structures involved. In the simplest case, we
study an abstract program interchanging the contents of two variables.
The verification conditions generated by our verifier, NPPV, are a set
of equations specifying quasigroups. Other examples reveal the notion of
“strategy” from the verification of an abstract game playing program, or
show the correspondence between inductive proofs of numeric properties
and verification of a program searching for a counterexample. Finally we
apply NPPV on Wand’s example showing the incompleteness of Hoare’s
logic. We also give a simplified proof of Wand’s result.

1 Algorithm = Data Structure 4+ Control

According to standard definitions [4], an algorithm is a detailed and explicit
instruction for the stepwise solution of a given problem. This means that there
must be given a repertoire of elementary (or atomic) steps which are to be com-
bined according to the instructions of the algorithm. In a general sense it 1s of
course allowed to think of atomic steps such as “add a cup of flour”, “stir”,
and of combinations of instructions such as “add a cup of flour then stir until
smooth” | but we shall not deal with recipes, rather with algorithms computing
functions over sets of data.

Here an atomic step consists of calculating a data value according to a given
set of operations and storing the result in a memory cell. In describing how to
combine such elementary steps a small set of instructions including composition
(5), conditional (if-then-else) and loops (while or repeat) is commonly
used.

This way a separation of concerns is achieved. A data structure defines the
admissible atomic steps and a control structure determines how these steps are
to be combined to yield the desired algorithm. This view is stated very succinctly
in the well known slogan “algorithm = data structure + control”.

The border separating data structure and control may slide towards either side
depending on the application. As an example we may assume to have multiplica-
tion “x” of natural numbers available as elementary arithmetical instruction, yet

we may also get by with the operators of Presburger arithmetic (0, suce, +, <) and
construct an algorithm for multiplication. All programming languages provide
mechanisms to augment the data structure by such defined functions.

The main purpose of this article is a demonstration together with a set of
some succinct examples that show how Wirth’s “equation” may be solved for
an unknown data structure too. That is, given the specification of an algorithm
and given a control structure, automatically determine axioms for a data struc-
ture required to fulfil the specification. A vehicle for finding these examples is a
program verifier (NPPV) that we have constructed for educational purposes and
used in many courses on program verification. With its help we can not only
semi-automatically verify concrete programs, but also investigate “abstract pro-
grams” and reveal relationships between programs, specifications, invariants and
data structure requirements. As a simple example, for instance, we shall show
that a program to interchange the value of two variables works correctly pre-
cisely if the data structure contains a quasigroup operation, or that the failure of
a program to find a counterexample to a conjecture leads to an induction axiom
for the data type.

NPPV (New Paltz Program Verifier), has been implemented on an IBM com-
patible PC and has been developed for, and successfully used in courses devoted
to the mathematics of program verification and abstract data types. The software
is embedded in an “integrated development environment” with built-in editor,
pull-down menus and pop-up windows. It i1s freely available for demonstration
and course use.

2 Data Structures

Definition1 (Signature). A many-sorted signature is a triple (S, F, 7) where

— S is a set (whose elements are called sorts)

— F is a set (of operation symbols), and

— 7:F — 5% x S 1s a map associating with every f € F a tuple of argument
sorts and a result sort.

Definition2 (Data Structure). A data structure of signature (S,F,7) is a
tuple A = (A, F'), consisting of a family A = (A;)secs of nonempty sets together
with a family of fundamental operations F = (f4) ser so that the type assignment
7 is respected, i.e. if 7(f) = ((s1,...,8n),5), then faq : A;, x - x A;, — A;.

Examples of data structures are groups of sort ({G},{o,7! e}, 7) where 7

specifies that:
o :GxG—G

.G —=G

e :— G
The two-element Boolean algebra is ({IB}, {A,V, -, true, false}), Presburger
arithmetic is the data structure ({IN,IB}, {+, suce, 0, <, =}), and standard arith-
metic is ({IN,IB}, {+, *,0, 1, <, =}) where in the latter three data structures the
signature is evident.

2.1 Terms

Terms are expressions built from variables and fundamental operations. Assum-
ing that for each sort s € .S we are given a set of variables Var;, we can define
recursively the notion of a term of type s:

Definition3. (i) Every variable v € Var; is a term of type s.

(i) I 7(f) = ((s1,..-,8n),8) and ¢; is a term of type s; for every i < n, then
f(t1,...,ty) is a term of type s.

(iii) Given a term u of type s and a variable v € Var,, then for every term ¢,
t[v/u] denotes the term obtained by replacing every occurrence of variable v
in t by the term u.

2.2 Logical expressions

Data types used for programming are always assumed to extend the Boolean data
type. ! Boolean expressions are simply terms of type IB. Boolean expressions are
used in programs to determine the flow of control. Predicate logic expressions
extend Boolean expressions by allowing quantifiers V and 3, that is:

Definition4. (i) Every Boolean expression is a predicate logic expression,

(i) If p, ¢ are predicate logic expressions, then so are pA ¢, pV ¢, and —p.

(iii) If p is a predicate logic expression, and # is a variable, then Va.p and Jz.p
are predicate logic expressions.

2.3 States

A state 1s an assignment of values to variables. More precisely, a state o is a
family of mappings o, : Vary, — A;. Given a variable x of type s, we write
o(x) instead of o (x). The canonical extension of & to a map from terms to values
is also denoted by . (In functional programming terminology this extension is
often called eval,.)

Given state o, variable v and value M we let 0 4+ [v = M] denote the “new”
state o' with ¢/(v) = M, and ¢'(w) = o(w) for every w # v. Observe that for
any state o, terms ¢, r and variable v :

a(tfv/r]) = (e + [v=a(r)])(?).

Unfortunately, it turns out that any sufficiently rich model of computation
will allow calculations that never terminate. We therefore include a pseudo-state
L, pronounced “bottom” or “undefined”. A nonterminating computation is then
said to return L.

! Even if the Boolean operations are only derived operations, such as in the C language.

3 Control

The purpose of a (sequential) calculation is to proceed from an initial state o
to a final state ¢’ in which certain variables have some desired value. A program
calculating the ged of two numbers, e.g., is started in any state [= M |, y = N]
where variables # and y are assigned positive integer values M, resp. N, and is
supposed to reach final state in which a variable z is assigned ged (M, N). Thus
a program is (the description of) a state transformation.

3.1 Commands

Control structures describe state transformations and their combinations. Given
a state, a command specifies how the next state is to be achieved. With [C] we
describe the state transformation specified by command C', so [C](e) is the state
achieved after starting the execution of C in state o. We set [C](L) = L for all
commands C'.

3.2 Assignment

The most basic command is given by a variable v and a term ¢. The phrase

v:=t

is called an assignment and 1t 1s meant to denote the map transforming state o
to o + [v = a], where a is the value of ¢ in state o, i.e.

[v:=t](c) =0+ [v=0c()]

Non-conflicting assignments my be executed in parallel

Uiy ooy Up t=t1, .00 80,
where the values of vy, ..., v, are updated with the (simultaneously computed)
values of t1,...,1, respectively, i.e.

[v1, ... 00 1=y, .. t](0) =+ v = a(t1)] + -+ [= a(tn)].

3.3 Sequencing

Given commands €7 and (s the sequential execution of “first Cy, then C5” is

described by “C; ; €57, that 1s
[C1; Co] = [Ca] o [Ch].

At this point we note that assignment and sequencing alone do not add “compu-
tational power” going beyond the evaluation of terms in the data type. That is, a
sequence of assignments can always be replaced by one single parallel assignment.

3.4 Skip

Occasionally it is convenient to have a command skip available. skip denotes
the identity state transformation and could be simulated by a trivial assignment

1R

v :=v. Clearly, “” is associative with two-sided unit skip .

3.5 Conditionals
Given a Boolean expression B and two commands C7 and Cy, the command
if B then (] else (5

will be the same as €'y when started in a state where B is true and C'5 otherwise,
that 1s :

) _ JIC1](e), if [B](¢) = true
[if B then 4 else Cs](0) = {[[Cz]]go';, " [[B]]EO’; — false.

A (complex) command built from assignments using only sequencing and condi-
tionals is called a “straight line program”. Note, that in the case of a finite set
A every map f : A— A, (more generally, every operation on A) can be realized
with a straight-line program P : If A = {ay,...,a,}, and the desired map is
given as ay — b1, ...,a, — b, let P be the straight line program

if x=a; thenz:=b
else if x = ao thenz:=by
else Z:=b,

With straight line programs we therefore go beyond evaluation of terms, i.e.
the computational mechanism afforded by Universal Algebra, unless there is an
“if-then-else” at the term level. Such algebras are well studied, they are called
functionally complete. A term simulating the if-then-else is usually introduced as

¢, ifa==b
d(a,b,c) = {a, ifa+b.
3.6 While
Given a Boolean expression B and a command (', the command
while B do ('

specifies a computation that repeatedly executes C'| as long as B is satisfied. Such
a computation need not terminate. It might in fact be defined as a countable
sequence of if-commands :

if B then (else skip ;
if B then (else skip ;

If after finitely many steps a state is reached satisfying =B, then that state is the
result of the computation, otherwise the result is the state L.

The given constructs suffice to specify all functions that are computable over
a given data structure. Moreover, by structural induction it is not hard to see
that every program C' may be transformed into an equivalent program containing
only a single while-loop, 1.e. into a program of the form

Il ; while B do D

where [is a sequence of assignments and D is a straight-line program.

4 The Hoare Calculus

4.1 Specifications

The purpose of a program is to achieve a desired state transformation. A specific-
ation 18 a “declarative” description of such a transformation, that is it specifies
the desired net effect of a transformation without concerning itself about how
this effect 1s achieved using the available commands.

The classical method of C.A.R.Hoare ([5],[1])presents a specification as a pair
(P, Q) of expressions in the predicate logic over the underlying data structure.
The idea is that a command C' satisfies the specification (P, @), if for any state o
satisfying P the state achieved after executing C' satisfies). However, the pos-
sibility that [CT(¢) = L must be taken into account, so we distinguish between
partial correctness

{(PYC{Q}: = Vou(o = P ALCN(0) # L) = (IC](0) E Q).

and total correctness:

[P1C[Q]: <= Yo.(o = P) = (IC](e) # LAICT(0) E Q).

Thus given a specification (P, @), it may be considered the programmers job to
solve it by finding a program X such that {P} X {Q}, or even [P] X [Q] is true.

4.2 Hoare rules

C.A.R. Hoare has presented a calculus to derive theorems of the form {P} C' {Q},
where (P, Q) is a specification and C' a program. There are two general logical
rules, an assignment axiom and one rule for every control construct .

Logical rules:

P' = P {P}C{Q}

(pre-strengthening)

{Pe{Q}
{PIC{RQ}1,Q=¢q .
{P}C{Q"} (post-weakening)
Axiom:
P v/t . .
% (assignment axiom)

Structural rules:
PO {R}, {R}C2{Q}
(PO C2{Q"}

{PABIC{QY, {PASB)}C{Q}
{P}if B then (] else (3 {Q}

(sequence rule)

(conditional rule)

P=1 {PAB}C{I}, IN-B=Q
{P}while B do C'{Q}

(while rule)

The rules can be formulated in several equivalent ways. Here they are presented
in a form that makes them appropriate for backward proof, that is, given a pro-
gram X, specification (U, V), to check that {U} X {V'} is true, proceed according
to the form of X and use the rules backwards: If X is a while loop, use the while-
rule, if X is an assignment, use the assignment rule, etc. There are, unfortunately,
several rules where a logical formula appears in the premise, but not in the con-
clusion. In a backwards proof, this formula will have to be guessed. This concerns
the logical rules, the sequence-rule and the while-rule. Fortunately it turns out
that except for the while-rule, the unknown expressions in the premises can be
chosen in a standard way, as so called weakest preconditions.

The logical expression [in the while-rule is called an nvariant. There is no
standard way to guess a proper invariant in a backwards proof, although a num-
ber of heuristics are available. We shall see later that finding a proper invariant
is at least as hard as finding a proper induction hypothesis in an inductive proof.

The rules are easily seen to be correct. Since the premises contain predicate
logic expressions that must be shown valid in the data structure, it is clear that
logical completeness of the above set 1s out of the question. However, we can
ask for relative completeness, that is completeness under the assumption of an
oracle for the valid formulas of the data structure. It turns out that the rules are
indeed relative complete in that sense, provided the data structure is expressive,
a notion introduced below.

4.3 Weakest liberal precondition

Given a set W C S of states and a program C', the weakest liberal precondition

of C'and W is defined as
wlp(C, W) = {o € S| [C](c) € W}.
Usually S will be denoted by a logical expression @, so we set correspondingly

wlp(C, Q) :={e € 5[[Cl0) F Q}.

For a straight line program C' and a logical expression @, wip(C, Q) is again
definable by a logical expression :

wip(x :=t,Q) = Q[x/1]
wlp(Cy 5 C2, Q) = wlp(Cy, wlp(C2, Q))
wlp(if B then C; else (9, Q) = (B A wlp(C1,Q)) V (=B A wlp(Cs, Q))

If C is a while-loop, wlp(C, @) need not be first order definable. Notice that
according to our characterization of the while-loop as a countable sequence of
conditionals, we can always write it as a countable disjunction

oQ

wlp(while B do C', Q) = \/ wip(Dy, @),

n=0

where D, is the straight line program consisting of the n-fold iteration of the
command “if B then C else skip 7.

4.4 Expressiveness and completeness

A data structure is called expressive, if the previous infinite disjunction is always
first order definable. It turns out that standard arithmetic is expressive, whereas
Presburger arithmetic is not. For expressive data structures, the Hoare calculus
is relatively complete[3]. For a program C' over an expressive data structure we
therefore have :

{P}C{RQ} <= P = wlp(C,Q).

5 Mechanizing the Hoare calculus

The Hoare calculus is meant to be used on practical programs such as programs
that search or sort arrays, calculate number theoretic functions, play games or
that use clever tricks to implement an algorithm efficiently. Given a specification
and a nontrivial algorithm, a paper and pencil verification of the corresponding
program using the Hoare rules may present a formidable task. Typically, early
versions of the program contain bugs, first attempts at formulating an invariant
for a while-loop are incorrect, leading to a new proof attempt for every small
correction. Fach backwards proof attempt in turn produces a plethora of logical
expressions, so called “verification conditions” that have to be shown valid in the

data structure. For this reason, it 1s absolutely necessary, to have some machine
support, if the calculus is to be useful.

In a somewhat weaker sense the same holds true in the teaching of program-
verification. It is very hard to go beyond some very trivial examples because of
the sheer number of verification conditions that are freshly generated with each
proof attempt.

5.1 NPPV

For the above reasons we have implemented the program verifier NPPV. The ac-
ronym stands for “New Paltz Program Verifier”. This MS-DOS Program presents
a user interface familiar from virtually all programming language implementa-
tions, collectively termed as “interactive development environment” (IDE).

To be specific, the main screen shows an editor window in which the program
together with its specification can be edited. A menu bar above the main window
provides the most important commands, such as “edit”, “prove” or “help”. Oth-
ers lead to further pull-down sub-menus, all in all providing a comfortable proof
development environment.

5.2 Annotated programs

In order to prove partial correctness of a program, NPPV expects as input a
specification consisting of

— a precondition,
— a program, in which every while loop is annotated with an invariant
— a postcondition.

W@,

If desired, the user may additionally include after any semicolon “;”an in-
termediate assertions, 1.e. a logical expression that he expects to be true at that
point in the program. Annotations appear within comment braces “{“ and “}”.

Such an annotated program is entered and edited in NPPV’s main window.
Syntactical and similar errors are immediately detected with the cursor placed
at the offending position and a meaningful error explanation at the bottom of the
screen.

Each annotation must be an open formula in an extension of the language
over the data type used in the program. Essentially, it must be a Boolean formula,
but in addition to the program variables (also called mutable variables) and to
the fundamental operations, formulas in annotations may contain extra variables
and functions not declared for the data type. Those so called logic variables and
Skolem functions may not be read or written by the program. As a convention,
NPPV expects logic variables to start with an uppercase letter.

To see the need for this distinction, consider a specification that asks for a
program to exchange the contents of the variables x and y. Thus we are looking
for a program C' solving the following specification where the logic variables M
and N stand for some arbitrary but fixed values :

{x=MAy=N}C{x=NAy=M}.

If M and N were program variables, then the program
M:=N

would be a solution. If (' was allowed merely to read M and N, then we still
would have the unintended solution

x:=N;;y:=M.

Rather we intended to specify a program C' which does not contain M or N and
which satisfies

VM, N{x=MAy=N}C{x=NAy=M}.

We shall never use quantifiers explicitly in our specifications. Existential quanti-
fiers can be eliminated through Skolemizations, universal quantifiers are assumed
to bind every free logical variable.

5.3 Verification conditions

Given an annotated program, i.e. a construct { P} C' {@}, where every while-loop
in C'is annotated with an invariant, we could attempt to calculate wip(C, Q) and
check whether this is implied by P. However, we have seen that wip(C, Q) need
not exist when C' contains a while loop. Even if it did, the resulting logical
expression, i1f not valid, would hardly give us a clue as to the source of the error.
Therefore we use a “localized” approach: First, we replace the wip-function by
the simpler function pre, defined on annotated programs as

pre(x:=t,Q) = Q[x/Y]

pre(Ch 3 CZa Q) = pre(C1,pre(Cs, Q))

pre(if B then () else Ca) = (B Apre(Ch,Q)) V (B Apre(Cs, Q))
pre(while Bdo {I} C,Q) =1

Then we generate a set of simple logical expressions, so called verification con-
ditions :

ve(Pyx :=t,Q)
UC(P, Cl H CZaQ)

{P = Qx/1]}

ve(P,C1, R) Uve(R,Ca, Q)

where R = pre(Cs, Q)

ve(P,if B then C else (9, Q) = ve(P A B,C1,Q)Uvc(P A-B, (5, Q)
ve(P,while Bdo {1} C,Q) ={P=TItUve(BAIL,C,YU{IN-B= Q}.

Each verification condition is associated with a certain identifiable place in the
program. Verification conditions are propagated through straight line subpro-
grams. If this is not desired, an intermediate assertion {R} can be placed after
a semicolon “;”. In this case we calculate

ve(P,C1;{ R} C2,Q) = ve(P,C1, R) Uwe(R, Cq,Q)

It can be shown that the given annotated program satisfies its specification if and
only if all these verification conditions are valid. More precisely, we have:

Theorem 5. Let (P, Q) be a specification and C' a program over data type D. Let
C’ be an annotated version of C. If every verification condition in ve(P,C’, Q)
is valid in D, then {P} C{Q} is true. If D is expressive, then the converse holds,
ie. if {P}C{Q} is true then there is an annotation C' of C' by loop invariants
such that all verification conditions in ve(P,C', Q) are valid in D.

Proof. One direction follows by a straightforward induction over the structure of
annotated program C’. For the other direction we assume that D is expressive,
so wip(C, Q) always exists. Given that {P} C'{Q}, we have to find an annotated
version C” of C' such that every verification condition in ve(P, €', Q) is valid. We
set O’ = C?, where for arbitrary C, Q we define

(x:=t)9 =2 :=t

(Cy 3 C9)9 = CF C'ZQ,Where R = wip(Cs,Q)

(if B then () else (5)9 = if B then C’lQ else C’ZQ

(while B do ()9 = while B do {I}C!where I = wip(while B do C, Q)

With this annotation we find for every C,Q that pre(C?,Q) = wip(C, Q).
Now assume {P} C'{Q}, i.e. P = wlp(C, Q). By induction over the structure of
C we need to show that every verification condition in ve(P,C?, Q) is true.

— The cases C' = z :=t and C' = if B then C; else (', are straightforward.

— Let C'=Cy 5 Cy, then {P}C1{R} and {R} C2{Q} with R = wip(C2,Q) =
pre(C’zQ, Q). Every verification condition in ve(P, Cf, R) and in ve(R, C'ZQ, Q)
is valid by induction hypothesis. Since C9 = (C} ;)¢ = Cf; C’ZQ, the
claim is true for C; 3 Cs.

— Suppose C' = while B do Cy and I = wip(C, @), then clearly P = I. From
{I'} C{Q@} and the identity

[while B do C1]] = [if B then (C} ; while B do () else skip]

we conclude TA—B = @ and {I A B} ; while B do) {Q}, and therefore
{I A B}Cy {I}. By the inductive hypothesis, all verification conditions in
ve(I A B,C1, 1) are valid, so the same is true for ve(P, C, Q).

NPPV will prove many of these verification conditions by itself and list the
remaining ones with the remark: “Remains to prove : 7. The user will have to
decide whether she accepts them as true, or whether she wants to store them in
a log-file for later inspection.

5.4 Example: Swapping variables

As a first example we consider two versions of a program exchanging the values
of two variables. The first (and standard) solution uses a temporary variable:

{x=4Aand y = B}
temp = x ;
X 1=y
y := temp
{x=Bandy=47}

The second version shows that two integer values may be interchanged without
an auxiliary variable. Both versions can be entered into NPPV as shown and will
be automatically proved correct.

{x=4and y = B}
X = x+y
y =Xy
X = x-y
{x=Bandy=47}

5.5 Example: Gauss

As a further example, we consider a program adding all natural numbers below
a fixed number N. A correctly annotated program (annotations are enclosed in
braces) is:

{N>013}
begin
i = 0 ;
sum := 0 ;
while 1 < N do { sum = i*(i+1)/2 and i <= N }
begin
i = i+l
sum := sum + i
end
end

{ sum = N*(N+1)/2 }

Aside from the pre- and postcondition the program contains as annotation a
loop invariant. Whilst the principal conjunct of this invariant seems clear, the
second conjunct, i <= N would typically be forgotten in a first proof attempt.
The resulting verification condition

sum=i*(i+1)/2 and i >= N ==> sum=N*(N+1)/2

i1s not a tautology. Strengthening the invariant by and i <= N yields 1 = N in
the premise, and the tautology is automatically proved by the system. In fact,
NPPV proves all verification conditions except for one :

i <N ==> (i+1) <= N.
This means that NPPV cannot decide whether the formula
VivVN.i< N = (i+1)<N

is a tautology in the data structure. Since we have not specified whether i and N
are supposed to be integers (so far they might be assumed real), we see that it is
perfectly correct, for NPPV to leave us with the above verification condition. All
that is by default assumed for the algebraic operations +, —, %, 0, and 1 is that
they satisfy the axioms of a commutative ring with unit.

5.6 Verifying abstract program transformations

NPPV does not restrict the user to a fixed set of data structures. New operations
and relations may be freely introduced. This feature opens the door to verifying
not just fixed programs, but rather general program transformations.

As an example consider the transformation from recursive into sequential
programs. Recursive programs are usually easier to specify than sequential ones,
but recursive executions often require extra resources in time and space. There-
fore, many methods have been invented to transform recursive programs into
sequential ones. As a first example we will here only consider the transformation
of tail-recursive programs into sequential ones.

Consider the recursive definition of a function f in terms of already available
functions ¢, and a relation P. The recursive definition is tail-recursive, if it is

of the form (2) it (o)
_ Jglx), i T
fz) = {f(r(a:)), else.

An imperative program to compute the same function f is given below. It has
already been annotated with the proper pre- and postconditions and a loop-
invariant.

{x=N1}
WHILE not P(x) DO {£(x) =D 2
x := r(x);
x = g(x)
{x=£M }

The verification conditions generated by NPPV are :

P(x) => f(x)=g(x)
not P(x) => f(x)=f(r(x)),

which is precisely the requirement of tail-recursivity.

5.7 Verifying incompleteness

M. Wand [6] has presented a data structure W over which the Hoare calculus is
incomplete. From our earlier remarks it follows that W is not expressive. The
signature of W extends the Boolean signature by

g W —W
Zo, 41, R W — 1B

and the operations are defined on the set W = 1IN x {0, 1} via

g(n,i) = (n=1,1),
Zo(z) &2 =(0,0),
Z1(z) e =1(0,1), and
R(z) & Jk.z=(2%0).

R R R
g(:%; O+ 0+ ——0+———0+—
g(:%f g o—p o—p o—p o—p

Wand considers the following program Cy over W:
while =(Zy(z) V Z1(2)) do x :=g(x)

It is obvious that wp(Cw, Zo(z)) = {(n,0)|n € IN}, which is the upper copy of
IN in the figure, so in particular the Hoare triple {R(z)} Cw {Zo(2)} is valid.

Assuming that this can be proven in the Hoare calculus, we submit the an-
notated program to NPPV. We have to supply the while-loop with an invariant,
which, if 1t exists, must be a logical expression with at most x as free variable.
NPPV allows us to enter such an “unknown” expression, so we enter

{R(x) }

WHILE not (Z0(x) or Zi1(x)) DO { I(x) }
x = g(x)

{zo0(x) %

NPPYV generates the following verification conditions

R(x) => I(x)
I(x) and not (Z0(x) or Zi(x)) => I(g(x))
I(x) and Z1(x) => Z0(x)

from which we conclude that I(x) describes the same set as before, namely
{(n,0)|n € IN}.

Using the Beth-definability theorem[2], Wand shows that the above set is not
definable, contradicting the existence of an expression I(x). We shall now give
an elementary proof of this result.

Definition6. We call a subset S C W thin, if ZFZ ies % converges. Comple-
ments of thin sets are called thick.

Lemma 7. Every definable set in Wand’s algebra s either thick or thin.

Proof. Thin sets form an order ideal, in particular, they are closed under finite
unions and subsets of thin sets are thin. The set of all thin or thick subsets
of W therefore forms a Boolean algebra 5. The basic predicates 7y, 7, and R
define sets in B, therefore all quantifier free expressions in W define sets in
B. The proof is finished, if we can show that W allows quantifier elimination,
i.e. every logical expression 1s equivalent in W to a quantifier free expression.
For this it suffices to show that for every variable x and Boolean expression
B(z,...) we can find another Boolean expression B’ not containing #, so that

W E B' < 3x.B(z,...). Since B(x,...) may be transformed into disjunctive
normal form and since 3 distributes over V, we may actually assume that B(z, .. .)
is of the form Ly A ... A L,, where each L; is atomic or negated atomic. Now in
W every atomic Boolean expression contains at most one free variable, hence

(Fe iAo ANLy) S LA AL A(Fe.Lggi Ao A Ly),

where Lg41, ..., L, are those L; whose free variable is 2. This expression clearly
18 equivalent either to L1 A ... A Ly Atrue or to L1 A...A Ly A false.

Corollary 8. W s not expressive and Hoare’s calculus is incomplete over W.

Proof. I = wp(C, Zy) is not first order definable, since it is neither thin nor thick.

6 Data Structure = Algorithm - Control

NPPV’s proof-component will either succeed in proving a given verification
condition, or simplify it to a (hopefully) simpler but logically equivalent state-
ment. It will not force the user to prove these remaining statements, rather collect
them into an “axioms file”.

This gives rise to a novel perspective on program verification. Given a pro-
gram together with an appropriate annotation, a set of data structure axioms
will be generated such that

the algorithm satisfies the data structure ax-
. . = . .
the specification loms are satisfied.

Thus, given a desired algorithm, a data structure may be tailored so that the
algorithm computes the desired function. We shall give a number of examples.

6.1 Gauss

Recall that the proof of the summation program succeeded automatically except
for one verification condition that NPPV could not prove. This was the condition

i <N =>i+1 <= N.

All that NPPV assumes about the operations +, * and the relations <, resp. <, 1s
that they form an ordered commutative ring with unit. The unproved verification
condition can be thus interpreted as an axiom for the data structure needed to
make the program work. In other words, the unproved property tells us that
Gauss’s summation formula is true provided the ring carries a discrete order.

For good reasons one might argue that we have proven Gauss’s theorem rather
than simply proving that the program sums all numbers up to N. So what we
actually should be specifying in the postcondition is that

N
sum = E 1.
0

Since the) -operator is not defined in NPPV, we simply specify in the postcon-
dition :

{ sum = sumTo(N) }
and 1in the invariant :

{ sum=sumTo(i) and i <= N }.
In addition to the previous

i< N-==>i+1 <=N
NPPV now generates the two conditions :

sumTo(0)= 0
i < N => sumTo(i+1) = sumTo(i)+i

which we are ready to accept as the definition of the summation operator.

6.2 Swap, revisited

Let us now investigate the reasons what made the earlier tricky exchange program
work. In order to do that we formulate the same program structure using abstract
terms p,q, 7 :

{x=Aandy=B17}

x = p(x,y)
y = qlx,y)
x = r(x,y)

{x=Bandy=47}
NPPYV generates the following verification condition :

q(p(A,B),B) = &
r(p(4,B),A) = B

On close inspection we find that these are precisely the defining equations
of a quasigroup. To emphasize this, let us replace p, ¢ and r with infix symbols
*,/, and \. We see that the equations specify that % should be a binary operation
which is both left- and right-cancellative, i.e.

A
B.

(A xB) /B
AN (A *B)

Thus we find that the content of two variables can be switched by a sequence
of three assignments, iff the underlying data structure contains a quasiqroup
operation.

6.3 An abstract two-person game
Suppose we have a two-person game given by

- aset S of (game-)states

- subsets Init, Terminal C S

- arelation R C S x S characterizing the legal moves, such that
Vo & Terminal.30'.0 Ro’.

A game starts in an initial state with two opposing players taking turns to move.
A player wins if his move reaches a terminal state. We are looking for conditions
that guarantee a win for the first player.

In the following program we model the players with the two-element data type

Player = ({You, Me }, =).

Let myM ove and your M ove be the functions realizing the moves of the play-
ers, that is once You are in state s you move to your M ove(s), similarly, the func-
tion myM ove determines my moves. We assume that your Move, myMove C R.

The abstract game-playing program, together with the stipulation that Me
should win 1s :

{ Init(s) 7}

turn := Me;

WHILE not Terminal(s) DO
IF turn = Me

THEN
BEGIN s := myMove(s) ; turn := You END
ELSE
BEGIN s := yourMove(s); turn := Me END ;
IF turn = Me
THEN winner := You

ELSE winner := Me
{ winner = Me }

When verifying this program, we have to supply an invariant for the loop. In
the absence of any further information about the rules of the game, we invent an
abstract predicate depending on the relevant variables, P(player,s).

NPPV generates four verification conditions, which we simplify slightly using
the trivial axioms of the Player-data type: ¢t = You V¢ = Me and —(t =
You At = Me):

Init(s) ==> P(s,Me)

P(s,Me) ==> not Terminal(s)

P(s,Me) ==> P(myMove(s),You)

P(s,You) and not Terminal(s) ==> P(yourMove(s),Me)

Let MyPos resp. YourPos be the sets defined by the unary predicates
P(s,Me), and P(s,You). Note that in order to guarantee a win for every pos-
sible legal move the opponent (You) might make, the function yourMove must

be considered a nondeterministic function, whereas myM ove can be thought of
as a Skolem function, choosing an appropriate new state if one exists. With this
in mind, the above axioms can be reformulated in set language as:

Init C MyPos
MyPos N Terminal = §

/
VsEMyPosEls’EYourPos~5Rt‘;
VsEYourPos ~Vs’ES~ sRs' = s € MyPOS

Thus the set MyPos, if it exists, can be called a strategy. In order not to lose, 1
must (and can) always make a move resulting in a state within YourPos.

6.4 Programming = Proving

From the examples that we have seen so far, it may appear that programming
is as hard (and in fact the same type of activity) as proving a mathematical
theorem. In a very abstract sense we can demonstrate this fact using NPPV.

Assume that X (n) is a property of natural numbers. X (n) is obviously true,
if and only if a program P that starts at 0 and checks all numbers until it finds
one that does not satisfy X, will never stop. In this abstract framework we can
write the program P where the fact that P never stops can be specified by the
postcondition False. Thus we obtain :

{ True 7}
n :=0 ;
WHILE X(n) DO
n := n+l
{ False }

NPPV will require us to annotate the loop with an invariant. Since it is not
clear what this invariant should be, we just add an abstract predicate I(n), which
may depend on n, the only variable in the program. The verification conditions
that NPPV generates show very succinctly the connection between programming
and theorem proving :

1(0)
I(n) => I(n+1)
I(n) => X(n).

6.5 Abstract invariants

The last example shows quite clearly, that it is futile to hope for a widely ap-
plicable method for finding proper invariants. Still there are ways to proceed and
a verifier may be helpful in this. Firstly, given a specification and a program
we may use as invariant an abstract predicate I(z1,...,z,) where z1,..., 2,
are all variables occurring in the program. The verifier will then generate a set
of verification conditions and the problem becomes to show that they are not
contradictory.

In case where a program C'is to compute a function f(x), the specification will
typically be {# = A} C'{z = f(A)}. A while-loop calculating f(A) will modify
z,z and perhaps some auxiliary variables, but maintain an invariant specifying
how at each moment f(A) can be recovered from #, z, and the auxiliary variables.
With an abstract function r, then r(x, ..., z) = f(A) should be attempted as an
invariant, where the “...” stand for the auxiliary variables.

The resulting verification conditions can be seen as a set of axioms for a data
structure required to make the algorithm work. If a data structure exists making
these axioms true, then the program can be accepted as a correct implementa-
tion of the specification. The next step will be to implement the data structure
conforming to the axioms.

In the following we apply this method in showing how an arbitrary linearly
recursive function may be implemented by a sequential program with the aid of
a stack. To be specific, a function f i1s linear recursive, if it 1s of the form

o) — g(z), if P(x)
I (x) {h(f(r(x)),x) else.

An example of a linear recursive function is the previously discussed function
sumTo. Moreover, every primitive recursive function is linearly recursive. The
following program purports to implement the function f in general, using a stack.
We have annotated the loops with invariants stating that in the first loop, f(A)
can somehow be recovered from f(z) and s (by some as yet unknown function
prod) whereas during execution of the second loop, f(A) is recoverable in the
same way from z and s.

{x=47
BEGIN
s := empty;
WHILE not P(x) DO { prod(f(x),s) = £(4) }
BEGIN
s := push(x,s);
x = r(x)
END ;
z = g(x);
WHILE s <> Empty DO { prod(z,s) = £(A) }
BEGIN
z := h(z,top(s));
s := pop(s)
END
END
{z=1£>0)1%

To simplify matters, let us assume that the axioms for the “stack”-data type, are
known to NPPV (in practice, they can be supplied in a “theory file”), then we
remain with the verification conditions :

prod(x,empty) = x
prod(x,push(y,s)) = prod(h(x,y),s)

These equations can be considered as the defining equations for the unknown
function prod. From the freeness axioms for the stack-operations empty and push
it follows that they unambiguously define a total function. Thus we have shown
that a proper invariant for the program exists, which is all we need to know.

7 Conclusion

The scope of program verification techniques can be extended beyond their
original goals which was verifying correctness of individual programs. Assuming
correctness of an implementation, axioms for a required data structure can be
inferred. If these axioms are not contradictory, the data structure can be imple-
mented in a second step, applying the same method again.

Mechanical program verifiers play an essential role in that task. They can
be designed to handle abstract program schemata and thereby aid theoretical
understanding and discussion of the mathematical foundations and interrelations.

References

1. Apt, K.R.: Ten years of Hoare’s logic: A Survey — Part I. ACM Trans. Progr. Lang.
and Systems 3(1981) 431-483

2. Beth, E.W.: Formal methods. D. Reidel, Dordrecht-Holland 1962.

3. Cook, S.A.: Soundness and completeness of an axiom system for program verifica-
tion. SIAM Joun. on Comp. 7(1978) 70-90

4. Gumm, H.P., Sommer, M.: Einfiihrung in die Informatik. Addison Wesley, 2nd ed.
1995

5. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(1969) 576-580

6. Wand, M.: A new incompleteness result in Hoare’s system. Journ. ACM 25(1978)
168-175

This article was processed using the ¥TEX macro package with LLNCS style

