
To appear in the ACM SIGGRAPH conference proceedings

GPU-based trimming and tessellation of NURBS and T-Spline surfaces

Michael Guthe∗ Ákos Balázs†

Universität Bonn, Institute of Computer Science II
Reinhard Klein‡

Figure 1: Rendering of NURBS models (from left to right): animated trimmed NURBS surface (degree 5× 5, 100 control points) with
environment mapping; Mini model consisting of 629 trimmed surfaces; with shadow maps; closeup onto the front wheel.

Abstract

As there is no hardware support neither for rendering trimmed
NURBS – the standard surface representation in CAD – nor for
T-Spline surfaces the usability of existing rendering APIs like
OpenGL, where a run-time tessellation is performed on the CPU,
is limited to simple scenes. Due to the irregular mesh data struc-
tures required for trimming no algorithms exists that exploit the
GPU for tessellation. Therefore, recent approaches perform a pre-
tessellation and use level-of-detail techniques. In contrast to a sim-
ple API these methods require tedious preparation of the models
before rendering and hinder interactive editing. Furthermore, due
to the tremendous amount of triangle data smooth zoom-ins from
long shot to close-up are not possible. In this paper we show how
the trimming region can be defined by a trim-texture that is dynam-
ically adapted to the required resolution and allows for an efficient
trimming of surfaces on the GPU. Combining this new method with
GPU-based tessellation of cubic rational surfaces allows a new ren-
dering algorithm for arbitrary trimmed NURBS and T-Spline sur-
faces with prescribed error in screen space on the GPU. The per-
formance exceeds current CPU-based techniques by a factor of up
to 1000 and makes real-time visualization of real-world trimmed
NURBS and T-Spline models possible on consumer-level graphics
cards.

CR Categories: I.3.3 [COMPUTER GRAPHICS]: Picture/Image
Generation—Display algorithms; I.3.5 [COMPUTER GRAPH-
ICS]: Computational Geometry and Object Modeling—Splines

Keywords: GPU-based algorithms, trimming, NURBS and T-
Spline surfaces

∗e-mail:guthe@cs.uni-bonn.de
†e-mail:edhellon@cs.uni-bonn.de
‡e-mail:rk@cs.uni-bonn.de

1 Introduction

The standard surface representation used in industrial CAD systems
are trimmed non-uniform rational B-Spline (NURBS) surfaces.The
main advantage of this representation is the ability to compactly
describe a surface of almost any shape. Recently, the introduction
of T-Splines extended this surface representation further with hier-
archical concepts, making it even more attractive for design pur-
poses. Although much effort has been spent to build specialized
hardware for rendering these surfaces (e.g. [Abi-Ezzi and Subra-
manian 1994]), no hardware implementation is available for this
purpose so far. The main reason for this are the irregular mesh data
structures required to generate a trimmed mesh (see Figure 2). As
special hardware is not available all current algorithms tessellate
the surfaces, i.e. approximate them by triangle meshes on the CPU.

Figure 2: Tessellation of a planar surface with complex trimming
(20 trimming loops) by explicit meshing.

Since high-quality tessellation of real world models is not possi-
ble in real-time using existing algorithms, it is performed in a pre-
processing step in most systems. However, this preprocessing is
a cumbersome task especially in industrial applications. In addi-
tion, due to the wide range of resolutions from cm to µm (see Fig-
ure 3) needed to allow both long shots and close-ups the tessellated
models can become extremely complex at the finest resolution and
contain billions of triangles. This requires out-of-core algorithms
which all have a high latency and thus current systems restrict them-
selves to a maximum available accuracy preventing close-ups in
turn. Recent approaches try to alleviate this restriction by tessel-
lating patches on-the-fly if during a close-up a higher accuracy is
needed. Due to the limited tessellation performance this increases
the already high latency and inaccuracies of these approaches.

Looking at the CPU-based trimmed NURBS and T-Spline tessel-
lation algorithms we identified memory access as a second limit-

1

To appear in the ACM SIGGRAPH conference proceedings

Figure 3: Range of resolutions from cm to µm.

ing factor besides the irregular data structures needed for trimming.
This can be seen by the following example: consider an effective
memory bandwidth of e.g. 2.08 GB/s for 200 MHz DDR RAM
(PC3200), at most 83.2 MB are available per frame for real-time
rendering. Since irregular meshes are generated, each triangle re-
quires at least 24 bytes which need to be written to memory and
then read again for rendering. Thus, at most 1.7 million triangles
can theoretically be generated per frame. Due to additional mem-
ory access required for evaluation (e.g. 256 bytes per vertex for a
bi-cubic patch), this is reduced to about 250 thousand triangles per
frame. Trimming and triangulation of the irregular mesh reduces
this performance further, typically by a factor of 10 to 20. Since at
least several hundred thousands of triangles are necessary to render
e.g. a car-model with acceptable quality, the corresponding tessel-
lations cannot be generated in real-time. On a graphics card, the
memory bandwidth is significantly higher due to the parallel ar-
chitecture, and thus e.g. up to 20 million triangles are possible at
real-time frame rates on a GeForce 5900 Ultra. If the tessellation
could be performed on the GPU, the control points would be cached
and thus the shader runtime instead of the bandwidth would be the
limiting factor. Furthermore, if a regular grid would be used, only
a single pass would be required for tessellation. In total, a tessel-
lation based on a regular grid running on the GPU should be 60
to 1000 times faster than any algorithm running on the CPU with
the above architecture. Therefore, a tessellation algorithm running
completely on the GPU would provide a new API for direct NURBS
and T-Spline rendering that overcomes all of these limitations.

The key to any GPU-based tessellation algorithm is an efficient so-
lution for the trimming. However, existing trimming approaches
cannot be implemented on the GPU due to the already mentioned
irregular mesh data structures. In this paper we present a novel tex-
ture based trimming approach that does not perform any explicit
meshing and only requires regular data structures. Therefore, it can
efficiently be mapped to hardware and realized on current GPUs.
We show that, based on this new algorithm, GPU-based rendering
of trimmed NURBS and T-Spline surfaces becomes possible result-
ing in an up to 1000 times higher tessellation performance than on
the CPU. By using a view-dependent resolution for the tessella-
tion which guarantees a lower screen space error than a user spec-
ified threshold, runtime tessellation and high quality rendering of
trimmed NURBS models are achievable. Finally, we show that our
algorithm can seamlessly be integrated into the rendering pipeline
and current graphics APIs e.g. OpenGL.

2 Related Work

As our new method exploits ideas of CPU based trimmed NURBS
tessellation and evaluation on GPUs, we give a short overview of
both fields. Since the restrictions of current GPUs make it impos-
sible to efficiently evaluate higher order surfaces, we use degree
reduction and consequently also review prior work in this field.

Tessellation: In the last two decades different approaches have
been developed for the rendering of trimmed NURBS surfaces, for
example ray-tracing (e.g. [Nishita et al. 1990]) or pixel-level subdi-
vision (e.g. [Shantz and Chang 1988]). As direct trimmed NURBS
rendering is not supported in hardware, the tessellation of the sur-
faces has become the most widely-used technique for interactive
applications, since the resulting polygonal representation can be
rendered efficiently. The basic approach used by these polygonal
tessellation methods is to first approximate the surface itself with
a mesh. For this approximation, typically a regular quad grid or
an octree is used. Then the trimming curves are approximated as
well and the intersections between those and the surface approxi-
mation are calculated. While early approaches (e.g. [Herzen and
Barr 1987; Rockwood et al. 1989; Forsey and Klassen 1990]) dealt
with individual curves or surfaces only, more recent approaches try
to handle multiple patches as in [Kumar et al. 1997], where surfaces
are stitched based on a priori known connectivity information. If a
common representation of the trimming curves on both sides of ad-
jacent patches is given, an individual view-dependent triangulation
can be generated at run-time using the same sampling frequency on
both patches to avoid cracks as in [Chhugani and Kumar 2001]. If
no common curve representation is available, it can be generated
and stored as in [Guthe et al. 2002]. However, these algorithms are
restricted to the rendering of static models. For dynamic models,
Balázs et al. [2004] developed an algorithm which independently
tessellates the trimmed NURBS surfaces and visually closes the
cracks on the GPU. However, due to the low number of surfaces
that can be tessellated per second, all CPU based runtime tessella-
tion algorithms need to distribute the re-tessellation among several
frames which leads to popping artifacts during movement.

Evaluation on GPUs: Abi-Ezzi and Subramanian [1994] and
Bóo et al. [2001] proposed an additional adaptive tessellation unit
at the front of the rendering pipeline for NURBS and subdivision
surfaces respectively. Bolz and Schröder [2003] developed an algo-
rithm to evaluate Catmull-Clark subdivision surfaces on program-
mable graphics hardware. After the transmission of the tessellation
textures to the GPU, only control points instead of triangles need
to be send and thus the fragment shader can be saturated with mar-
ginal bus bandwidth consumption. With different tessellation tex-
tures this approach can also be used for bi-cubic B-Spline surfaces
since they are equivalent to this subdivision scheme on a regular
quad mesh. The algorithm generates an adaptive tessellation on a
per-patch basis, which is rendered into an offscreen buffer – a so
called pixel buffer or p-buffer – and then used as input for a second
rendering pass. Theoretically this method could achieve up to 24
million vertices per second on recent GPUs, but the high number of
p-buffer switches – one per patch is required – reduces the perfor-
mance by several orders of magnitude. Based on this work, Kanai
and Yasui [2004] developed an algorithm to calculate accurate per-
pixel normals on a tessellated subdivision surface. Although the
produced images are very convincing, it is too slow for real time
rendering of more than about ten surfaces.

Degree Reduction: The idea of approximating high degree
Bézier curves using degree reduction already came up more than
30 years ago [Forrest 1972]. As shown by Park and Choi [1995],
the error can be reduced greatly by subdividing the curve before
degree reduction. They also discovered error bounds on the degree
reduced curve, which are used in this work. Using a standard de-
gree reduction algorithm however, the degree of continuity between
the composite curves cannot be controlled directly. Either, the con-
tinuity is preserved up to the maximum for the current curve degree
(e.g. [Forrest 1972]), or completely lost (e.g. [Eck 1993]). There-
fore, Zheng and Wang [2003] developed a method to explicitly con-

2

To appear in the ACM SIGGRAPH conference proceedings

trol the continuity classes of the curve at its endpoints. However,
all these algorithms preserve the parametric continuity which is not
necessary when only dealing with shape e.g. for surface design and
rendering. In this case, geometric continuity – a curve is nth-order
geometrically continuous if it is n times differentiable with respect
to arc length – is more appropriate.

3 Algorithm Overview

Rendering of trimmed patches consists of two major parts. On one
hand the patch is mapped from its rectangular domain Ω⊂R2 into
R

3 by evaluating it at sample vertices in the domain. The sam-
pling has to be dense enough to guarantee an appropriate piece-
wise linear or bilinear approximation of the 3d patch. On the other
hand, parts of the patch outside the trimming region, which is de-
fined by closed parametric curves in the parameter domain, are cut
away. While state-of-the-art evaluation algorithms are well suited
for implementation on the GPU, current trimming methods cannot
be transferred to highly parallel architectures like the GPU due to
the explicit meshing. Our novel approach to solve this trimming
problem is a GPU-based algorithm that allows to represent the trim-
ming region by an appropriate black and white texture of sufficient
resolution. For each texel the color determines if it is inside or out-
side the trimmed region. Therefore, a one-bit masking texture can
be used for this purpose. While trimming by the use of textures
is a known technique, the challenge is to find a parallelizable al-
gorithm for the generation of this binary trim-texture that can be
implemented on the GPU and such an algorithm is not available up
to date. Having such a parallelizable algorithm, the following two
questions must still be answered: first, how to choose the resolution
of the trim-texture to guarantee a prescribed error (Section 5.3) and
second, how to choose the sampling rates of the trimming curves
and surfaces (Section 5.1 and 5.2 respectively).

The overall workflow is shown in Figure 4. First, the trimming
curves are sampled with sufficient accuracy and evaluated on the
GPU (1). Then the resulting polygons are rendered into a texture
of appropriate size using the p-buffer extension (2). In the second
rendering pass, the patch is sampled using a regular grid of suf-
ficient resolution. The resolution is chosen in a way that a given
screen space error is guaranteed. Since generating an appropriate
grid on the CPU for each patch is contradictionary to a GPU-based
approach, predefined grids of different resolutions are stored on the
graphics card in advance. At runtime only the grid index is calcu-
lated on the CPU and then sent to the GPU. For rendering of the
patch, it is evaluated at all grid vertices on the GPU (5). For the
trimming, we simply bind the trim-texture and all pixels outside the
trimming region are removed in the fragment stage by a lookup into
this trim-texture (6).

NURBS,
T-Spline

trimming
curves

trim-texture
generation

bi-cubic
approximation

culling &
LOD selection

bi-cubic
hierarchy

evaluation trimming

sampling
grid

CPU GPUgraphics bus 1st pass

2nd pass

evaluation

vertex shader fragment shader

3

1 2

4 5 6

Figure 4: Main workflow of our algorithm.

When developing an algorithm for the GPU numerous restrictions
have to be taken into account. Due to the highly parallel architec-
ture global hierarchies or irregular data structures (e.g. for stitching)
cannot be used. Instead, each surface needs to be treated individ-
ually. As data dependent loops are only supported by very recent
GPUs, a conversion from NURBS or T-Spline to piecewise ratio-
nal Bézier representation is necessary, since the current knot spans
needed to calculate the sample points differ. Furthermore, for cards
not having texture access in the vertex shader, the amount of input
data for a vertex program is limited to 16 vertex attributes and 8 pro-
gram matrices and thus only low degree Bézier patches can be eval-
uated. Since we want our algorithm to work with any graphics card
supporting at least vertex shader 1.0, we restrict ourselves to this
extension that only supports 12 temporary registers and thus limit
the maximum degree to bi-cubic. Thus, our overall algorithm first
approximates each NURBS or T-Spline surface and its trimming
curves with a coarse hierarchy of rational bi-cubic Bézier patches,
or cubic rational Bézier curves respectively, on the CPU (3). Dur-
ing rendering this hierarchy is traversed and patches with sufficient
accuracy are selected to guarantee a given screen space error (4).
If the traversal reaches a leaf node, additional bi-cubic patches are
generated. Then the control points of each patch are sent to the GPU
before selecting a grid of appropriate resolution for evaluation.

4 Trimming on the GPU

After converting the approximating cubic trimming curves into a
suitable polygonal representation (see Section 4.1) the trim-texture
is generated from these polygons with holes, by an algorithm sim-
ilar to the one used for the area calculation of polygons. The main
idea is, that when spanning a triangle fan from the first vertex of
each trimming loop, a point inside the trimming region will be cov-
ered an odd number of times by the triangles of these fans, while a
point outside the trimming region will be covered by an even num-
ber of times as shown in Figure 5. Instead of counting the cover-
ages, it is possible to simply consider the lowest bit and toggle be-
tween black and white. A major advantage of this approach is that
we do not need to take care of the orientation and nesting of trim-
ming loops and thus error prone special case handling is avoided.

1
1 1 2

2
2

3 2

Figure 5: Left: Concave polygon with hole. Right: Texel coverage
using our algorithm (green regions are inside and red outside).

4.1 Trimming Curve Conversion

The generation of the trim-texture is illustrated in Figure 6. For
each trimming loop a triangle fan is generated. The vertices Ck(ti)
at the parameter values ti of this triangle fan are calculated using the
control points of the corresponding curve segment Ck. This is done
by initializing the vertex attributes with the control points Pj and
then sending the sampling parameter values t1, ..., tn as 1d vertices.
These values are used by a vertex program which takes the control
points as constants and evaluates the corresponding curve at the
parameter values ti. This way the vertices of the triangle fan are
generated curve by curve and the resulting triangles are rasterized.
The toggling of the pixels is performed in the blending stage of the

3

To appear in the ACM SIGGRAPH conference proceedings

rendering pipeline. It is important to note, that this way the entire
trim-texture generation is performed in a single rendering pass.

 1 1 2 4, ,P P= 1 2,P

1 3,P1 4 2 1, ,P P=2 2,P

2 3,P

1C

2C

()1 1C t ()1 2C t
()1 3C t
()1 4C t

Figure 6: Trim-texture generation.

Similarly to the bi-cubic approximation of the surfaces we approx-
imate the trimming curves with rational cubic Bézier curves. For
evaluation we chose the deCasteljau algorithm since it only requires
12 assembly operations while the direct evaluation needs 13.

4.2 Surface Evaluation

In principle previous adaptive GPU based tessellation algorithms
developed for subdivision surfaces could be adopted to tessellate
the rational bi-cubic Bézier patches. However, these algorithms
have the already mentioned drawback that for each patch a p-buffer
switch is required as the tessellation is performed in a fragment
shader which makes them useless in practical applications. This
switch can only be removed if the connectivity is already defined
before rendering, since then only the evaluation on the GPU is re-
quired which can already be performed in the vertex shader. There-
fore, we store predefined grids of different resolutions on the graph-
ics card. In order to span a wide spectrum of grid resolutions we
start with different types of simple base grids that are subdivided in
either of the two parameter directions as required, yielding four hi-
erarchies up to a maximum resolution depending on the maximum
screen resolution. To achieve a target resolution of e.g. 17× 350
we would use the 3× 3 base grid and subdivide it three times in
x-direction and seven times in y-direction leading to a resolution of
(3 ·23)× (3 ·27) = 24×384.

From the many different algorithms for evaluating Bézier patches,
we have to choose the one that can be implemented most efficiently
on current GPUs. First of all, the power basis form is not reasonable
since its numerical instability is even more severe on low accuracy
GPUs. This leaves the choice between the deCasteljau algorithm
and direct evaluation. For rendering, the vertex normal required for
shading needs to be calculated in addition to the vertex position.
The deCasteljau algorithm needs a total of 74 assembly operations,
while the direct evaluation only requires 61 operations. Addition-
ally direct evaluation only requires 12 temporary registers while the
deCasteljau algorithm needs 17.

4.3 Rendering

After the trim-texture is constructed, it is bound and the trimming
is performed in the fragment shader. When the patch is rendered,
simply all fragments are killed for which the intensity of the trim-
texture is lower than a threshold value. If fragment shaders are not
supported, the trim-texture is used as alpha texture with an alpha
test. Although using a p-buffer in combination with the render tar-
get extension for the trim-texture is the fastest possibility, the ren-
der target has to be changed – a so called p-buffer switch occurs
– twice for each patch. Since this requires a complete state reload
and is therefore a very expensive operation, we focus on reducing
the number of such render target changes as much as possible.

4.4 Multiple Trimmed Patches

In order to reduce the number of p-buffer switches a trim-texture
atlas is generated for multiple patches, which contains all trim-
textures of these patches. When several trimmed patches are ren-
dered at once, first the required sizes of all stencil textures of the
corresponding patches are calculated and sorted by their height.
Then the rectangular trim-textures are placed beside each other at
the bottom line of the atlas. When the next texture would exceed
the maximum texture width, a new row is started. Although this
algorithm is very simple it is sufficiently efficient for the rectangu-
lar textures used here. After the texture atlas is filled (i.e. adding
the next trim-texture would exceed the maximum texture height)
or all trim-textures have been added, the trim-textures are rendered
into the atlas. For each patch only the viewport needs to be set
according to the position and resolution of its trim-texture. When
all trim-textures are generated, the algorithm switches back to the
screen buffer and renders all patches for which the trimming is con-
tained in the current texture atlas. Note that untrimmed patches can
immediately be rendered before generating the first trimming atlas.
If the texture atlas was filled before all trim-textures could be added,
the algorithm continues with the next texture atlas.

In industrial models trimming is often used to cut out small parts of
large surfaces. This means that after the conversion of the NURBS
or T-Spline surface to rational Bézier patches, some of these patches
lie completely outside the trimming region and only a small region
of the trim-texture is used at all. Therefore, we calculate the bound-
ing box of the trimming region and apply knot insertion at the min-
imum and maximum u and v parameter values. Finally, we remove
all Bézier patches outside this region. If the trimming is only used
to cut out a rectangular region of the surface domain, no trimming
is necessary at all after removing the unused domain regions. This
is the case, if only a single loop exists and each trimming curve lies
completely on one side of the domain boundary. Then the patch can
be rendered without a trim-texture.

5 Sampling

As we approximate all curves with piecewise rational cubic curves
and all surfaces with rational bi-cubic patches, we limit our dis-
cussion to this type of curves and surfaces, but a generalization to
higher degree curves and patches is possible. For the rendering of
these cubic curves or bi-cubic surfaces, the required sampling reso-
lution to guarantee a specified error ε needs to be calculated.

5.1 Trimming Curves

According to Filip et al. [1986], the number of required samples
n for a piecewise linear approximation of a function f (t) over the
interval [a,b] (which is always [0,1] for Bézier curves) with a max-
imum deviation of ε can be calculated by:

n =

⌈
(b−a)

√
supa≤t≤b ‖ f ′′(t)‖

8ε

⌉

A rational bi-cubic Bézier curve projected to the hyperplane w = 1
can be written as

C(t) =
∑

3
i=0 PiB3

i (t)

∑
3
i=0 wiB3

i (t)
=

P(t)
w(t)

,

4

To appear in the ACM SIGGRAPH conference proceedings

and its second derivative can be written as a rational Bézier curve
with a degree seven nominator P̌(t) = ∑

7
i=0 P̌iB7

i (t) and a degree
nine denominator w̌(t) = ∑

9
i=0 w̌iB9

i (t). Since all wi are positive by
construction, all w̌i are also positive. Therefore, an upper bound of
the second derivative is given by:

sup
0≤t≤1

‖C′′(t)‖ ≤ max(‖P̌0‖, . . . ,‖P̌7‖)
min(w̌0, . . . , w̌9)

5.2 Surfaces

To generate less rendering primitives (e.g. for cylindrical surfaces),
the sampling resolution in u- and v-direction is calculated indepen-
dently. According to Filip et al. [1986], the error when approximat-
ing a C2-continuous surface with two triangles spanning the bilinear
parameter space rectangle D = [(u0,v0),(u1,v1)] is bounded by

sup
p∈D

‖ f (p)− l(p)‖ ≤ 1
8
(∆u2Mu +2∆u∆vMuv +∆v2Mv),

with

Mu = sup
p∈D

∥∥∥∥∂ 2S
∂u2

∥∥∥∥ , Muv = sup
p∈D

∥∥∥∥ ∂ 2S
∂u∂v

∥∥∥∥ , and Mv = sup
p∈D

∥∥∥∥∂ 2S
∂v2

∥∥∥∥
Now we can separate the sampling densities by exploiting the fact
that ab≤ 1

2 (a2 +b2) and thus the approximation error is bound by

sup
p∈D

‖ f (p)− l(p)‖ ≤ 1
8

(
∆u2(Mu +Muv)+∆v2(Mv +Muv)

)
,

which is a simple addition the two approximation errors in u- and
v-directions. Thus ε is an upper bound for the approximation error
if the error in both directions is not greater than ε

2 .

When a patch has no trimming and the parameter value is not
used for texturing, it is not necessary to preserve its parametriza-
tion. In this case an upper bound for the distance of a curve to an
evenly parameterized line segment is not required. Instead, any re-
parametrization of this degree elevated line segment can be used.
This means that the middle control points can freely move between
the two end points of the line segment. Therefore, the closest point
on the line segment is calculated for each control point of the curve.
These points then define a re-parameterized line segment and the
difference vectors to the control points define the difference curve.
Using the maximum second derivative of this difference curve the
required sampling resolution for a purely geometric approximation
can be calculated which is lower.

5.3 Trim-Texture

For trimmed NURBS or T-Spline surfaces the required trim-texture
resolution has to be calculated additionally to the grid resolution.
To guarantee a desired error of ε along the trimming curves, both
the surface and the trimming curves need to be approximated with
an accuracy of ε

2 . Therefore, the distance between two neighboring
pixels of the texture has to be at most ε on the evaluated surface.
Thus the texture resolution can be calculated from the maximum
absolute value of the first surface derivatives:

resu =

⌈
(u1−u0)

ε
sup

p∈[(0,0),(1,1)]

∥∥∥∥∂S(p)
∂u

∥∥∥∥
⌉

and analogously for the v-resolution, where [(u0,v0),(u1,v1)] is the
domain interval of the current bi-cubic Bézier patch.

Again, the maximum surface derivative in u- or v-direction is bound
by the maximum derivative of the corresponding iso-parameter
curves, which can be written in rational Bézier form with degree
five nominator and degree six denominator. An upper bound for the
absolute value is:

sup
0≤t≤1

‖C′(t)‖ ≤ max(‖P̌0‖, . . . ,‖P̌5‖)
min(w̌0, . . . , w̌6)

A problem occurs, when the viewer moves very close to a surface.
In this case the patch size becomes much larger than the screen
and therefore, the required trim-texture resolution would exceed
the maximum possible texture resolution by orders of magnitude.
To overcome this limitation, the traversal of the bi-cubic patch hi-
erarchy is continued until the trim-texture of each patch is small
enough. For this it is only necessary to modify the bi-cubic approxi-
mation error. Note, that for trimmed surfaces only a trim-texture for
the domain region covered by visible patches needs to be generated.
This optimization does not only increase the rendering performance
but also the accuracy of trimming.

6 Bi-cubic Approximation

In order to approximate a given NURBS or T-Spline surface with
rational bi-cubic Bézier patches we first convert the surface into
its piecewise rational Bézier representation. For NURBS surfaces
the Oslo algorithm [Cohen et al. 1980] is used and for the recently
developed T-Spline surfaces the knot insertion algorithm of Seder-
berg et al. [2004] is applied. Afterwards each of these initial Bézier
patches which can be of arbitrary degree is approximated with a
bi-cubic patch as described in Section 6.1. Since the error of this
approximation may exceed a desired error bound, we build a binary
hierarchy of bi-cubic patches during rendering by recursive subdi-
vision of the initial Bézier patches (blue subtrees in Figure 7). To
reduce the number of rendered bi-cubic patches these separate hier-
archies are also combined into a single binary tree (shown in green
in Figure 7) using the median cut algorithm [Heckbert 1982]. After
the tree is built, we hierarchically simplify the bi-cubic patches –
approximate the two child patches with a single bi-cubic patch –
starting from the level of the initial Bézier patches. This simplifica-
tion process is performed once when the surface is rendered for the
first time. A detailed description is given in Section 6.2.

1

2
3

1 2

3

0t =

1t =

3t =

4t =

1t∆ = 2t∆ =

1t∆ =

1
3

s =

3
4

s =

Figure 7: NURBS surface with its bi-cubic patch hierarchy.

6.1 Approximation of a Single Bézier Patch

To find a sensible bi-cubic approximation of a single rational Bézier
patch contained in a leaf node we use a novel constrained degree
reduction. We derive our approximation algorithm completely from
a generalized degree reduction. Therefore, we can simply apply it
to rational curves by using the homogeneous representation of the
control points Pi = [wixi wiyi wizi wi]T .

As Bézier surfaces are tensor product surfaces, degree reduction of
the surface in one direction is equal to degree reduction of all curves

5

To appear in the ACM SIGGRAPH conference proceedings

in this direction. Previous degree reduction algorithms like [Forrest
1972] are equivalent to Hermite interpolation in the cubic case and
thus preserve C1 continuity. However, in the context of rendering,
preserving G1-continuity would be sufficient since only the direc-
tion of the tangent vector needs to be preserved. This leads to the
following definition of the new control points:

P̃0 = P0 P̃1 = P0 +λ0(P1−P0)
P̃2 = Pn +λ1(Pn−1−Pn) P̃3 = Pn

The two free parameters λ0 and λ1 can now be used to minimize the
total approximation error. The distance between two Bézier curves
C1(t) and C2(t) of the same degree is bound by the maximum dis-
tance between their corresponding control points. Therefore, we
elevate the degree of the approximating curve C̃(t) to that of the
original curve C(t) to construct C̄(t) and then minimize the control
point distances:

n

∑
i=0

‖Pi− P̄i‖2 →min

For this minimization problem the analytical solution is:

λ0 =
(∑m

i=0 aibi)(∑
m
i=0 c2

i)−(∑m
i=0 aici)(∑m

i=0 bici)

(∑
m
i=0 b2

i)(∑
m
i=0 c2

i)−(∑m
i=0 bici)

2

λ1 =
(∑m

i=0 aici)(∑
m
i=0 b2

i)−(∑m
i=0 aibi)(∑m

i=0 bici)

(∑
m
i=0 b2

i)(∑
m
i=0 c2

i)−(∑m
i=0 bici)

2

with

~ai = Pi−P0(γi,0 + γi,1)−Pn(γi,2 + γi,3)
~bi = −(P1−P0)γi,1

~ci = −(Pn−1−Pn)γi,2,

where γi, j is the contribution of the simplified control point P̃j to the
control point P̄i after degree elevation (i.e. they represent the degree
elevation matrix). As the direction of the tangent vector flips when
λ0 or λ1 becomes negative, a minimum value is used for each of
them. In addition, when w1 < w0 or wn−1 < wn, a maximum value
for λ0 and λ1 is given by w0

w0−w1
and wn

wn−wn−1
respectively, as only

positive weights w̃1 and w̃2 should be produced.

After constructing the degree reduced curve an upper bound for the
introduced error needs to be calculated. For this purpose we use the
non-homogeneous representation of the control points Pi and P̄i as
we are interested in the error after projection. The approximation
error εc is then:

εc =
n

max
i=0

∥∥∥[xi yi zi]T − [x̄i ȳi z̄i]T
∥∥∥

As the approximation error εc is not known in advance, additional
subdivisions are performed to extend the hierarchy until the approx-
imation error is low enough for the current screen space error.

6.2 Simplification of Two Bi-cubic Patches

To fill the upper part of the bi-cubic Bézier hierarchy described
above we perform pairwise approximation of two bi-cubic Bézier
patches by a single bi-cubic patch. Similarly to the approximation
of a single Bézier patch we derive this simplification from subdi-
vision and thus rational patches are accounted for by using the ho-
mogeneous control points. Since the simplification of two Bézier

patches into a single one can be viewed as the inverse of subdivi-
sion we are able to calculate λ0 and λ1 by considering a subdivision
of the simplified patch at the parameter value s. As this subdivision
has to preserve the knot intervals of the two child patches the para-
meter s is given by

s = ∆t1
∆t1+∆t2 ,

where ∆t1 and ∆t2 are the lengths of the knot intervals of the two
child patches in the partition direction (see Figure 7). Now we can
set up the same minimization problem as for the approximation of
a single rational Bézier patch. The γi, j are then defined by the sub-
division matrix of s instead of the degree elevation matrix. Finally,
an upper bound of the error introduced by simplification is calcu-
lated by subdividing the simplified patch at s and then exploiting
the convex hull property of the difference curves.

7 Rendering

While the evaluation and rendering of the rational bi-cubic patches
are performed completely on the GPU, the selection of sufficiently
accurate rational bi-cubic Bézier patches is done on the CPU by tra-
versing the hierarchy associated with the surface starting at the root
node. When a patch with sufficient accuracy is found, it is rendered
and the rest of the subtree is skipped, similar to standard HLOD
algorithms. During the traversal hierarchical view-frustum culling
based on the bounding box of the current Bézier patch is also per-
formed. If the patch is visible, the required object space error ε to
guarantee a screen space error of εimg is calculated using the dis-
tance of the viewer to this bounding box. This object space error is
then split equally between the bi-cubic approximation error and the
sampling error (see Sections 5 and 6). To increase the performance
for very small surfaces, we also check if ε is larger than the bound-
ing box diagonal of the surface. In this case a simple (untrimmed)
quad is sent to the GPU instead of the possibly trimmed surface.

7.1 Crack Filling

When selecting the bi-cubic patches for rendering neighboring
patches are subdivided independently which can introduce cracks
between bi-cubic patches. Trimmed NURBS and T-Spline surfaces
are also tessellated individually, which may introduce cracks be-
tween neighboring surfaces as well. Both types of cracks need
to be closed. To achieve this, we build upon the fat border algo-
rithm [Balázs et al. 2004] which conceals the cracks by rendering
appropriately shaded triangle strips behind each trimming loop. Al-
though this seems to be a simple solution it has the drawback that
it requires tangent vectors along the trimming curves which need
to be calculated in the vertex stage. Since the vertex shader would
need more than the 12 temporary registers available in the vertex
shader 1.0 extension to calculate the position, normal and tangent
vectors for a point on the trimming curve, we cannot use this ap-
proach directly.

Cracks between Bézier patches: To fill the cracks between the
bi-cubic patches, a simple line strip is rendered around each sam-
pling grid resulting in only a slightly lower quality than the original
approach. For a screen space error of εimg the width of this line
strip is 2εimg, e.g. one pixel for a screen space error of half a pixel.

Cracks between trimmed NURBS patches: For untrimmed
NURBS patches the cracks along their boundary do not need to be
filled explicitly, since they are already filled by the Bézier patch

6

To appear in the ACM SIGGRAPH conference proceedings

crack filling algorithm. Therefore, only the cracks along trimming
curves need to be filled. One possibility would be to render a
line strip along each trimming loop. For this however, the trim-
ming curves would need to be restricted to the currently rendered
bi-cubic patches which would increase the CPU computation time
significantly. Therefore, we chose a slightly different approach
which fills the cracks already when generating the trim-texture. Af-
ter generating the trim-texture with the algorithm described above,
an additional line strip is rendered along each trimming loop. The
width of this line strip is always one pixel since the accuracy of the
trimming curves in texture space is 0.5 pixel.

8 OpenGL API Integration

We propose the API shown in Figure 8 that is even simpler to use
than the original OpenGL NURBS rendering API.

int gluGenNurbsObjectsEXT(int count);

void gluControlPoints4fvEXT(int object, int usize, int vsize, float *cp);

void gluKnotVectorUfvEXT(int object, int size, float *knots);

void gluKnotVectorVfvEXT(int object, int size, float *knots);

int gluAddTrimmingLoopEXT(int object);

void gluAddTrimmingCurve3fvEXT(int object, int loop, int size, float *cp,

int knotsize, float *knots);

void gluDrawNurbsObjectEXT(int object, float error);

void gluDrawNurbsObjectsEXT(int first, int count, float error);

void gluDrawNurbsObjectsivEXT(int *objects, int count, float error);

void gluNurbsSpecialProgram(int specialprogram);

const char* gluGetNurbsEvaluateShader();

const char* gluGetNurbsTrimmingShader();

Figure 8: Proposed API calls (for trimmed NURBS only).

One of the major advantages of our algorithm is the seamless inte-
gration into the rendering pipeline. When using the fixed function
pipeline, the integration is simple since the vertex and fragment
shader can emulate it after tessellation and trimming. To provide
a simple mechanism for combining trimmed NURBS and T-Spline
rendering with custom shaders using the GL shading language, we
give the programmer access to the Bézier evaluation vertex pro-
gram function and the trimming fragment program function. Then
any shader can be used for trimmed NURBS and T-Spline rendering
by simply calling these functions at the beginning of the vertex and
fragment program and binding the new shader for our extension.
Considering this simple mechanism, an integration into the graph-
ics driver is also possible and has the further advantage that custom
evaluation hardware can be used when available. As examples we
combined our trimmed NURBS and T-Spline rendering algorithm
with high dynamic range environment mapping [Debevec 1998]
and light space perspective shadow maps [Wimmer et al. 2004].

9 Results

To evaluate our new algorithm we perform all benchmarks on an
Athlon 3000+ with 1.5 GByte memory and a GeForce 5900 Ultra
at a resolution of 1280×1024 with 0.5 pixel screen space error.

First, we compare the tessellation performance of the GPU-based
method to the current OpenGL API using a single bi-cubic trimmed
and untrimmed patch (see Figure 9). To investigate the tessella-
tion performance we render these patches at different screen-sizes
where a larger screen-size implies a higher sampling rate. For a
pixel sized patch all algorithms simply render a quad resulting in
the same performance of about 0.01ms mainly due to the pipeline
flush. As shown by these results we get a performance gain of a
factor of about 1000 for bi-cubic patches across all other sampling
resolutions which is even higher than our estimates based on the
memory bandwidth. The additional 1ms required by our algorithm

for the rendering of trimmed patches is mainly due to the p-buffer
switch.

 0.01

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

m
s

Mpixel

OpenGL trimmed
OpenGL untrimmed

GPU-based trimmed
GPU-based untrimmed

Figure 9: Tessellation performance in dependance of screen size for
OpenGL and the GPU-based algorithm. Note the logaritmic scale.

As second example we evaluate the performance of the bi-cubic
approximation for surfaces of different degrees. In Figure 10 we
show the performance for a single animated trimmed NURBS sur-
face with 100 control points and degrees of 3×3, 5×5, and 7×7
respectively. The reason that the 7×7 degree surface renders faster
than the one with 5×5 degree is that it consists of 9 Bézier patches
while the 5×5 degree surface consists of 25 Bézier patches. About
70% of the additional time that the higher degree surfaces need
compared to the bi-cubic one is required for the bi-cubic approx-
imation (dashed lines in Figure 10). The tessellation time is only
slightly higher, since they need approximately the same number of
quads. This approximation time scales with O(4

√
n) (which is pro-

portional to the number of necessary bi-cubic patches) due to the
excellent convergence of this bi-cubic approximation. For T-Spline
surfaces, the performance is equal to that of the according NURBS
surfaces, since the time for conversion into piecewise Bézier rep-
resentation is neglectable and afterwards they are identical. Note,
that if a second rendering pass is required e.g. for the light space
perspective shadow map algorithm [Wimmer et al. 2004] (see Fig-
ure 1) the approximation time is required only once.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3

m
s

Mpixel

7 x 7
approx.

5 x 5
approx.

3 x 3
approx.

Figure 10: Total rendering performance of a single animated
trimmed NURBS surface with 100 control points and of different
degrees. Dashed lines show bi-cubic approximation time.

Finally we evaluate the performance when rendering real world
models, e.g. the Mini model shown in Figure 1 as well as the Golf
and C-Class models shown in Figure 11. Here a fair comparison to
existing methods is hardly possible, since they are either too slow,
cannot guarantee a certain screen space error and can easily pro-
duce a high error especially when zooming in (see Figure 12), or
are limited to a certain maximum accuracy in object space due to
pre-computations.

Table 1 shows the results of rendering the different car models rang-
ing from 600 to 70,000 surfaces of which 20% to 50% are trimmed.
With our proposed new method even complex NURBS models can
be rendered interactively. The frame rates for the Golf and the
Mini model are similar although the Golf has much more NURBS
surfaces, because the bi-cubic representations of both models con-
tain approximately the same number of patches. The reason for

7

To appear in the ACM SIGGRAPH conference proceedings

Figure 11: Golf model consisting of 8,138 trimmed surfaces; C-
Class model consisting of 67,571 trimmed surfaces.

Figure 12: 5 pixel screen space error when latency hiding (left) vs.
accurate rendering with our algorithm (right).

Mini Golf C-Class
NURBS surfaces 629 8,138 67,571

non-trivially trimmed 203 1,486 35,230
Bézier patches 25,648 17,936 396,535
our alg. 7 fps 6 fps 1 fps
OpenGL 0.04 fps 0.03 fps —

Table 1: Details of the static models and the performance of the
different rendering algorithms.

the relatively high performance of the C-Class model is the use of
the bi-cubic hierarchy described in Section 6 and thus only about
100,000 bi-cubic patches are actually rendered. Note, that the frame
rates shown in Table 1 are minimum frame rates and increase when
zooming in due to the view-frustum culling.

10 Conclusion

We have presented a novel algorithm to perform trimming of sur-
faces on the GPU that makes GPU-based tessellation of trimmed
NURBS and T-Spline surfaces possible. The advantages of our new
approach can be summarized as follows: The tessellation perfor-
mance is up to 1000 times higher than that of CPU-based tessel-
lation, it can be performed at runtime and thus no preprocessing is
required, all resolutions are available, and a simple API can be used.
Although upcoming data dependent loops and texture access in the
vertex stage will allow evaluation of higher order Bézier surfaces
on the GPU, the approximation with rational bi-cubic patches will
still be reasonable since it significantly reduces the shader runtime.

11 Acknowledgements

We thank SGI, Volkswagen and DaimlerChrysler for providing us
with the trimmed NURBS models, Paul Debevec for the high dy-
namic range environments, Radomı́r Měch for his hints on how

to reduce p-buffer switches when rendering multiple trimmed sur-
faces, and Andreas Schilling for his valuable comments.

References

ABI-EZZI, S. S., AND SUBRAMANIAN, S. 1994. Fast dynamic tessellation of
trimmed nurbs surfaces. Computer Graphics Forum 13, 3, 107–126.

BALÁZS, Á., GUTHE, M., AND KLEIN, R. 2004. Fat borders: Gap filling for efficient
view-dependent lod rendering. Computers & Graphics 28, 1, 79–86.

BOLZ, J., AND SCHRÖDER, P., 2003. Evaluation of subdivision surfaces on program-
mable graphics hardware.

BÓO, M., AMOR, M., DOGGETT, M., HIRCHE, J., AND STRASSER, W. 2001.
Hardware support for adaptive subdivision surface rendering. In Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, 33–40.

CHHUGANI, J., AND KUMAR, S. 2001. View-dependent adaptive tessellation of
spline surfaces. In Proceedings of the 2001 symposium on Interactive 3D graphics,
ACM Press, 59–62.

COHEN, E., LYCHE, T., AND RIESENFELD, R. F. 1980. Discrete b-spline and sub-
division techniques in computer aided geometric design and computer graphics.
Computer Graphics and Image Processing 14, 2, 87–111.

DEBEVEC, P. 1998. Rendering synthetic objects into real scenes: bridging traditional
and image-based graphics with global illumination and high dynamic range pho-
tography. In Proceedings of ACM SIGGRAPH 98, ACM Press, 189–198. Computer
Graphics Proceedings, Annual Conference Series.

ECK, M. 1993. Degree reduction of bézier curves. Computer Aided Geometric Design
10, 3-4, 237–252.

FILIP, D., MAGEDSON, R., AND MARKOT, R. 1986. Surface algorithms using bounds
on derivatives. Computer Aided Geometric Design 3, 4, 295–311.

FORREST, A. 1972. Interactive interpolation and approximation by bézier polynomi-
als. The Computer Journal 15, 1, 71–79.

FORSEY, D. R., AND KLASSEN, R. V. 1990. An adaptive subdivision algorithm for
crack prevention in the display of parametric surfaces. In Graphics Interface ’90,
Canadian Information Processing Society, 1–8.

GUTHE, M., MESETH, J., AND KLEIN, R. 2002. Fast and memory efficient view-
dependent trimmed nurbs rendering. In proceedings of Pacific Graphics 2002,
IEEE Computer Society, 204–213.

HECKBERT, P. 1982. Color image quantization for frame buffer display. Computer
Graphics (Proceedings of ACM SIGGRAPH 82) 16, 3 (July), 297–307.

HERZEN, B. V., AND BARR, A. H. 1987. Accurate triangulations of deformed,
intersecting surfaces. Computer Graphics (Proceedings of ACM SIGGRAPH 89)
21, 4 (July), 103–110.

KANAI, T., AND YASUI, Y. 2004. Per-pixel evaluation of parametric surfaces on gpu.
In ACM Workshop on General Purpose Computing Using Graphics Processors
(also at SIGGRAPH 2004 poster session).

KUMAR, S., MANOCHA, D., ZHANG, H., AND HOFF, K. E. 1997. Accelerated walk-
through of large spline models. In 1997 Symposium on Interactive 3D Graphics,
ACM SIGGRAPH, 91–102. ISBN 0-89791-884-3.

NISHITA, T., SEDERBERG, T. W., AND KAKIMOTO, M. 1990. Ray tracing trimmed
rational surface patches. Computer Graphics (Proceedings of ACM SIGGRAPH
90) 24, 4 (August), 337–345. ISBN 0-201-50933-4.

PARK, Y., AND CHOI, U. J. 1995. Degree reduction of bézier curves and its error
analysis. J. Austral. Math. Soc. Ser. B 36, 399–413.

ROCKWOOD, A. P., HEATON, K., AND DAVIS, T. 1989. Real-time rendering of
trimmed surfaces. Computer Graphics (Proceedings of ACM SIGGRAPH 89) 23,
3 (July), 107–116.

SEDERBERG, T. W., CARDON, D. L., FINNIGAN, G. T., NORTH, N. S., ZHENG,
J., AND LYCHE, T. 2004. T-spline simplification and local refinement. ACM
Transactions on Graphics 23, 3, 276–283.

SHANTZ, M., AND CHANG, S.-L. 1988. Rendering trimmed NURBS with adaptive
forward differencing. Computer Graphics (Proceedings of ACM SIGGRAPH 88)
22, 4 (August), 189–198.

WIMMER, M., SCHERZER, D., AND PURGATHOFER, W. 2004. Light space perspec-
tive shadow maps. In Rendering Techniques 2004 (Proceedings of Eurographics
Symposium on Rendering), A. Keller and H. W. Jensen, Eds. Eurographics Associ-
ation, June, 143–152.

ZHENG, J., AND WANG, G. 2003. Perturbing bézier coefficients for best constrained
degree reduction in the l2-norm. Graphical Models 65, 351–368.

8

