

A Multi-Variant Approach to Software Process Modelling

Wolfgang Hesse1 and Jörg Noack2

1 c/o FB Mathematik/Informatik, Philipps-Universität Marburg/Germany
email: hesse@informatik.uni-marburg.de

2 Informatikzentrum der Sparkassenorganisation (SIZ) Bonn/Germany
email: joerg.noack@siz.de

Abstract: In this article we present a new approach to software process modelling for a
large banking organisation. In the past years, the main software development methods
and tools of this organisation have migrated from structured to object-oriented
technology. Presently, the software process is completely being redefined and adapted to
the new goals and requirements. Since there are many kinds of projects differing largely
in their goals, requirements and constraints, a two-level approach has been taken: On the
base level, the ingredients of processes - activities, results, techniques and tools - are
listed and described. These are composed in various ways to form a set of process
variants which are defined on the second level. Each variant serves as a sample process
for concrete project work. This multi-variant approach meets the requirements of the
project managers and developers who demand for a flexible model covering a wide
spectrum of projects.

Keynotes:

Object-oriented software development, process model, model variants, activities, prototyping,
component-based development, phase-oriented development, evolutionary development.

1 Introduction

In the German Savings Banks Organisation (short: GSBO, comprising about 600 savings
banks and 13 state banks) information technology (IT) is primarily provided by 10 major
development centres. SIZ, the IT coordination centre, is a service enterprise offering support
for these centres. In order to improve organisational and process maturity as well as to
enhance software quality and development performance, SIZ is publishing and maintaining
an electronic project handbook called the application development model (AD model). This
handbook documents the software processes and best practices collected from several
development projects in GSBO and from the literature [11].

During the last years the AD model has continuously been improved to fulfil the requirements
of a large banking organisation. A first issue of the handbook covered a waterfall-like process
model, structured development techniques like entity-relationship-diagrams or functional
decomposition and conventional programming in COBOL or C. It has primarily been used for
large-scale mainframe projects building back-end systems, for example for clearing or
accounting.

Meanwhile, the object-oriented approach to software development is becoming more and
more popular. Concentration of the banking business has led to many reengineering projects
which make it necessary to migrate or redevelop existing monolithic legacy application
systems. The growth of the Internet opens up new dimensions of business action like electro-
nic commerce and electronic banking. In order to meet these requirements, SIZ has started a
methodology project aiming at a complete new version of its AD model. This version covers
object-oriented software development for modern multi-layered software architectures using
methodologies, languages and architectures like OMT, UML, JAVA and CORBA.

One kernel piece of the AD model is the object-oriented system life cycle (cf. [4]) described
by a process model. In order to support projects of various kinds, goals, size and environ-
ments, a customisation approach has been taken: It is based on a toolbox for the construction
of processes – the reference framework describing activities, results, techniques and roles. On
top of this framework, so-called model variants act as guided tours through the OO
development process. This multi-variant approach goes insofar beyond the existing OO
methodologies (cf. for example [1], [9], [13] and [6] for a comparison) as it encompasses
their model variants and embeds them into a general, customisable process model. This way, a
defined process (cf. [8]) is achieved which does not force all projects into one single
obligatory standard.

Recently, a first release of the AD model has undergone a major revision reflecting the
evaluation results from several OO pilot projects in the GSBO. It is still too early to report on
experiences of applying the multi-variant approach in a real project environment. However,
the experiences of applying the first release of the AD model are discussed in a separate paper
(cf. [12]).

2 The overall structure of the development process

In this section we present the overall process architecture (cf. [2]) underlying the AD model.
There are several groups of people involved in the software development process which are
distinguished by their different tasks and views on a software development project. We use
the concept of roles to distinguish between these groups and their (complementary) views. To
each role belongs an own process – thus the overall software process can be seen as a bunch
of concurrent sub-processes which are synchronised by means of (milestone-like) revision
points (cf. [5], [7]).

The roles and corresponding sub-processes are (cf. fig. 1):

• Development

• Project management

• Quality management

• Configuration management and support

• Use and evaluation

Fig. 1: The structure of a typical software process

3 The process building tool box

Since GSBO is a heterogeneous organisation covering savings banks, state banks, leasing and
insurance companies etc. the AD model has to deal with heterogeneous kinds of projects,
partners, and applications with special requirements which concern e.g. safety constraints or
demands for reuse. For such an organisation a uniform process model is not a realistic option.

On the one hand, tasks should be manageable, components should be exchangeable and
projects should be comparable – arguments which suggest to standardise the process as far as
possible. Reuse, exchange and sub-contracting of results and components is a major issue for
the target institutions – which makes a "real OO process" mandatory for many projects. On the
other hand, there are several projects rooted in the tradition of the structured approach which
put less emphasis on exchange, reuse or subcontracting. Some projects have relatively fixed
and established requirements – others experiment with new solutions or even explore new
applications. Projects vary in size, stability of the requirements, complexity of the resulting
system and many other factors.

These obviously conflicting requirements have driven our specific approach to process
modelling. It is a two-level approach consisting of

(a) a base level which comprises all the raw material used for building OO development
processes ("the reference model") and

Use & evaluation

Configuration management &
support

Quality
management

Project
management.

S1 S2 S3 S4

RP1 RP2 RP3 RP4

Si Stages of system
development

Aj Activities of system
development

Rpi: Revision points

AjDevelop-
ment

(b) a composition level offering several process variants based on the ingredients of the base
level.

The reference model consists of five main components:

• a set of paradigmatic descriptions of activities

• a set of descriptions for resulting documents – briefly called results,

• a set of techniques supporting the elaboration of results,

• a set of role descriptions for the various groups of stakeholders in a software development
project.

• a set of guidelines and rules which are meant to support reading and application of the
handbook.

These components are linked by several relationships – as shown in fig. 2. In the following
subsections, we briefly summarize the components. Their original presentation consists
mainly of (German) text, including graphical figures, tables and examples.

Guideline

Role

Name
View
Description
Profile

Model Variant

Technique
Name
Description
Reference

Rule

** consists
of

Activity

Name
View
Description

1..*

0..*

1..*

involves

** consists
of

0..*

0..*0..*

refers to

0..*

 Result
Name
Description
Example
Reference

0..*

1..*

0..*

is
accomplished

by

0..*

0..*

refers to

0..*0..* 0..*0..* pre-condition of

post-condition of

+Subactivity

+Main Activity

+Subresult

+Main Result
0..*

0..*

0..1

0..*
1..*

Fig. 2: Metamodel showing the overall structure of the reference model.

3.1 Activities

Activities are the essential building blocks of the process model. In general, their effect is to
produce results (which are separately described in the result section). An activity can be
decomposed into subactivities. These have either to be performed in sequential order or may
be carried out in parallel (or in any arbitrary order).

Activities at the first level of the hierarchy are called main activities. In its present form, our
activity model comprises 24 main activities. Examples of main development activities are
Analyse requirements, Build component, Build architecture, Integrate and test system. Ex-
amples of main management or quality assurance activities are Start project, Terminate
project, Check quality.

Activities are aggregated forming a tree-like hierarchy. However, sub-activities may be used
by several main activities - not just by their predecessor activity. All activities are described in
a uniform manner following a scheme which contains (among others) the following items:

- Name

- View (it belongs to, cf. above)

- Description

- Pre- and post conditions

- Roles (concerned by the activity)

3.2 Results

Similar to the activities, results are described in a schematic way using a form which contains
(among others) the following items:

- Name

- Description

- Example

- Techniques (references to the corresponding section)

- Literature references

Typical kinds of results are project plan, requirements statement or class structure model. A
result can consist of several subresults, e.g. descriptions of classes and relationships are parts
of the result class structure model.

3.3 Techniques

In this part, the main techniques are listed and described which are recommended for
elaborating the results. Techniques include various kinds of diagrams as, for example, offered
by the Unified Modeling Language (UML) [14], test procedures, management forms etc.

3.4 Roles

In this part, the main roles of people involved in a software development project are listed and
described. The description includes a profile, i.e. a list of skills and qualifications associated
with that role. Typical roles include the project manager, the analyst, the designer, the pro-
grammer, the quality specialist, the support specialist, the user.

3.5 Guidelines and rules

Process modelling is just one part of the AD model. Another part consists of guidelines which
aim to support the activities and to ensure readability, quality, and portability of development
results. Examples are guidelines for object-oriented analysis, design, programming, building a
software architecture etc. Each guideline consists of several rules. In the descriptions of the
activities and techniques these rules are addressed in order to support a uniform, comparable
and manageable application of the whole framework.

4 The model variants: Four guided tours through the development process

With the ingredients presented in the previous section, processes can be individually
composed and cast to the particular project situation they are to be used and to the
requirements resulting from that situation. However, experience shows that it is helpful (and
sufficient for the major part of situations occurring in practice) to concentrate on a few
"typical" processes which cover most of the real-life cases. For these selected processes, a
possible line of processing can be predefined and used as a sample for running a concrete
project. We call such a sample process a model variant.

Given a concrete project with its particular goals, requirements and environment, the most
suited model variant can be selected using the criteria given in the subsequent section. The
selected variant can then be modified and adapted to the specific needs of the project. In order
to cover the majority of current project practices in GSBO, we have selected the following
four model variants for detailed presentation in the AD model:

- Incremental development (INC),

- Component-based development (CBD),

- Phase-oriented development (PHA),

- Evolutionary Prototyping (EVP).

All variants are embedded in a general scheme for project management activities depicted in
fig. 3:

Start
Project

Execute
Project

Control
Project

Terminate
Project

Fig. 3: General management scheme for all model variants

In fig. 3 we have used a very simple ad-hoc diagram technique (so-called bubble-charts) to
illustrate a process consisting of activities (ovals), subactivities defined at other places
(highlighted ovals) and sequence relations (arrows). The same bubble-chart technique will be
used as well in the subsequent figures.

In the following sections, the four model variants are depicted by diagrams and briefly
explained.

4.1 Incremental development

This variant is based in the notion of increment. An increment is a piece of software which is
added to an existing system in order to enhance its functionality or performance. To develop a
system incrementally means to start with a relatively small kernel and enhance this kernel step
by step by adding increments until the required functionality is reached. An increment may be
– but is not required to be - a stand-alone executable unit.

Fig. 4 and 5 show the main steps of incremental development. The development process as a
whole is embedded in management activities as shown in fig. 4. Analysis is done as a system-
wide analysis (covering all increments) and may (optionally) be supported by developing an
explorative prototype (fig. 4).

Execute Project

Analyse
Requirements

Develop
Increment

Start
Project Control

Project

Terminate
Project

Develop
Explorative
Prototype

Fig. 4: Incremental development: overall project structure

Analogously, each development of an increment is considered as a kind of "project" with
starting, controlling and concluding management activities (fig. 5). The central activity Build
increment is refined to activities Model increment, Implement increment and Integrate incre-
ment into application system which are main activities of the reference model.

Develop Increment

Terminate
Project

Analyse
Requirements

Control
Increment

Development

Build
Increment

Start
Increment

Development

Terminate
Increment

Development

Fig. 5: Development of an increment

4.2 Component-based development

A piece of software which has a well-defined interface, may be used in various contexts and
can easily be replaced by an equivalent piece (i.e. one having the same or a very similar
functionality) is called a component. To base a development on components means to develop
an architecture of relatively independent units which can be built separately or even borrowed
from other projects or from a component library.

Fig. 6 shows the overall structure of a component-based development process. As in the
previous variant, the development process is embedded in management activities (Start
project, Control project, Terminate project). Again, the (system-wide) analysis may be
supported by building an explorative prototype. It is followed by the activity Build
architecture which is most central for this variant and implies the definition and delimitation
of its components.

Build
Architecture

Integrate & Test
System

Install & Evaluate
System

(system-wide)

Start
Project

Control
Project

Terminate
Project

Execute Project
Develop

Explorative
Prototype

Analyse
Requirements

Develop
Component

(system-wide)

Fig. 6: Component-based development: overall project structure

Released components are integrated to an application system and then installed, used and
evaluated (fig. 6). In principle, each component may be developed independently from the
others. Therefore it is viewed as a subject of an own (sub-) project as illustrated in fig. 7.

Start
Component

Development

Develop Component

Analyse
Requirements Build

Component
Design

Component

Terminate
Component

Development

Control
Component

Development

(component-specific)

Fig. 7: Development of a component

4.3 Phase-oriented development

This is the most traditional of the four model variants. A project is assumed to deal with a
rather monolithic system, i.e. one the structure of which is not explicitly reflected by the
process structure. Basically, this structure is given by phases, i.e. temporal units which follow
each other in a sequential manner. On the uppermost level, we distinguish four main phases
which correspond to the activity categories introduced in section 3: Analyse requirements
(with an optional development of explorative prototypes), Design system (with an optional
development of experimental prototypes), Build system, Install and evaluate system (fig. 8).

Execute Project

Build
System

Design
System

Analyse
Requirements

Install & Evaluate
System

Start
Project Control

Project

Terminate
Project

Develop
Explorative
Prototype

Develop
Experimental

Prototype

Fig. 8: Phase-oriented development: overall project structure

4.4 Evolutionary Prototyping

Prototyping is a development technique which may be used at many places, in various
situations and contexts. Thus we have to distinguish several kinds of prototyping. Following
an earlier classification [3] we differentiate between explorative, experimental and evo-
lutionary prototyping. Whereas the first two alternatives are rather viewed as supplementary
activities supporting the analysis and design steps, resp., evolutionary prototyping is
considered a technique which constitutes its own kind of process. Therefore, we have it
included as a separate model variant.

Evolutionary prototyping applies to projects in an unstable environment, with incomplete,
unsafe or not yet defined requirements and constraints. Complex dynamic systems are
characterised by the fact that they influence and change their environment which leads to new
requirements and eventually results in a chain of feedback loops covering development and
use steps [10]. This is reflected by our model variant (fig.'s 9 and 10):

Execute Project

Analyse
Requirements

Start
Project Control

Project

Terminate
Project

Develop
Prototype

Fig. 9: Evolutionary prototyping: overall project structure

Start
Prototype

Development

Develop Prototype

Design
Prototype

Use & Evaluate
Prototype

Build
Prototype

Terminate
Prototype

Development

Control
Prototype

Development

Fig. 10: Development of a prototype

5 Criteria for variant selection

In a given concrete situation of an evolving or starting project, it is often not easy to select the
most appropriate model variant. In order to support this selection process, we have listed some
criteria which normally influence the selection and scored the given model variants with
respect to these criteria. Criteria have been classified in two groups:

- Project goals and requirements

- Process constraints

(1) Project goals and requirements INC CBD PHA EVP

First release, a running system does not exist +++ + + ++

Rapid delivery of a subsystem required ++ ++ - +++

Rapid delivery of complete solution required + ++ + ?

Limited budget, high cost efficiency required ++ + ++ ?

Stable environment and system constraints + ? ++ -

Monolithic system with a few subsystems + ? ++ ?

Heterogeneous system with multiple independent
functions

++ +++ ? +

Short change and maintenance cycles ++ +++ - +

Unstable requirements; frequent change requests
expected

++ +++ - ++

Distributed system ++ +++ - +

High security requirements ++ ++ + ?

High quality requirements ++ ++ + +

Fig. 11: Selection criteria: Project goals and requirements

Note that the scores given in these tables are mainly based on experience and subjective
assessment and are not verified by exact investigations or measurements. Thus they should be
handled with care and rather taken as informal hints than as precise, objective rules.

In our present project practice, variants are used with different priority and frequency.
Incremental development is often considered the most practicable and most generally applic-
able variant. Phase-oriented development has still a high preference, mainly for projects
building on traditional application systems. Component-based development is considered a
rather innovative alternative and still handled with some care and reserve. Evolutionary proto-
typing is the alternative which so far has least been experienced.

Our selection criteria are rather new and cannot yet been judged reliably. At the moment, we
are gathering feedback from the "users" of the AD model (mainly from the project managers
and process engineers) in order to check and continuously improve the criteria and the scoring
of variants.

(2) Process constraints INC CBD PHA EVP

Reusable software units or class library to be used ++ +++ ? +

Application is triggered by business processes ++ + ++ ?

Business processes are (relatively) independent from
each other

++ +++ - ++

Data-centred legacy system is to be integrated +++ + + ?

Complex, intertwined data structures ++ + + +

Many local, rather few global data ++ +++ ? ?

Stable process conditions with a low probability of
modifications

+ + +++ -

Unstable process, requirements have still to be captured ++ ++ - +++

Large, complex system; high distribution of workload ++ +++ + +

Cooperation project; work is widely shared with partners + +++ + ?

Fig. 12: Selection criteria: Process constraints

6 Conclusions

Faced with the requirements and goals of a wide range of different projects and partners in a
large banking organisation we have come to the conclusion that there is no chance for a
"uniform" software process. In order to cover a broad spectrum of projects we have presented
a new approach to software process modelling based on a two-level framework: a base level
defining all the raw material (e.g. sets of well-organised activities, techniques, results and
roles) and a composition level combining the given material to process variants.

Well-known project variants like incremental, component-based, phase-oriented and evolu-
tionary development can easily be described by using our simple bubble-chart notation. All
variants are based on the same framework of activities, result types and techniques and are
thus equally supported by the AD model.

Based on our experiences and subjective assessments we have developed an elaborated
catalogue of criteria for the selection of the adequate process in a given situation. We believe
that both the framework and the catalogue of criteria can easily be adapted to further process
variants which might be included in the future. This way, the AD model and handbook
constitutes an extensible piece of technology which can always easily be adapted to the
current goals, requirements and practices.

The multi-variant approach reduces the average expenses for tailoring the process model to a
broad range of projects in GSBO while it guarantees the applicability of several proven
process patterns. The positive reaction of our user community, i.e. the project managers and
engineers in the development centres in GSBO, is very promising and stimulating for our
further work. In a next step we are going to implement our approach in a Web environment
using HTML and JAVA for browsing and navigation.

Acknowledgement

We thank our colleagues Klaus Heuer for fruitful discussions and Stephan Düwel for his
careful reading of the manuscript.

References

1. G. Booch: Object-Oriented Analysis and Design with Applications. Second Edition,
Benjamin/Cummings Publ. Comp. 1994

2. A.M. Christie, A.N. Earl, M.I. Kellner, W.E. Riddle: A Reference Model for Process
Technology. In: C. Montangero (Ed.): Software Process Technology, 5th European
Workshop, EWSPT 96. Springer LNCS 1149, pp. 3-17 (1996)

3. C. Floyd: A systematic look at prototyping. In: R. Budde, K. Kuhlenkamp,
L. Mathiassen, H. Züllighoven (eds.): Approaches to prototyping, Springer 1985

4. B. Henderson-Sellers, J.M. Edwards: Object-oriented software systems life cycle.
Comm. of the ACM Vol. 33, No. 9 (1990)

5. W. Hesse: Theory and practice of the software process - a field study and its impli-
cations for project management. In: C. Montangero (Ed.): Software Process Tech-
nology, 5th European Workshop, EWSPT 96. Springer LNCS 1149, pp. 241-256
(1996)

6. W. Hesse: Life cycle models of object-oriented software development methodo-
logies. In: A. Zendler et al.: Advanced concepts, life cycle models and tools for
object-oriented software development. Reihe Softwaretechnik 7, Tectum Verlag
Marburg 1997

7. W. Hesse: Improving the software process guided by the EOS model. In: Proc. SPI
'97 European Conf. on Software Process Improvement. Barcelona 1997

8. W. Humphrey: Managing the software process. Addison-Wesley 1989

9. I. Jacobson: Object-Oriented Software Engineering - A Use Case Driven Approach.
Revised Printing, Addison-Wesley 1993

10. M.M. Lehman: Programs, life cycles, and laws of software evolution. Proceedings of
the IEEE. Vol. 68, No. 9, pp. 1060-1076 (1980)

11. J. Noack, B. Schienmann: Designing an Application Development Model for a Large
Banking Organization. Proc. 20th Int. Conf. on Software Engineering, IEEE Compu-
ter Society Press, Kyoto, pp. 495-498 (1998)

12. J. Noack, B. Schienmann: Introducing Object Technology in a Large Banking
Organization. IEEE Software (1999, to appear).

13. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen: Object-Oriented
Modeling and Design. Prentice Hall 1991

14. Unified Modeling Language (UML) Version 1.1 Specification, OMG documents
ad/97-08-02 – ad/97-08-09 (1997)

Authors’ addresses:

Prof. Dr. Wolfgang Hesse, FB Mathematik/Informatik, Universität Marburg,
Hans Meerwein-Str., D-35032 Marburg

Tel.: +49-6421-281515, Fax: +49-6421-285419,
email: hesse@informatik.uni-marburg.de

Dr. Jörg Noack, Informatikzentrum der Sparkassenorganisation (SIZ),
Königswinterer Str. 552, D-53227 Bonn

Tel.: +49-228-4495458, Fax: +49-228-4495-684,
email: joerg.noack@siz.de

