

Übungen zur "Theoretischen Informatik", Sommersemester 2009

Prof. Dr. R. Loogen, Dipl.-Inform. Th. Horstmeyer · Fachbereich Mathematik und Informatik · Marburg

Nr. 11, Abgabe: Dienstag, 30. Juni 2009 vor der Vorlesung

1. Fleißige Biber¹

4 Punkte

Ein Biber ist eine Turingmaschine über $\Gamma = \{|, b\}$, die, auf das leere Band angesetzt, stoppt. Dabei wird q a b stop als Turingzeile zugelassen.

Ein fleißiger Biber (busy beaver) ist ein Biber, der unter den Bibern gleicher Zustandszahl die maximale Strichzahl auf dem Band liefert.

Die Funktion $BB: \mathbb{N} \to \mathbb{N}$ ist definiert durch

BB(x) := Anzahl der Striche eines fleißigen Bibers mit x Zuständen

(a) Geben Sie die Konfigurationsfolge an, die der durch nebenstehende Turingtafel definierte fleißige Biber mit 2 Zuständen durchläuft. $\begin{array}{|c|c|c|c|c|c|} \hline q_0 & b & | & R & q_1 \\ \hline q_0 & | & | & L & q_1 \\ q_1 & b & | & L & q_0 \\ \hline q_1 & | & | & \mathrm{stop} \\ \hline \end{array} \ / \ 2$

(b) Zeigen Sie: BB(x) < BB(x+1).

- r / 1
- (c) Folgern Sie aus dem folgenden Satz von Rado, dass BB nicht Turing-berechenbar ist.

Ist $f : \mathbb{N} \to \mathbb{N}$ Turing-berechenbar mit f(x) < f(x+1), so gilt für hinreichend großes x : f(x) < BB(x).

2. Verzweigung in LOOP

4 Punkte

Schreiben Sie ein LOOP-Programm zur Berechnung der folgenden Verzweigungsfunktion:

$$if: \left\{ \begin{array}{ccc} \mathbb{N} \times \mathbb{N} \times \mathbb{N} & \to & \mathbb{N} \\ (x, y, b) & \mapsto & \left\{ \begin{array}{ccc} x & \text{falls } b \geq 1 \\ y & \text{falls } b = 0 \end{array} \right. \end{array} \right.$$

Als Wertzuweisungen sind neben den elementaren Anweisungen der Form $X_i := 0$ bzw. $X_i := X_j + 1$ Kopieranweisungen der Form $X_i := X_j$ zugelassen.

Beweisen Sie die Korrektheit des Programms anhand der denotationellen Semantik.

3. Primitiv rekursive Funktionen

4 Punkte

Zeigen Sie, dass die folgenden Funktionen aus den primitiv rekursiven Grundfunktionen durch Anwendung von Komposition und primitiver Rekursion erzeugt werden können:

$$(a) \text{ sub} : \begin{cases} \mathbb{N}^2 \to \mathbb{N} \\ (a,b) \mapsto \begin{cases} 0 & \text{falls } a \leq b \\ a-b & \text{sonst} \end{cases}$$
 $(b) \text{ min} : \begin{cases} \mathbb{N}^2 \to \mathbb{N} \\ (a,b) \mapsto \begin{cases} a & \text{falls } a \leq b \\ b & \text{sonst} \end{cases}$

Hinweis: Verwenden Sie sub, um min auszudrücken.

¹siehe auch: http://www.fmi.uni-stuttgart.de/ti/projects/beaver/bbb.html