Human-Computer Interaction Using Robust Gesture Recognition

Matthias Endler, Oleg Lobachev, and Michael Guthe

University Bayreuth

Jun. 4th, 2014

Hand detection and tracking

From left to right: an overview of the setup; input frame from the webcam with Haar-detected bounding box, CAMSHIFT-fitted-ellipse, and bootstrapped-Shape-bounding box; Haar bootstrapping (happens only once, it is an initialization

step); final result with hand tracked and fingers counted, used to control applications.

Abstract

We present a detector cascade for robust real-time tracking of hand movements on consumer-level hardware. We adapt existing detectors to our setting: Haar, CAMSHIFT, shape detector, skin detector. We use *all* these detectors at once. A unified interface to all the detectors was introduced to facilitate our approach. Our main contributions are: first, utilization of *bootstrapping*: Haar bootstraps itself, then its results are used to bootstrap the other filters; second, the usage of temporal filtering for more robust detection and to remove outliers; third, we adapted the detectors for more robust hand detection. The input is an unaugmented live 2D stream from a webcam. The resulting system produces very robust results in real time. We evaluate both the robustness and the real-time capability.

Gestures used as an input in games

Benchmarking

Filtor	Frames per second				
TILET	mean	median	variance	min.	
Haar	107.74	109.98	331.46	60.51	
CAMSHIFT	394.4	403.9	1402.99	161.5	
Shape	125.62	130.11	198.81	36.98	
Skin	774.4	732.5	48210.8	157.7	

Robustness

#	Background	Lighting conditions	Gesture	Speed	Result
1	Simple	Normal	Exposé	Slow	+
2	Simple	Normal	Exposé	Fast	+
3	Simple	Overexp.	Move	Slow	+
4	Simple	Overexp.	Exposé	Slow	+
5	Simple	Underexp.	Exposé	Slow	+

Combined execution time

We combined the *worst* possible frame rates for all methods – it could be only better in practice – and we observe that our implementation is definitely real-time capable: the median is over **45 fps** on a MacBook Pro with 2.4 GHz Intel Core 2 Duo / 4 GB / integrated camera. The software was written with Python 2.7 and OpenCV 2.4.6.

Underexp. 6 Skin-colored Exposé Fast +(Noise) Changing Exposé Moving Slow 7 +Reflections Underexp. Exposé Fast +8 Reflections Underexp. Move Slow 9 10 Reflections Move Normal Slow +

Reference videos available online.

The <i>boxplot</i> for the combined execution time								
\bigcirc	\mathbf{O}		┣	[
20	25	30	35	40	45	50		