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Figure 1: Our approach vs. a real image with bokeh. Left: input image, middle: result of our simulation, right:
gold standard image, captured with the same lens as the input image, but with a large aperture, yielding natural
background blur.

ABSTRACT
In this work we simulate background blur in photographs through a coarse estimation of a depth map. As our
input is a single portrait picture, we constraint our objects to humans first and utilise skin detection. A further
extension alleviates this. With auxiliary user input we further refine our depth map estimate to a full-fledged
foreground–background segmentation. This enables the computation of the actual blurred image at the very end of
our pipeline.
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1 INTRODUCTION

High-quality portrait photography often features a spe-
cial kind of background blur, called bokeh. Its nature
originates from the shape of camera lenses, aperture, dis-
tance to background objects, and their distinctive light
and shadow patterns. This effect is thus used for artistic
purposes, it separates the object the lens is focused on
from the background and helps the viewer to concen-
trate on the foreground object—the actual subject of the
photograph.

We do not render a depth-of-field blur in a 3D scene,
but pursue a different approach. Our input is a single
2D image without additional data—no depth field, no
IR channel, no further views. Of course, a full 3D re-
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construction is impossible in this case. But how could
additional information help?

We restrict our choice of pictures to portraits of humans
(though, Figs. 7 and 8 try out something different). We
know, the image has a foreground where typically our
human is pictured, and background that we would like
to segment out and blur. We detect human skin colour
for initialisation and engage further tricks—including
user annotations—we detail below to find the watershed
between foreground and background.

The central contribution of this work is the way how
we combine skin detection, user annotations, and edge-
preserving filters to obtain bluring masks, the coarse
depth maps from a single image.

The next section handles related work, Section 3 presents
our method, Section 4 shows the results, Section 5
presents the discussion, Section 6 concludes.

2 RELATED WORK
One of the first approaches for simulating bokeh effect
were Potmesil and Chakravarty [PC81]; Cook [Coo86].
Most typical simulations of camera background blur
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Figure 2: An overview of our approach. Everything that has skin colour is detected as foreground, then we add
everything else where the user input matches on an image blurred in an edge-preserving manner. The different
results are combined to a single mask. The mask and original input image are the input for bokeh simulation.

base on a full-fledged 3D scene, some of more recent
methods are Wu et al. [Wu+12]; Moersch and Hamilton
[MH14]. Yu [Yu04]; Liu and Rokne [LR12]; McIntosh,
Riecke, and DiPaola [MRD12] discuss bokeh effect as a
post-processing technique in rendering. This is different
from our approach.

Nasse [Nas10] provides a nice technical overview of the
bokeh effect. Sivokon and Thorpe [ST14] are concerned
with bokeh effects in aspheric lenses.

Yan, Tien, and Wu [YTW09] are most similar to our
approach, as they are concerned not only with bokeh
computation, but also with foreground–background seg-
mentation. They use a technique called “lazy snapping”
[Li+04], we discuss the differences to our approach in
Section 5.4.

A lot of research focuses on how to compute a realistic
bokeh effect, given an image and its depth map, (see,
e.g., [BFSC04]) It is in fact wrong to use a Gaussian
blur (like [GK07] do) as the resulting image is too soft.

Lanman, Raskar, and Taubin [LRT08] capture the char-
acteristics of bokeh and vignetting using a regular cali-
bration pattern and then apply these data to further im-
ages. We rely on McGraw [McG14] in the actual bokeh
computation from input data and estimated depth maps,
which is a much more synthetic method as detailed be-
low. This work actually focuses on obtaining the mask,
“what to blur” from a single 2D image.

Bae and Durand [BD07] estimate an existing de-focus
effect on images made with small sensors and amplify
it to simulate larger sensors. This includes both the
estimation of the depth map and the generation of a
shallow depth-of-field image. Motivation of this work
is very similar to ours, but the method is completely
different. They estimate existing small defocus effects
from the image and then amplify them using Gaussian
blur.

Notably, Zhu et al. [Zhu+13] do the reverse of our ap-
proach. We estimate with some assumptions about the
images and further inputs the foreground–background
segmentation to compute then the depth-of-field effect.
Zhu et al. estimate the foreground–background segmen-
tation from shallow depth-of-field images. Works like
Zhang and Cham [ZC12] concentrate on “refocusing,”
i.e., on detecting unsharp areas in a picture and on mak-
ing the unsharp areas more sharp.

Saxena, Chung, and Ng [SCN07] present a supervised
learning approach to the depth map estimation. This
is different from our method. Saxena, Chung, and Ng
divide the visual clues in the image into relative and
absolute depth clues—evidences for difference of depth
between the patches or for an “actual” depth. They
use then a probabilistic model to integrate the clues to
a unified depth image. This work does not focus on
the computation of the shallow depth-of-field image.
Eigen, Puhrsch, and Fergus [EPF14] use deep learning
technique. A sophisticated neural network is trained
on existing RGB+D datasets and evaluated on a set of
other images from the same datasets. This is radically
different from our approach. Aside from the presence of
humans in the picture we make no further assumptions
and utilize no previously computed knowledge. We have
to use some auxiliary user input though. Eigen, Puhrsch,
and Fergus [EPF14] also do not focus on the generation
of shallow depth-of-field image.

3 METHOD
We chain multiple methods. First, the foreground mask
expands to everything in the input image that has a skin
colour. This way, we identify hands and other body parts
showing skin. We expand the selection by selecting
further pixels of the similar colour in the vicinity of
already selected ones—we need to select all the skin,
not just some especially good illuminated parts.



However, all this does not help with selection of clothes,
as it can be of any colour or shape, a further problem
is hair. For this sake we have allowed user input for
the annotations of definitely foreground and definitely
background areas. An attempt to expand the annota-
tion (à la “magic brush” selection in photo-editing soft-
ware) based on the actual input image would result in
too small “cells” on some occasions and hence too much
hysteresis—think: canny edge detection. For this rea-
son we apply an edge preserving blur to the image used
as input for “magic brush.” This ensures higher-quality
depth maps, separating the foreground (actual subject)
and background. Given the depth map and initial input
image, we apply the method of McGraw [McG14] to
obtain the actual blurred image.

The “cells” we have mentioned above are actually re-
gions with higher frequency than elsewhere in the image,
that is: regions where edge detection would find a lot of
edges. We futher discuss this issue in Section 5.3. An
overview of our pipeline is in Figure 2.

3.1 Parts of our pipeline
Filtering approaches increase the edge awareness of our
estimation. We use egde-preserving filtering [BYA15]
as a part of our pipeline. Skin detection [EMH15] was
part of our pipeline (see also [Bra98]). The depth maps
were also processed with standard methods like erosion
and dilation.

3.2 Neighbourhood detection
To detect similar-coloured pixels in the vicinity of pixels
already present in the mask, we used the von Neumann
neighbourhood (i.e., 4-connected). We used HSV colour
space, the folklore solution for human skin detection.
A naive implementation evidenced hysteresis: a pixel
is deselected as it is deemed as background, but it is se-
lected again because it has a similar colour as foreground.
To amend this problem, we utilised canny edge detection
on the image after edge-preserving blur. This reduces
the number of falsely detected small edges. Now, in
the von Neumann neighbourhood computation we check
additionally if a pixel or its neighbours are on the edge.
It is the case, we exclude these pixels from further pro-
cessing.

3.3 The pipeline executed (Fig. 3)
Figure 3 demonstrates the processing steps on an ex-
ample image (a). Fig. (b) shows the result of edge-
preserving blur, the edge detection applied to it yields
(d). Some parts of the image are already selected via
skin detection (c). Basing on edges and user input, a full
shape can be selected (e). We do not limit our approach
to a single shape and to foreground only, as (f) shows.
These intermediate results are then processed with ero-
sion and dilation image filters, yielding (g). This final

depth map is then applied to the input image (a) using
the method of McGraw [McG14]. The final result is in
(h).

4 RESULTS
4.1 Selfies
Our method works best on selfie-like images. Such
images typically feature relatively large subject heads,
further selfies are mostly captured on a mobile phone,
thus they have a large depth-of-field. This fact makes
them very suitable for an artistic bokeh simulation that
is impossible to achieve with hardware settings in this
case.
The input and reference images in Figure 1 were shot on
a Canon 6D full-frame camera at 200 mm focal distance.
To mimic the large depth-of-field of lesser cameras, the
input image was captured at f/32, the reference image
was captured at f/4 to showcase the real bokeh effect.
The images were produced with Canon EF 70–200 mm
f/4L lens. Our method works fine also when the head
is relatively smaller in the whole picture (Fig. 4).
Featuring more than one person in a photograph is not a
problem for our method, as Fig. 5 shows.

4.2 Multiple depths
Our depth maps facilitate not only a foreground–back-
ground segmentation, as showcased in Figs. 3, 6, and 7.
The input for Figure 6 was captured on a mobile phone
and because of small sensor size it features a greater
depth of field. Porting out application to mobile phones
might be a promising way of using it. Fig. 7 also features
multiple depth levels, we discuss it below.

5 DISCUSSION
We discuss following issues: how our method performs
on non-human subjects of a photograph (Sec. 5.1), the
issues with thin locks of hair (Sec. 5.2), we give more
details on the cases when edge detection does not per-
form well (Sec. 5.3). Then we compare our method to
“lazy snapping” (Sec. 5.4) and the result of our method
to a real photograph with bokeh effect (Sec. 5.5).

5.1 Non-humans
We applied our method to Figs. 7 and 8. Naturally,
no skin detection was possible here. The masks were
created with user annotations on images after edge-
preserving blur with canny edge detection as separator
for different kinds of objects.
Note that in both examples, in case of the real shallow
depth of field image, the table surface (Fig. 7) or soil
(Fig. 8) would feature an area that is in-focus, as the
focal plane crosses the table top or the ground. This is
not the case in our images, as only the relevant objects
were selected as foreground. Of course, it would be easy
to simulate this realistic bokeh effect using a simple
further processing of the depth map.



(a) Input image (b) Result of edge-preserving blur (c) Skin detection (d) Canny edges

(e) Depth map,
an intermediate state

(f) Adding a further level to the
depth map, an intermediate state

(g) Final depth map (h) Final result

Figure 3: Results of various intermediate steps of our pipeline. Input image (a) was captured at 27 mm full-frame
equivalent at f/2.8 on a compact camera with crop factor 5.5. The binary foreground–background segmentation
mask is in Fig. (g), final result with bokeh effect applied is in (h).

(a) Input image (b) Mask (c) Result

Figure 4: Filtering an image with head and shoulders. Input image (a) was captured using 57 mm full-frame
equivalent lens at f/4.5 with crop factor 1.5.

(a) Input image (b) Mask (c) Result

Figure 5: Two persons in a photograph. Input image was captured at 43 mm focal distance equivalent on a full-frame,
f/5.6, crop factor 1.5.

5.2 Hair
Thin flocks of hair cannot be easily detected, esp. on
a nosily background. Automatic or annotation-based
selection of such hair parts features a larger problem.
Naturally, anything not present in the foreground se-
lection enjoys background treatment during the actual
bokeh simulation. One of most prominent visuals for
such a side effect is Figure 9, even though some other
our examples also showcase this issue.

5.3 Obstacles for edge detection
We use canny edge detection after an edge-preserving
blur to separate “meaningful” edges from nonsense ones.
This is basically the object segmentation that determines
the boundaries of “cells” on which user annotations act.
If an image features a lot of contrasts that survive the
blur per Badri, Yahia, and Aboutajdine [BYA15], the
user would require to perform more interactions than
desired, as the intermediate result features too many



(a) Input image (b) Mask (c) Result

Figure 6: Showcasing more than a foreground and background separation. Input image captured on a mobile phone.
The big plant on the left has a further depth level assigned.

(a) Input image (b) Mask (c) Result

Figure 7: Showcasing more than a foreground and background separation. This image has no humans on it. Input
image (a) was captured at 27 mm full-frame equivalent at f/2.8 on a compact camera with crop factor 5.5.

“cells.” Figure 10 illustrates this issue. Of course, a
fine-tuning of edge-preserving blur parameters would
alleviate this problem. However, we did not want to
give our user any knobs and handles besides the quite
intuitive input method for the “cell” selection, i.e., the
annotations as such.

5.4 Comparison to lazy snapping
Yan, Tien, and Wu [YTW09] use lazy snapping [Li+04]
and face detection for the segmentation. They typically
produce gradients in their depth maps, to alleviate the
issue we mentioned above in Section 5.1.
Lazy snapping uses coarse user annotations, graph cut,
and fine-grain user editing on the resulting boundaries.
In a contrast, we apply skin detection and edge detection
on images blurred in an edge-preserving manner. The
cells after edge detection are then subject to user annota-
tions. We do not allow fine-grain editing of boundaries
and thus drastically reduce the amount of user input, we
are basically satisfied with coarse user annotations.

5.5 Comparison to real bokeh

Compare images in the middle (our approach) and on
the right hand side (ground truth) of Figure 1. We see a
sharper edge in the hair, similarly to the issue discussed
above. There is also a strange halo effect around the
collar of the shirt. A further refinement and processing of
the depth map data could help. Aside from these issues,
the bokeh effect itself is represented quite faithfully. In
an interesting manner, our synthetic image appears to
be more focusing on the subject than the ground truth
image. A possible reason is: the whole subject in our
version is sharp. The ground truth version focuses on the
eyes, but parts of the subject are already unsharp due to
a too shallow depth-of-field: see shirt collar or the hair
on the left. As our version is based on an image with a
large depth-of-field (Fig. 1, left), it does not have these
issues.



(a) Input image (b) Mask (c) Result

Figure 8: Applying our method to a photograph of a dog. By definition, no skin detection was possible. Captured
on a mobile phone.

(a) Input image (b) Mask (c) Result

Figure 9: Limitation of our method: hair. Notice how some hair locks are missing in the mask and are blurred away.
Captured at 69 mm full-frame equivalent at f/4.8 with crop factor 1.5.

(a) Input image (b) Canny edges

Figure 10: Limitation of our method: obstacles for edge detection. Input image (a) was captured at 82 mm full-frame
equivalent at f/6.3 with crop factor 1.5. Note how the plaid shirt forms separate cells after canny edge detection (b),
necessitating a larger annotation.

6 CONCLUSIONS

We have combined skin detection with user annotations
to facilitate a coarse depth map generation from a sin-
gle 2D image without additional modalities. The user
input was processed on an extra layer after edge-aware
blurring. In other words, we have enabled foreground–
background separation through image processing and
computer vision techniques and minimal user input. The
resulting depth maps were then subsequently used to pro-

cess the input image with a simulation of out-of-focus
lens blur. Combined, we create a well-known lens effect
(“bokeh”) from single-image 2D portraits.

Future work
A mobile phone-based application might be of an in-
terest, considering the selfie boom. Some UI tweaks
like a fast preview loop after each user input and general
performance improvements might be helpful in this case.



Face detection could be useful in general and for better
handling of hair—we would use different parameters in
the pipeline around the head, i.e., for hair, than every-
where else. Correct hair selection is probably the best
area to further improve our work.

Further, our application benefits from any improvements
in skin detection, edge-preserving blur, or bokeh simula-
tion.
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