
Towards an Implementation of a Computer
Algebra System in a Functional Language

Oleg Lobachev and Rita Loogen

Philipps–Universität Marburg, Fachbereich Mathematik und Informatik
Hans–Mehrwein–Straße, D–35032 Marburg, Germany
{lobachev,loogen}@informatik.uni-marburg.de

Abstract. This paper discusses the pros and cons of using a functional
language for implementing a computer algebra system. The contributions
of the paper are twofold. Firstly, we discuss some language–centered
design aspects of a computer algebra system — the “language unity”
concept. Secondly, we provide an implementation of a fast polynomial
multiplication algorithm, which is one of the core elements of a computer
algebra system. The goal of the paper is to test the feasibility of an
implementation of (some elements of) a computer algebra system in a
modern functional language.
Keywords: computer algebra, software technology, language and system
design.

1 Introduction

With the flow of the history of computing, exact methods gained more and more
importance. It was clear since almost the beginning, that imprecise, numerical
operations may and will fail. The Wilkinson Monster

∏20
j=1(x−j) is a nice – and

old! [45,46] – example for the thesis “the way we compute it matters”. One of the
crucial points of computer algebra systems (CAS) is the implementation of fast
algorithms. One of the core algorithms is fast multiplication, be it of numbers
or of polynomials. Current approaches include methods by Karatsuba, Toom
and Cook [20, 44, 24] and Schönhage and Strassen [38, 37]. An implementation
of the latter in the functional language Haskell [33] is presented in this paper
to test the suitability of functional languages for implementing computer alge-
bra algorithms. Our vision is an open-source flexible computer algebra system,
that can easily be maintained, extended and optimised by the computer alge-
bra community. The mainstream computer algebra systems like Maple [34] or
Mathematica [47] provide highly optimised routines with interesting but hidden
implementation details. However, the closed–source nature of such systems does
not enable us to analyse their internals. On the contrary, the following mod-
ern CAS are examples for systems with freely available source code: CoCoA [8],
DoCon [27], GAP [11], and GiNaC [16,13]. Our approach follows the philosophy of
the GiNaC library, which extends a given language (C++) by a set of algebraic
capabilities, instead of inventing a separate interface language for that purpose.



We plan to implement a computer algebra system in a modern functional lan-
guage like Haskell. Several features of such languages, like lazy evaluation, im-
prove numerical computations [5,6]. Lazy evaluation is also helpful for designing
algorithms in scientific computing [22]. Other features could as well be useful for
a CAS [28]. Incidentally, both functional programming languages [25,42,29,2,35]
and computer algebra systems [15, 14, 18, 39] are present in the field of parallel
and distributed computing.

Plan Of The Paper

The second section discusses the benefits of functional languages for implement-
ing computer algebra algorithms. Section 3 pushes the language unity concept
for CAS, i.e. choosing the same language for implementing and using a CAS.
Section 4 presents a few case studies. We

a) compare different Haskell implementations of polynomial multiplication,
b) compare Haskell and imperative implementations for computing factorials,
c) consider the FFT–based implementation of polynomial multiplication by

Schönhage and Strassen.

Section 5 concludes the paper. Code samples are presented in Figures 3 and 4
in Section 4.

2 Advantages of Functional Languages

We consider Haskell [33] as a base of our thoughts. Some of the key features of
most functional programming languages, all of them found in Haskell, are:

– Lazy evaluation means that no expression is evaluated if it is not required.
This can be combined with memorisation, when no expression is evalu-
ated more than once. We should think of lazy evaluation as of a double–
edged sword. Indeed it reduces the amount of required computations and
the end user of the CAS has the freedom of writing his/her own programs
in a way more corresponding to standard mathematical nomenclature. How-
ever, worse performance will be observed, if lazy evaluation fails to out-
weigh its overhead by skipping evaluations. A detailed comparison is beyond
the scope of this paper. However nice applications of lazy evaluation in the
context of scientific computing can be found in papers by Jerzy Karczmar-
czuk [21,22,23]

– Functional languages provide infinite data structures, notably: lists. Such
lists can be easily implemented with lazy evaluation. Infinite data struc-
tures enable “more mathematical” definitions of e. g. sequences and series.
On the one hand, this means “more conforming to the current mathemat-
ical nomenclature” as in e.g. factorial n = product [1..n] and, on the



other hand, “nice in describing typical mathematical concepts” including in-
finite sequences. A classical example for this is fibs = 0 : 1 : zipWith
(+) fibs (tail fibs)1.

– Referential transparency enables a “more mathematical” semantics: for func-
tion f, f(5) has the same value, whenever it is evaluated, pretty much as
f(5) in a mathematical notation. Consider an example in C.

int i = 5;
i = ++i + i++;

This example is rather unnatural, but the result value of i depends on the
implementation – try it in any imperative language of your choice. In a pure
functional language, such dubious definitions are not possible.

– In the context if a CAS strong typing gives some benefits. For example, it
is possible to produce an error at compile time for a product of matrices
of incompatible dimensions. On the other hand, type inference is possible.
However there are some problems with Haskell type system in a computer
algebra context. For instance, if you define a factor ring over a commutative
ring, it may or may be not a field: it depends on the properties of the ideal. If
rings, domains, etc. are defined as types, the Haskell type system would not
be able to determine at compile time, whether this instance of type “factor
ring” is a field or not. Papers by S. Mechveliani, for instance [26], discuss
this problem and suggest an appropriate solution.

– Haskell’s hierarchical module system, being a rather software engineering
issue, provides the possibility to structure large programs efficiently.

– Another benefit of modern functional languages is the possibility to prove
the correctness of implementations.

3 The Two Languages of a CAS

Computer algebra systems possess two different languages, we shall call them in
this paper as follows. The internal language of a CAS is the language the system
is written in, the implementation language. Since the end user of the CAS wants
to perform some kind of programming, there is also a second language. The
external language of a CAS is the language for user interaction, the interface
language. The idea of “language unity” is to utilise the same language for both
purposes, i.e. as internal and as external language.

It is desirable to write as much as possible of the CAS itself in its external
language. This gives the user the opportunity to inspect and (if needed) to
modify some external functions of the CAS. However, for several reasons, this is
impossible in most CAS. Firstly, the external language of most CAS is “weaker”
than their internal one in the sense that some technical things may be hard
or even impossible. On the other hand, the external language is better suited
for the typical computer algebra operations: we may expect, e. g. polynomials
and matrices as native objects or an interesting handling of lists, non–existent
1 See http://haskell.org/haskellwiki/The_Fibonacci_sequence for a sublinear
time implementation of the same sequence.



in the internal language of the CAS if this language is imperative. Especially
advanced features like type safety and generic programming are desired in the
external language. A recent development is to utilise a general purpose dynamic
language like Ruby [10], Groovy [3] or Python [43] for interconnecting different
programs, building a composite computer algebra system [40].

Secondly, unfortunately, the external language of most CAS is not as fast as
the internal one. The cause may be the interpreted origin of these languages or
their very high level nature. This is often avoided by compiling the input files to
some kind of byte code. Other speedup approaches compromise the extensibility.
The implementation of the S programming language for statistical computations,
GNU R, utilises a Scheme dialect as its external language. The whole R system
could be implemented in Scheme. But because of performance lack in core oper-
ations, these are replaced with function calls from the bundled C library. These
functions can still be overloaded and replaced by the user’s own version, but
one cannot simply look into the routines, which are sped up this way. There is
also a third option: to use a functional language and to perform optimisations in
the language compiler typical for a functional language. This way our external
language could be feature–rich and reasonably fast, but it will have the price of
writing a, say, LISP interpreter in an imperative language.

An interesting approach in this field was taken by Christian Bauer, Alexander
Frink, Richard Kreckel et al., the developers of GiNaC [4, 13]. This computer
algebra system was written in C++ and it maintains C++ as its main interface.
It is made in a very simple way: GiNaC is rather a computer algebra library,
than a complete system. So the primary use of GiNaC is to give one a possibility
of writing his/her own C++ programs, while using arbitrary precision numbers,
polynomials, matrices, expression evaluation and other nice and fast computer
algebra functions, offered by the GiNaC library. As the authors of GiNaC state:

Its design is revolutionary in a sense that contrary to other CAS it does
not try to provide extensive algebraic capabilities and a simple program-
ming language, but instead accepts a given language (C++) and extends
it by a set of algebraic capabilities.

This approach is very interesting and powerful, but the interactive front end
program of GiNaC, the ginsh, is less powerful due to a rather weak language. It
was, however, never intended to be a complete GiNaC interface. The possibility
to use all the GiNaC features at an interactive prompt requires a C++ interpreter.
While interpreting C++ is not very nice (although possible: see e.g. [9])2, it is much
easier with Haskell: aside from the glorious Glasgow Haskell Compiler [12],
we have Hugs, the Haskell interpreter. Also GHC itself offers an interactive
version, GHCi. The latter is capable of loading pre-compiled object files into the
interpreted environment. With this achievement one has the possibility to write
a computer algebra system, whose external interface language equals its internal
implementation language, and this language is a functional one.
2 There is also a third party GiNaC interface language project,
http://swiginac.berlios.de/.



The idea of GiNaC was not born in vain: most long CAS–supported com-
putations are run in “batch mode”, with no user interaction. It seems plausible
not to wait in front of a command prompt for the result for hours, days or even
months.3 On the other hand, most of CAS–based development is done in an
interactive environment, in a “shell”. If one could use the same language both
for developing and for lengthy computations, this would be a major success in
saving developers’ work time [32] and gaining stability of computations.

Now why not just make both: a compiler and an interpreter of CAS’ external
language? The problem is, that despite many efforts, the external languages of
computer algebra systems are slow. On the other hand, we already have a fast
language in our CAS–developing project. This is the language, the CAS itself
is written in, the internal language. One may oppose, however, the whole game
with computer algebra system’s external language was started, because the in-
ternal language was not high–level enough for vectors, matrices, polynomials
and all the other expressions, which are eagerly wanted in a full–fledged CAS.
Now we come back to the beginning of this paper. Functional languages are
complicated and high–level enough to have all the aforementioned objects and
properties [33,41,27,7,17]. Functional languages have very compact code size and
rapid development times [32]. Most functional languages have very interesting
data structures and language design features, which benefit both featuring them
as an internal or as an external language, see [31] for details. And some modern
functional languages already have an efficient compiler and an interpreter im-
plemented, which leads us to the future goal of internal and external language
fusion. Haskell is an example of a such language.

Concluding: an implementation of a CAS in a functional language utilising
the above “language unity” concept will greatly reduce code size and improve
readability, at the same time it shall not reduce the performance significantly. In
order to test the feasibility of these assumptions we consider several case studies.

4 First Case Studies

Now as we have seen some theoretical reasons for a CAS to be implemented
in Haskell, let’s take a look at some examples. At first we shall examine the
univariate polynomials. One can hardly imagine a computer algebra system with-
out them, polynomials are used in thousands of higher–level algorithms and the
operations with the polynomials should be fast. Unfortunately as of today nei-
ther of available Haskell software packages implementing univariate polynomi-
als uses sub–quadratic algorithms like Karatsuba4, Toom–Cook or Schönhage–
Strassen algorithms. As one of the examples we demonstrate an implementation
3 In this case one might think of porting his/her CAS–based program to some low–
level language and let, say, FORTRAN run the number–crunching mills. However this
is a highly interactive and bug–ridden process. And the FORTRAN program is to be
tested for errors again, before the real computations may begin: the thoroughly
tested CAS–routines are not enough!

4 Although an implementation of this algorithm in Haskell was presented in [19,36].



of Schönhage–Strassen algorithm in Haskell. But first we look at the schoolbook
case.

All the tests were run on the same machine5 with the same compiler –
GHC 6.8.2. For the same n, each test was run ten times and the mean value
of measured execution time has been determined. We utilise standard Haskell
lists for representing the polynomials. The complete system would use some kind
of generalisation layer, probably based on type classes, to abstract the implemen-
tation from the given representation. It would be sufficient to redefine the few
standard functions on lists to obtain the implementation of the same algorithm
for yet another data structure. No modification of the presented code would then
be required.

4.1 Naive Polynomial Multiplication

We have tested four different O(n2) implementations:

1. our own naive implementation with lists of integers
2. our naive implementation, modified à la Numeric Prelude,
3. the implementation from Haskell for Math [1],
4. the implementation from Numeric Prelude [41].

We multiply two dense univariate (n − 1)–grade polynomials with random co-
efficients. The coefficients are random signed 32–bit integers: what we test here
are the polynomial multiplication implementations, not the hardware multiplica-
tion of small integers, nor even different libraries for arbitrary precision integers.
Nor do we test the quadratic algorithms – they all represent pretty the same
“school” multiplication – or compiler options, but the impact of the particular
implementation decisions on the performance. The naive implementation uses a
“dumb” list of Ints, the other implementations build a chain of types similar to
the algebraic objects. One can e.g. define addition and subtraction for elements
of the additive group, multiplication for elements of this group embedded into
a ring, and finding an inverse for invertible elements of this ring embedded into
a field. An overview of test results is provided in Figure 1. Time is measured
in seconds. The Numeric Prelude implementation is much better than the other
implementations which show similar runtimes. Note that the simplest implemen-
tation is not the fastest one and that the type hierarchy enables optimisations.
Nevertheless, we conclude the strong need for sub–quadratic implementations.

4.2 Computing Factorial

We would like to discuss briefly another example. We take a well–known and very
quickly growing function on integers: the factorial. We have tested the famous
Haskell one–liner factorial n = product [1..n], and two C++ implementa-
tions. Both C++ versions are based on the CLN [16] – the arbitrary precision
library used in GiNaC. One implementation uses the built–in factorial function
5 AMD Athlon 64 X2 4000+ CPU with 1 Gb RAM, running Gentoo Linux.



0 1000 2000 3000 4000 5000

0
2

4
6

8
10

12

Degree, n−1

T
im

e,
 s

ec
on

ds

●● ●

●

●

●

●

● Naive
Modified naive
Haskell for Maths
Numeric Prelude

Fig. 1. Multiplication of univariate polynomials of degree n− 1.
Runtime comparison of naive implementations.

from the CLN. It makes use of table look–ups and computes some parts of the
factorial value in divide and conquer fashion. The other C++ implementation is
not optimised, but it still uses CLN built–in multiplication and large integers.
We find this implementation comparable with the naive Haskell implementa-
tion. Arbitrary long integers are provided in Haskell out of the box. We are not
willing to discuss the details of arbitrary precision arithmetic implementation
in Haskell compiler runtime, our focus is to demonstrate how competitive the
functional approach is. The graphical representation of the obtained results is
shown in Figure 2. The timings of the Haskell version lie in between both C++
versions.



0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0
2

4
6

8
10

12
14

Input

T
im

e,
 s

ec
on

ds

●●● ● ●
●

●

●

●

●

●

●

●

●● Naive C++
Optimized C++
Naive Haskell

Fig. 2. Computing the factorial.

This small example shows that Haskell implementations, even in their sim-
plest and primitive form are competitive with implementations in some industry–
used programming language which are more sophisticated in programming effort.
The optimised version outperforms both naive versions, thus motivating us to
create implementations of fast algorithms in Haskell.

4.3 Fast Polynomial Multiplication

The essence of Schönhage and Strassen’s method for fast polynomial multiplica-
tion6 is the way a convolution is performed. A convolution in C[x] corresponds
to multiplication, as in “each with every”. A convolution in Fourier–transformed

6 . . . over the domains supporting the fast Fourier transform, just like complex num-
bers C. If the domain does not support FFT, the fast multiplication is still possible,
through an implicit algebraic extension of the original domain. For details please
refer to the original paper [38] or a standard book on this topic [44].



fft :: [Complex Double] -> [Complex Double]
fft f = mix [fft (l @+ r), fft ((l @- r)@* w)]

where (l, r) = splitAt (length f ‘div‘ 2) f
mix = concat . transpose
(@+) f g = zipWith (+) f g -- @-, @* analog
-- w is list of powers of an n-th primitive root of unity.

Fig. 3. Implementation of Cooley–Tukey algorithm in Haskell.

(%*%) :: (Num a) => [a] -> [a] -> [a]
(%*%) f g = unlift $ ifft ((fft $ lift f) @* (fft $ lift g))

-- where lift :: (Num a) => [a] -> [Complex Double]
-- unlift :: [Complex Double] -> [Int]
-- ifft is the inverse fft, basicly the same fft with
-- different twiddle factors.
-- And (@*) is still element-wise multiplication

Fig. 4. FFT–based multiplication modulo xn − 1 in Haskell.

space is just a component–wise multiplication. So if we want to compute a prod-
uct of two polynomials, we compute their Fourier transformed (e. g. with the
routine in Figure 3), then multiply the transformed functions component wise
and then, with the inverse Fourier transformation, transform the product back
to a polynomial (Figure 4). The presented version performs twice as well as
the full version at the price of not computing the complete product. However,
the current implementation for computing the full product can be easily ob-
tained from this code. The functions zipWith, splitAt, length, concat and
transpose are provided by Haskell standard libraries. zipWith “zips” two lists
with a supplied binary function, e.g. zipWith (+) [1,2,3] [4,5,6] results in
[5,7,9]. splitAt splits a list into two parts at the provided offset. length re-
turns the length of a list. concat concatenates a list of lists to a list. transpose,
as the name says, transposes a list of lists. The functions lift, unlift, ifft
and (@*) are part of our implementation. The inverse Fourier transformation
is nothing spectacular and is pretty much the forward Fourier transformation
with different values. As the fast Fourier transform (FFT) for a polynomial in
C[x] of degree n − 1 can be performed in O(n log n) time and the component–
wise multiplication in O(n), we can multiply two polynomials of degree n− 1 in
C[x] in O(n log n) time [44]. Due to limitations of the naive implementation we
receive the remainder of the product after the division through xn − 1. But it
is still possible to compute the whole product without changing the asymptotic
complexity, for example, applying one step of the Karatsuba algorithm first, or
just padding both arguments to the length of the product.

The technical representation of a polynomial in our case is a list of coeffi-
cients. The Cooley–Tukey decimation in frequency algorithm is utilised, using a
divide–and–conquer approach for computing the Fourier transform. This is the



0 5000 10000 15000 20000

0
2

4
6

8
10

12

Degree, n−1

T
im

e,
 s

ec
on

ds

●●●

●

●

●

●

● Naive
Modified naive
Haskell for Maths
Numeric Prelude
FFT−based

Fig. 5. Multiplication of dense univariate polynomials of degree n − 1 revised.
Naive Implementations vs. FFT–based. The left side of the plot corresponds to
the Figure 1.

simplest FFT algorithm, there exist some more sophisticated variants [44, 30].
Figure 5 presents the results, we used the same kind of input as in Figure 1. A
sub–quadratic method for polynomial multiplication is definitely superior. The
bottom line is the FFT–based multiplication algorithm, we compute the whole
product. It is clearly visible, that the current FFT algorithm is relying on the
fact, that the length of its input is a power of two. The rapidly ascending lines
correspond to the values shown in Figure 1. Unfortunately, we have no explana-
tion for the decreasing values of the FFT-based algorithm for n ∈ [16000..20000].



Now we have seen a fast polynomial multiplication in Haskell. By using
advanced algorithms we significantly increase the performance, the implemented
functions can be used by any other Haskell program, as we have not tweaked
the compiler. The size of the code base is modest for the task it accomplishes.
This case study shows that it is possible to extend Haskell with further imple-
mentations of fast computer algebra algorithms, obtaining in the end a computer
algebra library. The main interface to this system is the language itself, direct
interaction with the library is possible with an interpreter.

5 Related Work

Writing a computer algebra system in a functional programming language is
not a really new idea. The first generation CAS named Macsyma was written in
LISP 1.5 dialect called MACLISP, and LISP is considered to be the first functional
language ever. Axiom CAS has some interesting aspects. It features an embedded
(although detachable) functional programming language [7]. In addition, it uses
a hierarchical structure of mathematical objects (like: monoid – group – ring –
integrity domain – field) to specify and perform operations on them.

The DoCon computer algebra library [27] is at the first glance very similar to
our intention. It utilises Haskell as implementation language. Being a library,
it also has Haskell as an interface language. However, DoCon pursues a different
goal. DoCon is an algebra framework, implementing different mathematical ob-
jects and their relations, thereby heavily dependent on Haskell’s type system.
For instance, it is easy to define a residue domain modulo some polynomial ideal
in DoCon. However, we focus on the computer algebra algorithms. We would like
to have e.g. a fast polynomial multiplication, while representing the polynomials
as simply as possible. Moreover, we are interested in parallelising our algorithm
implementations. Because of high communication costs, we need to keep the un-
derlying data structures as “dumb” as possible. It will be interesting to utilise
the DoCon approach in our own work and to share our results with the current
DoCon implementation.

6 Conclusions and Future Work

We propose to unify the internal implementation and the external interface lan-
guage of computer algebra systems and to use a functional language to achieve
this integration. The usage of a functional language in a computer algebra field
drastically reduces the size of the source code. Secondly, it does not affect the
performance. Hence, is not required to mix two different languages in an imple-
mentation of a CAS. We have shown that functional programs are competitive
with mainstream imperative programs and significantly easier to develop.

Concerning the performed case studies, a possible direction of the future work
would be the optimisation of the fast Fourier transform. Some practical tests in
the parallel context indicate an optimisation potential in switching to decimation
in time. From the theoretical viewpoint, it will be interesting to reconstruct the



Fourier transformed values in special cases, the so–called pruned FFT algorithm.
It would also be of interest to try other FFT algorithms, for example, the r–radix
implementations.

Concerning the future goals of this work: Modern functional languages and
computer algebra are two rapidly developing research areas, an intersection of
these two areas is highly interesting. A third component to mix into this “cock-
tail” of computational algebra and functional programming topics is parallelism.
Computer algebra applications tend to be quite resource hungry and functional
languages have great potential in parallelism, which is being currently quite
extensively investigated. With respect to our gradually evolving practical imple-
mentation, modern algorithms of computer algebra should be implemented in
relevant Haskell software packages, as a naive implementation typically leads
to asymptotically bad complexity. One should carefully design such implemen-
tations, as design choices play a significant role for the execution times in the
same complexity class. Such choices gain even more on importance in the parallel
setting. The aforementioned algorithms should provide

– fast polynomial multiplication – tackled in this paper,
– fast integer multiplication – our current approach is to use fast polynomial

multiplication,
– efficient Euclid’s algorithm for polynomials,
– efficient vector and matrix computations,
– framework for symbolic computation and object manipulation.

Such foundation will be a solid base for more complex research areas, including

– algorithms of numerical number theory,
– implementation of public key cryptography,
– algorithms of computational algebraic geometry, based on Gröbner bases,
– symbolic integration and summation,
– parallel computations.

As for FFT–based multiplication, we provide our Haskell implementation
of polynomial multiplication, a multiplication routine for arbitrary long integers
based on top of it and an interface script to SCSCP [39] on request.

Acknowledgement

We would like to thank to anonymous referees for their helpful and detailed
comments.

References

1. David Amos. Haskell for Math program. http://www.polyomino.f2s.com/da-
vid/haskell/codeindex.html.

2. Joe Armstrong. Programming Erlang. The Pragmatic Programmers, LLC, 2007.



3. Kenneth Barclay and John Savage. Groovy Programming: An Introduction for Java
Developers. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, 2006.

4. Christian Bauer, Alexander Frink, and Richard Kreckel. Introduction to the GiNaC
Framework for Symbolic Computation within the C++ Programming Language.
J. of Symbolic Computation, 33:1–12, 2002.

5. M. O. Benouamer, D. Michelucci, and B. Peroche. Error-free boundary evaluation
based on a lazy rational arithmetic: a detailed implementation. Computer Aided
Design, 26(6):403–416, 1994.

6. Richard S. Bird, Geraint Jones, and Oege De Moor. More haste, less speed: lazy
versus eager evaluation. J. of Functional Programming, 7(5):541–547, 1997.

7. Manuel Bronstein, James Davenport, Albrecht Fortenbacher, et al. Axiom – the
30 year horizon, 2003. http://portal.axiom-developer.org/public/book2.pdf.

8. A. Capani and G. Niesi. CoCoA 3.0 User’s Manual. Dipartimento di Matematica,
Università di Genova, Via Dodecaneso, 35, I-16146 Genova (Italy), 1995.

9. Cint, the C/C++ interpreter, version 5.16.19.
http://root.cern.ch/root/Cint.html.

10. David Flanagan and Yukihiro Matsumoto. The Ruby Programming Language.
O’Reilly, 2008.

11. The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4.10,
2008.

12. The Glorious Glasgow Haskell Compilation System User’s Guide.
http://www.haskell.org/ghc/docs/latest/users_guide.pdf, February 2008.

13. GiNaC program. http://www.ginac.de.
14. HPC-Grid for Maple program. http://www.maplesoft.com/products/toolbox-

es/HPCgrid/index.aspx.
15. gridmathematica2 program. http://www.wolfram.com/products/gridmathema-

tica/.
16. Bruno Haible and Richard Kreckel. CLN, a class library for numbers manual, 2005.

http://www.ginac.de/CLN/cln.ps.
17. Cordelia Hall, Kevin Hammond, Simon Peyton Jones, and Philip Wadler. European

Symposium On Programming, volume LNCS 788, chapter Type classes in Haskell,
pages 241–256. Springer, April 1994.

18. K. Hammond, A. Al Zain, G. Cooperman, D. Petcu, and P. Trinder. Symgrid:
a framework for symbolic computation on the grid. LNCS 4703. EuroPar’07 –
European Conf. on Parallel Processing, Rennes, France, Spinger-Verlag, August
2007.

19. Christoph A. Herrmann and Chrisitan Lengauer. HDC: A Higher–Order Language
for Divide–and-Conquer. Parallel Processing Letters, 10(22):239–250, 2000.

20. A. Karatsuba and Yu. Ofman. Multiplication of many-digital numbers by auto-
matic computers. Doklady Akad. Nauk SSSR, 145:293–294, 1962. Translation in
Physics–Doklady 7, 595–596, 1963.

21. Jerzy Karczmarczuk. The most unreliable technique in the world to compute pi,
1998.

22. Jerzy Karczmarczuk. Scientific computation and functional programming. Com-
puting in Science & Engineering, 1(3):64–72, May/June 1999.

23. Jerzy Karczmarczuk. Functional differentiation of computer programs. Higher–
Order and Symbolic Computation, 14(1):35–57, 2001.

24. Donald E. Knuth. The Art of Computer Programming, volume 2. Addison–Wesley,
third edition, 1998.

25. Rita Loogen, Yolanda Ortega-Mallén, and Ricardo Peña-Marí. Parallel Functional
Programming in Eden. Journal of Functional Programming, 15(3):431–475, 2005.



26. Serge D. Mechveliani. Haskell and computer algebra. Manuscript, 2000. Pereslavl-
Zalessky, Russia.

27. Serge D. Mechveliani. DoCon. The Algebraic Domain Constructor Manual. Pro-
gram Systems Institute, Pereslavl–Zalessky, Russia, 2007. Version 2.11.

28. Gérard Milmeister. Functional kernels with modules. Master’s thesis, ETH Zürich,
1995.

29. R. S. Nikhil, L. A. Arvind, J. Hicks, S. Aditya, L. Augustsson, J. Maessen, and
Y. Zhou. pH Language Reference Manual, Version 1.0. Massachusetts Institute of
Technology, 1995. Computation Structures Group Memo No. 396.

30. H. J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Springer,
Berlin, 1981.

31. Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,
1998.

32. M. P. Jones P. Hudak. Haskell vs. Ada vs. C++ vs. awk vs.. . . An experiment
in software prototyping productivity. Yale University, Department of Computer
Science, July 1994.

33. Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press, December 2003.

34. Darren Redfern. The Maple Handbook: Maple V Release 4. Springer, December
1995.

35. Peter Van Roy, editor. Multiparadigm Programming in Mozart/Oz. Second Inter-
national Conference, MOZ, 2004.

36. Christian Schaller. Elimination von Funktionen höherer Ordnung in Haskell–
Programmen. Master’s thesis, Universität Passau, September 1998.

37. Arnold Schönhage. Asymptotically fast algorithms for the numerical multiplication
and division of polynomials with complex coefficients. volume 144 of Lect. Notes
Comp. Sci., pages 3–15. EUROCAM ’82: European Computer Algebra Conference
(Marseille, France), April 1982.

38. Arnold Schönhage and Volker Strassen. Schnelle Multiplikation großer Zahlen.
Computing, 7(3–4):281–292, 1971.

39. Symbolic Computation Infrastructure for Europe project. http://www.symbo-
lic-computation.org/.

40. William Stein. Sage: Open Source Mathematical Software (Version 2.10.2). The
Sage Group, 2008. http://www.sagemath.org.

41. Dylan Thurston and Henning Thielemann. Haskell Numeric Prelude program.
http://darcs.haskell.org/numericprelude/.

42. Philip W. Trinder, Ed. Barry Jr., M. Kei Davis, Kevin Hammond, Sahalu B. Ju-
naidu, Ulrike Klusik, Hans-Wolfgang Loidl, and Simon L. Peyton Jones. GpH: An
Architecture–Independent Functional Language. In Glasgow Functional Program-
ming Workshop, Pitlochry, Scotland, September 1998.

43. Guido van Rossum. The Python Language Reference Manual. Network Theory
Ltd., 2006.

44. Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cam-
bridge University Press, second edition, 2003.

45. J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice Hall, 1963.
46. J. H. Wilkinson. The perfidious polynomial. In G. H. Golub, editor, Studies in

Numerical Analysis, volume 24, pages 1–28. Mathematical Association of America,
Washington, D. C., 1984.

47. Stephen Wolfram. Mathematica: a system for doing mathematics by computer.
Wolfram Research, Inc., 1991.


	Towards an Implementation of a Computer Algebra System in a Functional Language
	Oleg Lobachev and Rita Loogen

