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Abstract

In this paper we introduce our estimation method for parallel execution times,
based on identifying separate “parts” of the work done by parallel programs.
Our run time analysis works without any source code inspection. The time of
parallel program execution is expressed in terms of the sequential work and the
parallel penalty. We measure these values for different problem sizes and numbers
of processors and estimate them for unknown values in both dimensions using
statistical methods. This allows us to predict parallel execution time for unknown
inputs and non-available processor numbers with high precision. Our prediction
methods require orders of magnitude less data points than existing approaches.
We verified our approach on parallel machines ranging from a multicore computer
to a peta-scale supercomputer.

Another useful application of our formalism is a new measure of parallel
program quality. We analyse the values for parallel penalty both for growing
input size and for increasing numbers of processing elements. From these data,
conclusions on parallel performance and scalability are drawn.
Keywords: parallel run time estimation, scalability measure

1. Introduction

Since Amdahl’s law [3, 25] the quest for modelling parallel performance is
open. Kumar and Gupta presented a nice summary of existing approaches [35, 22].
We suggest a model for a subdivision of parallel execution time into “good” and
“bad” parts. Contrary to the popular thought of parallel run time being the
sequential one “sped up” to some factor less than the number of processing
elements, we envision parallel run time as the sequential “work” distributed over
a number of processing elements plus an additional penalty term.
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The first goal of this paper is an accurate prediction of parallel run times for
new input sizes and for non-available numbers of processors. Our approach is to
measure additionally the sequential work and to obtain the parallel overhead for
a set of sample input sizes or sample numbers of processors. Statistical techniques
are then used to extrapolate and to estimate the values for further input sizes or
other numbers of processors. As the parallel execution time is straightforwardly
expressed in terms of these values, this enables the precise forecast of parallel
run time. To our knowledge we are the first to propose such kind of a division of
parallel execution time into components. Related approaches either assign cost to
basic elements of a parallel program [7, 47, 15, 40] or predict execution time as a
single entity [48, 28, 27]. Our method differs from both these research directions.
We do not use that many components; they are not directly expressing, e.g.,
message passing latency or network throughput. But still we are splitting the
parallel execution time into sequential work and parallel overhead, instead of
predicting the parallel execution time directly. A further benefit: our approach,
basing on statistical techniques, requires orders of magnitude less data points
than other approaches from the literature. We also call the parallel overhead
term a “parallel penalty”.

Secondly, we introduce here the parallel overhead term. Used as a measure
for the scalability, it provides insight into the performance properties of parallel
programs. Is the “bad” part increasing, bottlenecks or similar problems in the
code are likely. However, identifying them is beyond the scope of this work. A
related approach is the serial fraction [30], however, as discussed in Section 5, it
is different from the parallel penalty.

We show the practicality of our approach for selected programs from scientific
computing, either implemented in C+MPI [49] and run on a supercomputer
(Section 4.2) and on a network of Sun workstations (Section 4.6), or implemented
in the parallel functional programming language Eden [41] and run on multicore
machines (Sections 4.1, 4.3, 4.4, and 4.5). The latter programs are parallelised
using standard algorithmic skeletons [14] from Eden’s skeleton library [40, 23].
Although our Eden system is used for the majority of the experiments, our
approach is completely language-independent. We chose our applications to be
non-trivial, in fact we use real-life codes from parallel computing projects.

Our technique—as this paper demonstrates—is applicable to any parallel
system, ranging from a multicore machine to a supercomputer. In a contrast to
a typical execution time prediction, we treat workload–hardware combination
as a black box. This is novel. We intentionally avoid using the knowledge of an
algorithm structure—though specialisations of our method are viable [38].

This paper is structured as follows. In Section 2, we present formulae for
expressing execution time and work. Section 3 discusses the way of estimating the
workload and parallel penalty from a number of execution time measurements.
We present six scientific computing examples and predict their execution times
in Section 4. Section 5 compares our approach with the serial fraction approach
by Karp and Flatt [30]. Further related work is considered in Section 6, Section 7
gives an outlook on future work, Section 8 concludes.
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2. Execution Time Estimation

Let n denote the input size2 and p the number of processing elements (PEs).
The work of a program is denoted by W (n), the sequential execution time by T (n).
We assume that T (n) = W (n). The common notation for execution time on p
PEs is T (n, p). We denote the work done with p PEs by W (n, p) and assume that
W (n, p) = p T (n, p). In a parallel execution, the sequential work is distributed
over p PEs. The distribution causes a total parallel overhead denoted by A(n, p)
(see [22]) which is however also distributed over the parallel PEs. We call the
parallel overhead per PE, Ā(n, p), i.e., A(n, p) = p Ā(n, p). We can now express
T (n, p) as

T (n, p) = T (n)/p + Ā(n, p). (1)

The total amount of work performed on p PEs is

W (n, p) = T (n) + p Ā(n, p) = T (n) + A(n, p).

Our goal is to find good approximations for T (n) and Ā(n, p) to estimate
the parallel run time T (n, p) using Equation 1. Moreover, we will use Ā(n, p)
as a measure for scalability. As Ā(n, p) depends on two parameters, we will
investigate the behaviour of Ā(n, p) depending on one of its parameters while
the other one is fixed.

The distinction between the sequential time T (n) and the “parallel” time on
a single PE T (n, 1) is essential for distinguishing between the absolute speedup
T (n)/T (n, p) and the relative speedup T (n, 1)/T (n, p), the latter usually being
higher than the former because of the overhead of the parallel system on a
single PE. Analogously we distinguish between an absolute reference point for
our estimations, using sequential time T (n), and a relative reference point, when
T (n, 1) is used.

The parallel overhead may be significantly different on different PEs, which
seems to be not reflected in our model. Our goal is not to capture an array of
local parallel overheads for each of the PEs, but to capture how the total parallel
overhead A changes with increasing number of processors p. The relation of the
total parallel overhead A(n, p) to our measure Ā(n, p) = A(n, p)/p is similar to
the relation of the speedup T (n)/T (n, p) to the efficiency T (n)/(p T (n, p)).

3. Methodology

Estimation procedure. We estimate T (n) and Ā(n, p). Our aim is to find separate
approximations for these two terms, as T (n) and Ā(n, p) have a different nature.
In order to do so, we determine several values of T (n) and Ā(n, p), then we use
statistical techniques on the resulting data sets. The results are combined to
form an estimation of T (n, p) using Equation (1).

2The value of n is the input size in our programs, however for the statistical methods it is
rather an unique designation of the input. For two radically different, e.g., randomly generated,
inputs of approximately the same size the values of n should be different.
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How do we obtain values for Ā(n, p)? By transforming Equation 1 we get

Ā(n, p) = T (n, p) − T (n)/p.

Thus, we can compute the parallel overhead per PE from the total parallel run
time for p PEs minus the sequential run time divided by p, where these values
can be measured or estimated. Note that Ā(n, p) depends on p.

The shape of Ā(n, p) is the key to rating the parallel performance quality.
As this penalty term depends on both the problem size n and the number of
PEs p, it is important that it does not increase for growing p. Otherwise, the
implementation does not scale well. We detail on this in Section 5.

We perform either an estimation w.r.t. the input size n or w.r.t. the number
of PEs p. In the first case we predict T (n) and Ā(n, p) w.r.t. n. In the case of
an estimation w.r.t. p we typically already have the corresponding value of T (n)
and predict the second component, the parallel penalty Ā(n, p) w.r.t. p.

Statistical methods. We use different methods to predict values of T (n) and
Ā(n, p) for non-measured input sizes. Note however, this paper is not about sta-
tistical techniques, but about applications thereof. We could have used straight-
forward polynomial interpolation, but for better results we sample more points
and use one of the following methods. One approach is cubic spline interpolation
[17], another one is local polynomial regression fitting [9, Chapter 8] (cf. [11, 12]).
We refer to these approaches using the R function names spline and loess [45].
Also we use linear model fitting with orthogonal polynomials constructed from
the actual input [9, Chapter 4]. We denote this approach with lm(poly). A simple
linear model fitting is just lm. Finally, mean is not a real method, but the mean
of the two best methods for a particular approach.

The prediction methods we use in this paper exhibit different behaviour. The
spline method interpolates the measured data points exactly, while the other
methods utilise regression fitting. The latter means that it is not attempted to
fit all the input data points, but rather to capture the “trend”. The method
lm tries to fit a straight line, hence it is less appropriate for our purposes. Its
generalisation lm(poly) uses orthogonal polynomials to weaken this drawback.
The loess method is a modern statistical approach to polynomial regression. It is
local, so distant data points have little influence on the shape of the fitted curve.
loess is similar to spline with respect to this property.

We need to choose the most fitting prediction method every time at least
one of the parameters changes—be it hardware, application, range of task sizes,
or range of processors. We perform estimations using all prediction methods in
our repertoire and then choose the best fit. The choice can be mechanised using
the procedure below. Once we have decided on the best prediction method for
the given parameters, we can use this method to predict the actual values. This
choice is done separately for the sequential time and parallel overhead.

Mechanising the choice. The decision on the best estimation method can be
done automatically. Given an ε > 0 and a set of known values, we predict a
known(!) value with other ones using various methods.
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• First, discard methods producing nonsense results, e.g., time estimation
< 0.

• If some of the remaining methods produce a relative error < ε, we will pick
one with the smallest relative error.

• If none of the methods produces a relative error < ε, but the relative error
of the mean of the two nearest methods w.r.t. the actual value is < ε, we
will pick the mean.

• If none of the methods yields a satisfying result, reconsider ε. Make further
measurements. Otherwise fail.

Using this algorithm we can decide on the prediction method to be used to
estimate not measured values. If we have to resort to the mean of two methods,
two strategies can be used to choose the best two methods. Both require some
“training”: we need to predict few known values first. Then, for predicting an
unknown value, we use the information from the training. Either we pick the
mean of the two methods, which produced best results in the training. Or we
decide in the training phase on three best methods. Then, in the “real life”
estimation we would discard the more distant value and compute the mean of
the two remaining values.

The black box. Changing the range of input sizes, the range of PEs, the hardware
or the program would probably lead to a different statistical method to be the
best fit in this situation. But this does not matter for our methodology. We
will see below that we can determine the best fit for the given setting with a
significant accuracy. Our case studies show that even doubling the input size
does not harm the successful prediction with the method that we designated as
a best fit for this setting—see Section 4.3. It is not very hard to decide on this
best fit: it suffices to perform an estimation with all four available methods and
to choose the best.

We trade the dependency from the parameters of a particular set of program
executions against an extreme “universality” of our method: it is applicable
to any parallel program on any parallel platform. All the knowledge of the
local particularities of the hardware and of the software is encoded in the set
of estimators, but not in the approach itself. We regard this a very beneficial
exchange.

4. Experiments

To support our presentation with practical evidence, we present multiple
experimental case studies. We chose the example programs for our experiments
to cover popular “patterns” of parallel computation. We regard multiple parallel
maps with various kinds of load balancing, a divide and conquer method, examples
of a parallel iteration. These are supplemented by applications for large-scale
scientific computing. These include peta-scaled lattice-Boltzmann method and an
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n 10 20 30 40 50 60 70 80 90 100 120 150

T (n) 0.02 0.13 0.39 0.82 1.48 2.44 3.76 5.50 8.07 11.03 19.14 38.36

T (n, 8) 0.02 0.06 0.14 0.29 0.51 0.79 1.18 1.75 2.39 3 .48 5.74 10.55

Figure 1: Gauß elimination. Measured time. Bold items will be forecast w.r. t. n, boxed items
will be forecast w.r. t. p.

implementation of a linear solver. For more examples and an in-depth treatment
of the parallel computing “patterns” for scientific computation we refer to the
PhD thesis of the first author [36]. Such patterns can be expressed as algorithmic
skeletons [14]. We state the kind of the skeleton if it is relevant for the the case
studies presented here. The analysed program is not required to be implemented
using skeletons. In fact, we have no requirements at all for an analysed program—
another strong point of our approach.

Hardware and measurement methodology. Most our run time experiments have
been performed on an eight core 64 bit Intel Xeon machine with 16 GB RAM. We
have used the Glasgow Haskell Compiler for the sequential program executions
and the parallel Eden extension of this compiler for the parallel executions. We
always determined the mean run time of five program runs. We started the
programs with default settings for memory allocation and garbage collection.

However, Section 4.2 presents results from the measurements conducted from
a physical simulation on a supercomputer. These data originate from the Jülich
Blue Gene/P machine. It is built using a system-on-a-chip approach with quad
core PowerPC chips with 2 GB of RAM as the base. Each core is a 32 bit
processor, running at 850 MHz. So, a single node is a traditional multicore
processor. The nodes are assembled into racks with 1024 nodes in each.

Further, Section 4.6 presents the data, obtained from the tests of a linear
solver on a SMP machine with 18 UltraSPARC II processors, working at 400 MHz.
The machine had 18 GB of RAM. Please refer to the paper by Gondzio and
Sarkissian [20] for details.

Section 4.4 also features some Eden-based experiments on an AMD multicore
machine with 48 cores and 64 GB of RAM. All our Eden methodology applies
here.

4.1. Gauß Elimination – Parallel Map

We have measured the time needed to compute the LU decomposition of a
permuted scaled n× n Pascal matrix modulo r primes. The program has been
parallelised using the simple farm skeleton with an input list of size r, as the
map is done over the different residue classes [39].

In our setting, r corresponds to the total number of PEs, i.e., r = 8 and 8
parallel processes will thus be created. Note that this is not the optimal way
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Figure 2: Gauß elimination. Predicting sequential run time (top left) and parallel penalty
values w.r. t. n (top right) for n = 120, 150. The bottom parts show the corresponding relative
errors.

to parallelise this program for p < 8. When we have more processes than PEs,
multiple processes will be executed by the same PE. This causes an imbalance
when the processes cannot be evenly distributed to PEs, i.e., when 8 is not a
multiple of the number of PEs. Thus, the 2, 4 and 8 PEs configurations perform
best. This knowledge could be acquired using source code inspection or process
activity profiles, e.g., using Eden TV [6]. In Section 5 we will see, how to obtain
the same information with our approach.

Estimating the execution time w.r.t. n. Figure 1 shows the measured times. The
values are stated in seconds, rounded up to two digits after decimal dot. We
have measured the execution times on eight PEs and estimate the parallel time
also on eight PE, but for a larger input size. The data for n = 120 and 150 are
not known to the estimation routines. Figure 2, left, shows the estimation of the
sequential run time T (n). The same figure, right, shows the estimation of Ā(n, p)
w.r.t. n. With mean we denote the mean of lm(poly) and of lm(poly), restricted
to n ≤ 90. The reason for this decision is a small increase of Ā(n, p) at n = 100,
which misleads multiple methods.

Now, as can be seen in the figures, we have the best method for estimating
Ā—mean—and the best method for estimating T (n)—lm(poly). Note, that we
can disregard spline in both cases for its very poor performance. Combined, we
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Method spline loess lm(poly) lm w. all lm w. special
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Figure 3: Gauß elimination. Estimation of penalty values w.r. t. p. We fix n = 100 and predict
the values for p = 7, 8 using the values for p ≤ 6.

can apply Equation 1 and obtain the complete time estimation. We obtain an
estimate T (120, 8) = 5.736 seconds, which corresponds to the appropriate value
5.743 up to the relative error −0.125%.

Estimating the execution time w.r.t. p. In the previous example we have assumed,
there was the possibility to measure time on an 8 PE machine, but no one had
run the test program for the input length 120 or 150. Now we do the converse:
assume we have measurements for task size 100 on smaller PE numbers, but
do not have a machine with 7 PEs to measure time there. We choose 7, not 8
PEs because of the task distribution issues in our program. We have 8 tasks,
which are distributed evenly to PEs. The implicit assumption is the equal “cost”
of single tasks. For p = 8 this special case is not connected with 6 and 7 PEs
configurations. We can use only the special cases, but then we would not have
enough data points for most of our methods, as we perform our measurements on
an 8 PE machine. See “lm w. special” estimation in Figure 3 for this approach.

All other approaches target p = 7, as Figure 3 shows. To enable a better
insight, we have separated the available values (p ≤ 6) from values-to-estimate
(p = 7, 8) with a straight vertical line. Acceptable results were produced by loess.
The best method was lm. We used it with all the values from 1 to 6 as “lm w. all”.
So we use the data from the estimation of Ā(n, p) w.r.t. p and the already
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RWPT

PE, p 16384 32768 65536 98304 131072 196608 262144 294912

T (n, p) 1.93 0.99 0.55 0.345 0.355 0.33 0.255 0 .155

“Slack off”, % 0 0 50 0 75 50 87.5 0

LBM

PEs, p 32768 65536 98304 131072 196608 262144 294912

T (n, p) 16.285 9.99 6.82 6.80 5.284 5 .273 3.675

Figure 4: RWPT and LBM on a supercomputer, courtesy of Siarhei Khirevich [31]. The task

size n is fixed. Top: RWPT execution times. Bottom: LBM execution times. The boxed values
will be estimated.
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Figure 5: The speedup plots for both RWPT and LBM. Note the bad run time performance of
RWPT with non-perfect task distribution.

measured T (100) to predict the parallel execution time. We obtain an estimate
T̂ (100, 7) = 4.369 seconds, which is 1.838% accurate. The measured value is
4.290. Now, using lm to estimate Ā(100, 8), based only on data for p = 2, 4 (“lm
w. special”) we obtain T̂ (100, 8) = 3.531. This result shows 1.361% relative error,
compared to the measured value. We see, it is possible to estimate the parallel
run time both w.r.t. task size and w.r.t. PE count with significant accuracy.

4.2. Mass Transport in Porous Media

As a further example we consider the lattice-Boltzmann method from fluid
flow and mass transport simulation. The data originate from the experiments
were performed by Siarhei Khirevich and Anton Daneyko [32, 31] on the Jülich
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Blue Gene/P supercomputer. They used all available PE nodes, resulting in an
experiment on up to 294912 cores.

Overview. The aim of Khirevich et al. [32, 33, 34] was to simulate the transport
processes in porous media, e.g., in the chromatographic separations. Pumped into
a long thin pipe, filled with some matter, what paths does an injected solution
follow? The matter is modelled with spheres. The pumped solution is simulated
in two steps: first fluid flow is simulated, subsequently the actual movement of
the matter is studied. The simulation consists of several phases:

1. Random close-sphere packing and its spatial discretisation. We do not
consider this phase.

2. Simulation of the fluid flow with lattice-Boltzmann method (LBM). This
is the phase we focus on.

3. Simulation of the advective-diffusive mass transport. It is performed with
the random-walk particle tracking method (RWPT).

The latter two phases clearly dominate the computational complexity of the
method. We chose to focus on the LBM phase for the reasons discussed below. Due
to the dimensions of the chosen lattice—632 × 632 × 294912—a one-dimensional
decomposition is possible. Basically, the pipe is cut in length and each “slice”
is assigned to a PE. Hence, we have a “map-like” parallel implementation. The
amount of spheres in each slice varies, the maximal difference is 27%.

The LBM phase generates the data used later in the RWPT phase. Basically,
the flow of the fluid around the sphere packing is computed, it is done with
sophisticated variants of cellular automata [10]. We show the speedup curves for
both LBM and RWPT in Figure 5.

Discussion of RWPT. The RWPT method consumes data, generated in the
LBM phase. It traces the paths of single molecules through the pipe. The
simulation, regarded here, uses 40 million “tracings”. Each tracing adds the
closest neighbourhood vector of the fluid flow, obtained with LBM, and some
random diffusion vector.

The separate slices—tasks!—are distributed to PEs. Thus in their paper [32],
Khirevich and Daneyko observe lower speedups in cases when some PEs have
more tasks than others. As the computation time for a single task is proportional
to the amount of spheres, the developers decided against dynamic task balancing.
However, bad static task balancing leads to problems with speedups, as we will
explain in the following. We show the execution times for thousand iterations
of RWPT, starting with 16384 PEs and up to 294912 PEs in the top part of
Figure 4. As the program data is too large to fit in memory in the sequential
case, we take the time on 16384 PEs to be the “sequential” point of reference
for our computations.

As we see in Figure 5, RWPT has major speedup problems in the middle
part of the scale, i.e., when using between 100000 and 250000 PEs. The reason is
task distribution imbalance, cf. the “slack off” values given in Figure 4. Let p be
the number of PEs. As in total n = 294912 tasks are to be computed, n mod p
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remaining tasks are computed by some PEs, while some other PEs are idling. If
many PEs are idle, the imbalance is severe. The “slack off” is the percentage
of idle PEs in the final round, when not all PEs can be saturated. We do not
consider RWPT further, because we have no suitable prediction approach. LBM
has a similar problem, but it is not as severe as in the RWPT case.

The application of the prediction methods presented here to known execution
times of RWPT yields too large relative errors. Such behaviour signals the failure
of our prediction method, see Section 3. The user would notice the misbehaviour
of the prediction approach, she will be able to address this issue by applying
further, more advanced statistical prediction methods or by adding further data
points.

LBM: Time measurement. The time measurement data for LBM on Jülich
Blue Gene/P presented in the bottom part of Figure 4 have been provided by
S. Khirevich [31]. The time required for 10 iterations is given. We assume T (n)
in our computations to be T (n, 32786) · 32768. In other words: a perfect speedup
for up to 32768 PEs is assumed. This is rather a convenience convention than
an assumption: we could as well “downscale” the PE numbers by dividing them
by 32768. It is impossible to obtain the real sequential time, as the data to be
processed does not fit into the memory of a single machine.

Estimation. Given the time measurements, we start our prediction round. The
task size is fixed, but we can estimate the scalability w.r.t. the PE number p.
Note that we have neither the source code nor a binary version of the program
we investigate.

We present the values for Ā(n, p) w.r.t. p in the top part of Figure 6. The
lm(poly) method with polynomials of degree 3 results in the estimation 3.16 sec-
onds for Ā(n, 262144). Using it and approximating T (n) with 16.285 · 32768, we
obtain the estimation for the execution time T̂ (n, 262144) = 5.196 seconds. This
estimation is exact up to the relative error −1.47%. We present it graphically in
the bottom part of Figure 6. Notably, a direct run time estimation—an attempt
to predict the parallel time directly from the number of PEs, using the same
data, but without using Equation 1—fails. The all-best relative error for direct
estimation is −31%.

This shows that our approach is applicable to large-scale production appli-
cations. An accurate forecast has been made with a non-application centred
approach: we do not require any knowledge of the application, aside from a set
of execution time measurements.

Generalisation. We have seen a good performance of lm(poly) for estimating
Ā(n, p) w.r.t. p for LBM and an acceptable performance of two lm(poly) methods
for Gauß elimination. Hence, we can conjecture that for parallel map-based
programs lm(poly) is the most suitable method of the statistical techniques
regarded here.
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Figure 6: Computing Ā(n, p) for LBM. Top: computed values for Ā. The boxed value will be
estimated on the bottom.

4.3. Karatsuba Multiplication – Divide and Conquer

The Karatsuba multiplication is a ternary divide and conquer algorithm for
multiplying large integers [29]. The following results have been obtained with
Eden on an Intel multicore machine. We perform the computation for integers of
equal size; the size of an integer is its number of digits. The integer size for the
input has been uniformly distributed between 16000 and 64000 digits. We predict
the values for 60000 and 64000. See the top of Figure 7 for a snapshot of the data.
We use the relative reference point. The usage of relative reference point here and
in some further examples aims to show the low dependency of our method from
the number of data points. In fact, with the relative reference point, Ā(n, 1) is
always zero. So, in a sense we have “one point less”. Still, our prediction methods
work as expected. This underlines their strength and robustness.

We have estimated T (60000) for the Karatsuba multiplication with the
spline method producing a relative error of −0.014%. The next best estimation
has been achieved with lm(poly) of the third degree with relative error 1.30%.
The latter method for T (64000) has the best relative error of 1.90%, whereas
the spline method produces a relative error of 2.76%. The loess method is not
significantly worse. See Figure 8 for more details. As for Ā(n, p) w.r.t. n, we
obtain a relative error of 2.3% for Ā(60000, 8) with lm(poly) of degree 3. The
most reliable estimation is produced by loess with −5.443% and 2.078% relative
errors for the estimations of input lengths 60000 and 64000 respectively. This
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Uniform

n · 1000 16 20 24 28 32 36 40

T (n) 9.88 13.86 20.27 24.78 29.58 34.83 41.42
T (n, 8) 1.29 1.78 2.61 3.19 3.74 4.47 5.37

n · 1000 44 48 52 56 60 64

T (n) 53.58 60.94 67.55 74.39 82.02 88.94
T (n, 8) 7.14 8.05 8.98 9.95 11.0 11.86

Non-uniform

n · 1000 0.5 1 2 4 8 16 32 64 128

T (n) 0.11 0.19 0.41 1.10 3.30 9.87 29.54 89.22 267.25
T (n, 8) 0.0654 0.0818 0.129 0.222 0.47 1.28 3.74 11.86 36.66

Figure 7: Karatsuba multiplication on 8 PEs. The bold values will be estimated.

results in parallel run time estimation values 11.01 seconds and 12.09 seconds
for the same inputs, corresponding to relative errors 0.14% and 1.78%. Thus an
appropriate estimation of run time does also work for a divide and conquer-based
computation.

We also experimented with a non-uniform input data distribution, given at
the bottom of Figure 7. The input size varied between 500 and 128000 digits.
We estimate T (n) and Ā(n, p) w.r.t. n. Under the assumption that the first
8 data points are available, we have predicted the ninth point with n = 128000.
We predict the value of 36.66 seconds with an acceptable quality using the
spline method: 8.984% relative error. But we are exceptionally successful with the
lm(poly) approach of degree 3 for both components. We obtain the final estimation
result of 36.67 seconds (rounded up to second digit) with prior knowledge of the
run times only up to n ≤ 64000. Hence our formalism is also applicable to such
“long-distance” run time estimations.

4.4. Rabin-Miller Primality Test – Iteration

The Rabin-Miller primality test is an iterative application, which performs k
iterations to check whether its input value is prime or not [42, 46]. The positive
result of the test does not ensure that the input is prime, but yields with a
certain probability of this fact. We perform the test on Mersenne primes, the
parameter n means that the number 2n − 1 is tested for primality. We have
chosen n in such a way that 2n − 1 is a prime number, in order to guarantee
that all k iterations are performed. This leads to a non-uniform distribution of
the input values.

We show the time measurement data for an Eden-based implementation
on the eight-core Intel machine in the top part of Figure 9. For estimating
Ā(11213, 8) we used spline, loess, lm(poly) of degree 3 and mean of latter two. We
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Figure 8: Karatsuba multiplication. Estimating the sequential run time T (n) for n = 60000
and 64000 on uniform data.

use T (n, 1) as an estimate for T (n): in other words, we calculate with relative and
not with absolute reference point. The results are presented in the bottom part
of Figure 9. An overview for single components is available in Figure 10. Our best
method is using lm(poly) and mean for estimating T (n) and Ā(n, p) respectively,
resulting in 0.01% relative error for the final result. Thus the prediction of run
time of parallel Rabin-Miller test has been very accurate.

Scaling up. To show again that our approach scales well, we have performed
estimations of the same application on a larger multicore machine, available at
the RETIS laboratory of Scuola Superiore Sant’Anna. It is a quad-CPU AMD
Opteron 6168 design with 12 cores each, i.e., 48 CPU cores in total. The CPUs
are clocked at 1.9 GHz, we have 64 GB of shared memory available. We were
using 64 bit Debian Linux OS with Linux kernel 3.4.

We issued 96 tasks and performed estimations w.r.t. p. We perform two
kinds of an estimation. Firstly, we aim to obtain T̂ (11213, 48) from T (11213) and
an estimated Ā(11213, 48). This estimation used special values of p: sufficiently
large numbers of processors for which the tasks can be distributed evenly. This is
justified as for p = 48 tasks are also distributed evenly, in contrast to 32 < p < 48.
The special values of p are distributed in a non-uniform manner. The data is
available in Figure 11(a). The both methods lm and lm(poly) of degree 2 alternated
the sign of the relative error, we introduced their mean. This was the best method,
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Time

n 2203 2281 3217 4253 4423 9689 11213

T (n, 1) 1.882 2.094 5.284 10.77 12.16 96.95 144.82
T (n, 7) 0.304 0.332 0.814 1.639 1.849 14.63 21.80
T (n, 8) 0.304 0.334 0.812 1.635 1.843 14.66 21.78

Estimation

Methods
Estimate for Relative

T (n) Ā(n, 8) T (n, 8) error, %

spline + spline 127.25 3.32 19.23 −11.70
spline + loess 127.25 3.59 19.50 −10.56

spline + lm(poly) 127.25 3.82 19.73 −9.42
spline + lm(poly) 127.25 3.71 19.61 −9.94
loess + spline 136.73 3.32 20.41 −6.26
loess + loess 136.73 3.59 20.69 −5.02

loess + lm(poly) 136.73 3.82 20.91 −3.98
loess + mean 136.73 3.71 20.80 −4.50

lm(poly) + spline 144.59 3.32 21.40 −1.75
lm(poly) + loess 144.59 3.59 21.67 −0.50

lm(poly) + lm(poly) 144.59 3.82 21.89 0.53

lm(poly) + mean 144.59 3.71 21.78 0.01

Figure 9: Rabin-Miller test. On the top: measured times. The bold value is estimated at the
bottom with all available methods.

yielding less than 1% relative error. We present the complete estimation for
T (n, p) in Figure 12, top. The bottom part of the same figure shows the relative
errors for the Ā(n, p) estimation. The best relative error for the estimation of
T (n, p) was merely 0.1745%, we rate this as a very good result.

The second estimation experiment was to estimate the parallel penalty, and
from it: the parallel execution time for p = 47, basing on all the data for p < 47.
Here, values of p are uniformly distributed. We did not choose p = 48 for this
estimation because of its special configuration; with 96 tasks there is no task
imbalance for p = 48, but there is one for p = 47 and most other configurations.
We used n = 19937, i.e., the input Mersenne prime was 219937−1. This is a prime
number, the application performs all 96 iterations. The measurement data is in
Figure 11(b). We managed to obtain an estimation for Ā(19937, 47) that was
exact up to a relative error of −0.91% with loess. This results in the estimation
of the parallel execution time that varies only in −0.315% from the measured
value. The details and relative errors are reported in Figure 13.

In these two examples we have seen that our method can scale to larger
number of PEs on multicore hardware. See also Section 4.2 for an estimation of
a program, run on a peta-scale supercomputer with hundreds thousands of cores.
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Rabin-Miller test, non-uniform p

p 1 12 16 24 32 48

T (n, p) 128.90 11.30 8.83 5.87 4.66 3 .29

(a) First example: non-uniform distribution of p, n = 11213

Rabin-Miller test, uniform p

p 1 2 3 4 5 6 7 8 9 10 11 12

T (n, p) 560.74 282.29 189.37 142.97 120.06 98.14 87.07 77.28 74.67 60.98 54.99 50.90

p 13 14 15 16 17 18 19 20 21 22 23 24

T (n, p) 49.15 43.26 44.93 39.80 38.00 37.04 37.00 31.56 31.18 31.25 31.24 25.71

p 25 26 27 28 29 30 31 32 33 34 35 36

T (n, p) 25.19 25.21 25.85 25.19 25.51 25.13 25.08 22.28 19.24 19.25 19.41 19.26

p 37 38 39 40 41 42 43 44 45 46 47 48

T (n, p) 19.98 19.26 19.38 19.18 19.16 19.25 19.15 19.16 19.18 19.23 19 .22 13.53

(b) Second example: uniform distribution of p, n = 19937

Figure 11: The measured execution time for a larger-scale Rabin-Miller test. The boxed values
will be estimated.

4.5. APRCL Primality Test – Iteration

In this section we discuss the estimation of execution time of the APRCL
primality test [1, 13]. It is a sophisticated primality test, contrary to the Rabin-
Miller test, APRCL proves primality. Here, the work needed to process a single
task varies significantly. The test is implemented in Eden, we used a dynamically
load-balanced workpool skeleton with some advanced tuning of task order to
implement this primality test [36, 37]. The major problem was in scattered3 run
times of single tasks in the workpool. The run time experiments were performed
on an Intel multicore machine. We used primes of size ≈ 2600–2619 as the input.
We designate the exponents as the input sizes, i.e., they range from 600 to 619.
The aim is to estimate the execution time for the input size 619 from smaller
inputs. We use relative speedup and, correspondingly, relative reference point.

We were able to predict the execution time w.r.t. input size quite accurately.
We show the initial data in Figure 14. Note, that the increasing input size does
not always result in increased run time. The plots of our prediction approaches
are in Figure 15. We see that we were able to predict the sequential time very well.
Indeed, the relative error for the lm(poly) method with orthogonal polynomials of
degree 4 was merely 4 ·10−5%. The spline and loess methods were also quite good,
with 0.40% and −0.61% relative error appropriately. On the other hand, the

3To quantify: for the data set of run time measurements of single tasks for the APRCL,
being standardised to the variance of 1 and mean 0, the smallest value was −1.27, the largest
peaked at 4.31.
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(c) Relative errors for Ā(n, p)

Figure 12: Rabin-Miller test: large-scale estimation for special values. Top: combined execution
time estimations, bottom: relative errors for the estimations of the relative penalty.
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Figure 13: Rabin-Miller test: large-scale estimation for all values. We estimate Ā(n, p) w.r. t. p
for n = 19937 and p = 47. Top: estimation process, bottom: relative errors for it.

n 600 601 602 603 604 605 606 607 608 609

T (n, 1) 15.19 15.07 15.18 15.25 15.16 15.27 15.25 15.21 15.29 15.44
T (n, 8) 2.59 2.58 2.66 2.62 2.68 2.60 2.55 2.59 2.58 2.62

n 610 611 612 613 614 615 616 617 618 619

T (n, 1) 15.52 15.44 15.00 15.48 15.33 15.51 15.39 15.44 15.60 15.73
T (n, 8) 2.76 2.66 2.53 2.71 2.59 2.65 2.59 2.69 2.64 2.78

Figure 14: Timings for APRCL test. Bold value will be estimated.

estimation of the parallel overhead w.r.t. n was disappointing, as we obtained
a relative error of −9.08% with lm(poly) of degree 3. To do so, we disregarded
the value at n = 618. Still, with both predicted values for T (n, 1) and Ā(n, p)
combined, we obtain the time for T (619, 8) up to −2.66% relative error.

Even more interesting is the prediction of Ā(n, p) w.r.t. p. We assume the
values on p ≤ 7 as given. The times for n = 619 are used. The estimation is not
easy, but still we obtain the value 0.79 with lm(poly) of degree 2. This corresponds
with the measured value for Ā(619, 8) up to −2.51% relative error. Using it for
the estimation of T (619, 8) in a combination with a given T (619, 1), we obtain
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Figure 16: APRCL test. Estimating Ā(n, p) w.r. t. p.

PEs, p 1 2 4 8 16

T (n, p) 3899 1947 1003 538 333

Figure 17: The scaling data for the input “random 20” from Gondzio and Sarkissian [20]. Used

with a kind permission. The boxed value will be estimated.

the execution time up to −0.73% exact.
We have seen that our method can also be applied to a sophisticated compu-

tation featuring dynamic load-balancing and strongly varying execution times
for single tasks.

4.6. Linear Solver

In this section we regard the data from the paper by Jacek Gondzio and
Robert Sarkissian [20]. It presents a parallel solver for the problems in linear
programming. We stress that the only data we use are the measurements from
the paper, we restate the values in Figure 17. The data was obtained on a network
of 18 Sun machines. We cannot state a particular pattern in the program.

We perform an estimation w.r.t. p. As n is fix, we do not need to estimate
sequential time; we use T (n, 1) as T (n). We need merely to estimate the value
for Ā(n, 16). The measured value is 89.3. With lm(poly) of degree 2 we obtain
the value 66.36 and lm results in 115.64. However, the mean of these two values
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is 91.00, which is exact up to 1.89% relative error. With this value we estimate
T (n, 16) as 334.69, which is 0.507% exact.

We have shown again, we can use our method, basing only on execution time
measurements of a third party’s program.

5. Serial Fraction

In their work “Measuring Parallel Processor Performance” [30] A. H. Karp
and H. P. Flatt introduced the notion of serial fraction. Given the parallel
time T (n, p) on p PEs and the sequential time T (n), the absolute speedup
is T (n)/T (n, p). The serial fraction is

f(n, p) =
T (n, p)/T (n) − 1/p

1 − 1/p
.

The serial fraction should be constant: if it increases, we have a parallelisation
resulting in poor speedups. If the serial fraction decreases, this shows problems
with the sequential implementation. We have computed the serial fraction for
the test cases presented above. For Gauß elimination, we have used n = 100.
Both measures—our parallel penalty Ā and the serial fraction f—are shown in
Figure 18(a). The shapes of the curves correspond to the load distribution in
the computation, as we might deduce from the knowledge of the source code.
Noteworthy, both our notion of parallel penalty and the serial fraction have
minima at 4 and 8 PEs. The value of the parallel penalty Ā(n, p) is almost
constant for 2, 4 and 8 PEs versions. Exactly these versions are optimal in the
load distribution. The serial fraction shows the same for 4 and 8 PEs versions,
but indicates a larger serial component for 2 PEs.

We want to stress that the curves for both quality measures differ (viz. the
behaviour at 1–4 and 6–8 PEs in Figure 18(a)). Though bearing a similar meaning,
parallel penalty and serial fraction differ significantly both in the shapes of the
plots and in the range of values. Thus we cannot think of the parallel penalty
being a reformulation of the serial fraction or a product of it with some constant
factor.

The parallel penalty and serial fraction for Rabin-Miller primality test with the
input 9689 as executed on an Intel multicore machine are shown in Figure 18(b),
the numerical values are in Figure 18(c). We can clearly see problems with load
balancing for 3 and 6 PEs, as we needed to compute exactly 20 tasks in this
experiment. This amount of tasks cannot be fairly distributed to 3 or 6 PEs,
some PEs are idling, thus increasing the parallel overhead. Consider 6 PEs. There
will be 6—6—6—2 tasks during the four parallel iterations, thus 4 PEs will be
idle in the last iteration. Only one PE in the last iteration is idle for a 7 PEs
configuration, however the overhead increases again for 8 PEs, resulting in a
8—8—4 scheme. This corresponds with the conclusions, drawn from the shape
of the parallel penalty. We deduce also from Figure 18(b), that for executing
exactly 20 tasks in parallel, 4 or 5 PEs in a system are ideal. Simple thoughts
on task distribution result in the same observation.
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Rabin-Miller test

p 1 2 3 4 5 6 7 8

Ā(9689, p) 0 0.0844 1.796 0.0731 0.1433 3.30 0.7793 2.5442
f(9689, p) × 100 − 0.1741 2.779 0.1005 0.1847 4.084 0.9379 2.9992

(c) Comparing the numerical values for Rabin-Miller test

Figure 18: Comparing the serial fraction with our approach.

6. Related Work

Our approach bears—as everything on this topic—a certain grade of similarity
to Amdahl’s law [3]. Exactly as Amdahl did, we assume a perfect parallelisation
of the computation, but consider also the unavoidable overhead. However, we
divide the parallel computation not into Amdahl’s perfectly parallel and strictly
sequential fractions, but into fractions of effective computation and of parallel
overhead.

Related publications on performance forecasting include the book chapter
on skeletons in Eden [40] and the formal cost model of NESL [8]. However, our
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approach is different. We derive the time and work from time measurements for
the runs on different numbers of PEs, while the skeleton analysis by Loogen et
al. [40] is based on latency and message-passing costs. The NESL complexity
model [8] takes a “bottom-up” approach, trying to assign cost to single semantic
operations. We look in a “top-down” manner on the total run time and divide it
into very coarse blocks.

Further approaches on skeleton-based performance evaluation include [15, 5].
Cole and Hayashi [15] regard a BSP-like cost model, assigning costs to basic
elements of a parallel program. A fine-grain cost model for some BSP-based
skeletons is in the paper by Zavanella [52]. Besides BSP [50], models like LogP [16]
and message passing models exist. Roda et al. [47] presented a run time prediction
approach for the latter. A rather theoretical well-investigated performance model
is the PRAM model [18] and its variants. An alternative to skeletons [14]
program classification approach are Berkeley dwarfs [4], however in this case
several particular types of tasks are identified, in contrast to abstracting from
the task type with skeletons.

An example of the sequential estimation of run time is the paper by Saavedra
and Smith [48]. Ipek et al. [27] used neuronal networks to (directly) predict
execution times of a multigrid solver. The paper by Akioka and Muraoka [2]
focuses on the network load and uses Markov model-based meta-predictor. In a
contrast, we used our decomposition of the parallel execution time in Equation (1)
and statistical methods. Kapadia et al. [28] found locally weighted polynomial
regression definitely superior than other instance-based learning methods (e.g.,
nearest neighbour) for the estimation of parallel execution time of real programs.
However, Kapadia et al. [28] did not use any decomposition of the execution
time. Further, the number executions for the machine learning approaches is
quite high: 8100 in [28], 10000 in [27]. Our approach provided good results on
orders of magnitude less data points: all Eden case studies (up to the scaling
study of our method in Section 4.4) feature 10–20 data points, each of them
constituted of an average of 5 program runs. The C+MPI case studies have
used even less data points and still provided successful estimations. Thus, our
method can more easily be used in an adaptive runtime environment. However,
an increased number of data points does not harm our method, as the second
half of Section 4.4 shows.

Regarding approaches for a parallel quality measure, the notion of serial
fraction as defined by Karp and Flatt [30] is related to ours. We discussed it
in Section 5. Isoefficiency [21], scaled speedup [24] and other approaches are
less similar to parallel penalty Ā(n, p), as we do not aim for a larger input on a
larger PE count, which keeps the efficiency the same. Kumar and Gupta [35]
present an overview. Speedup bounds have been discussed by Polychronopoulos
and Banerjee [44].

A further research direction, orthogonal to our approach is hotspot and
bottleneck analysis. We refer to modern visualisation tools, like Scalasca [19]. In
parallel functional programming, Eden TV [6] and ThreadScope [51] are used.
We were able to confirm our assumptions on bad process placement of programs
from Sections 4.1 and 4.4 with Eden TV in the first author’s PhD thesis [36].
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7. Future Work

We would like to perform detailed analyses of further programs. We need a
way to handle severe imbalance in a parallel map. This has hindered a detailed
analysis of RWPT method in Section 4.2. The same problem existed also in
other case studies we have considered, however not to such an extent. Some kind
of preconditioning the data to the regular case could help. Moreover, we plan to
seek for more advanced prediction methods for sequences. More sophisticated
statistical methods can be utilised. A proper direction would be, for instance, the
further separation of special performance cases. We addressed this in Sections 4.1
and 4.4: we treated there the “balanced” cases separately from “unbalanced”
ones—with a success. Statistically sound statements on the distance of robust
extrapolation using the structure of the presented model are also left for future
work. We look forward to more experiments with large-scale systems, further
languages and middleware. We would like to apply our methods to parallel
GPU computing, specially CUDA [43] in future. A high-level approach for GPU
programming is facilitated by the Thrust library [26]. Another interesting topic
is an estimation of the number of measured values, which we need for a good
estimation of run time. In other words: the estimation of the “cost” of the
prediction. A machine learning approach for predicting separate sequences and
an adaptive runtime environment for parallel programs present rather long-term
ideas for future work.

8. Conclusions

We introduced a method to predict the execution times of parallel programs
in a novel and elegant manner. Our method is different from previously known ap-
proaches. It does not depend on source code analysis or on special semantic rules,
instead, our method is empowered by computational statistics and abstraction.
In this paper we treated the hardware and the parallel program as a black box,
focusing on the estimations instead. Our methodology is intentionally oblivious
of the hardware and software; instead, statistical prediction methods implicitly
express the traits of hardware and application, particularities of a given range of
input sizes and range of processing elements. We introduced a new measure for
the quality of parallel programs—the parallel overhead. This measure denotes
the amount of “slack time” pro processor, i.e., the time spent not contributing
to the actual work. We were the first to perform separate estimations for the
(sequential) execution time and parallel overhead, hence different forecasting
models were used for each of them. This makes sense, given the different nature
of these processes, and enables more accurate estimations. We have used our
technique to predict parallel execution times for six non-trivial scientific com-
puting methods. We obtained very low relative errors with few data points. We
tested our technique not only with Eden and various multicore SMP hardware,
but also on a peta-scale supercomputer and networked Sun workstations, using
C+MPI.

The contributions of this paper include

25



• Novel division of the parallel execution time into components of a different
nature that are predicted separately.

• Highly precise estimations of parallel execution time for the real-world
programs: the best relative error was 0.01%, a single component yielded
4 · 10−5%.

• Our approach requires orders of magnitude less data points than other
known methods.

• This paper introduced the parallel overhead term—a quality measure for
parallel programs.
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