
Estimating Parallel Performance,
A Skeleton-Based Approach ∗

Oleg Lobachev Rita Loogen
Philipps-Universität Marburg, Fachbereich Mathematik und Informatik

Hans-Meerwein-Straße, D-35032 Marburg, Germany
{lobachev,loogen}@informatik.uni-marburg.de

Abstract
In this paper we estimate parallel execution times, based on identi-
fying separate “parts” of the work done by parallel programs. We
assume that programs are described using algorithmic skeletons.
Therefore our runtime analysis works without any source code in-
spection. The time of parallel program execution is expressed in
terms of the sequential work and the parallel penalty. We measure
these values for different problem sizes and numbers of processors
and estimate them for unknown values in both dimensions. This al-
lows us to predict parallel execution time for unknown inputs and
non-available processor numbers.

Another useful application of our formalism is a measure of par-
allel program quality. We analyse the values for parallel penalty
both for growing input size and for increasing numbers of process-
ing elements. From these data, conclusions on parallel performance
and scalability are drawn.

Categories and Subject Descriptors C.4 [PERFORMANCE OF
SYSTEMS]: Modeling techniques, Performance attributes; D.1.3
[PROGRAMMING TECHNIQUES]: Concurrent Programming—
Parallel programming

General Terms Measurement, Performance

Keywords runtime estimation, parallel runtime, algorithmic skele-
tons, forecasting, polynomial regression, Amdahl’s law, scalability
measure, serial fraction

1. Introduction
Since Amdahl’s law [1, 19] the quest for modelling parallel perfor-
mance is open. A nice summary of existing approaches is presented
in [17, 25]. We suggest a model for a coarse subdivision of paral-
lel runtime into “good” and “bad” parts. Contrary to the popular
thought of parallel runtime being the sequential one “sped up” to
some factor less than the number of processing elements, we en-
vision parallel runtime as the sequential “work” distributed over a
number of processing elements plus an additional penalty term.

∗ Supported by DFG grant LO 630-3/1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
HLPP’10, September 25, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-4503-0254-8/10/09. . . $10.00

A simple parallelisation of programs can be achieved using al-
gorithmic skeletons [10]. The latter capture common patterns of
parallel computation and can straightforwardly be instantiated for
specific problem areas. The skeleton abstraction of a parallel pro-
gram can be used to derive specialised expressions for the parallel
runtime, again in terms of sequential work and parallel overhead.

The first goal of this paper is an accurate prediction of parallel
runtimes for new input sizes and for non-available numbers of
processors. Our approach is to measure the sequential work and
to obtain the parallel overhead for a set of sample input sizes
or sample numbers of processors. Statistical techniques are then
used to extrapolate and to estimate the values for further input
sizes or other numbers of processors. As the parallel execution
time is straightforwardly expressed in terms of these values, this
enables the forecast of parallel runtime. Secondly, the estimated
parallel overhead is a measure for the scalability of a given parallel
program, similar to [20]. This provides insight into the performance
properties of the parallel program. Is the “bad” part increasing,
bottlenecks or similar problems in the code are likely. However,
identifying them is beyond the scope of this work.

We show the practicality of our approach for selected pro-
grams from scientific computing, implemented both on a large-
scale C+MPI [29] system and in the parallel functional program-
ming language Eden [28]. The latter test programs are parallelised
using standard skeletons from Eden’s skeleton library [27]. Al-
though our Eden system is used for most of the experiments, our
approach is completely language-independent. The technique is ap-
plicable to any parallel system, ranging from a multicore machine
to a supercomputer. The skeletons are also not a must for program
implementation, they merely describe a particular pattern of paral-
lel computation in the analysed program.

In Section 2, we present formulae for expressing execution
time and work in general and for three different types of algorith-
mic skeletons. In particular, we consider parallel maps in Subsec-
tion 2.1, a divide and conquer skeleton in Subsection 2.2 and an
iteration skeleton in Subsection 2.3. Section 3 discusses the way of
estimating the workload and parallel penalty from a number of ex-
ecution time measurements. We present four scientific computing
examples and predict their execution times in Section 4. Section 5
compares our approach with the serial fraction approach by Karp
and Flatt [20]. Further related work is considered in Section 6 and
Section 7 concludes and gives an outlook on future work.

2. Runtime Estimation
Let n denote the input size and p the number of processing elements
(PEs). The work of a program is denoted by W (n), the sequential
execution time by T (n). We assume that T (n) = W (n). The
common notation for execution time on p PEs is T (n, p). We

denote the work done with p PEs by W (n, p) and assume that
W (n, p) = pT (n, p). In a parallel execution, the sequential work
is distributed over p PEs. The distribution causes a total parallel
overhead denoted by A(n, p) (cf. [17]) which is however also
distributed over the parallel PEs. We call the parallel overhead per
PE, Ā(n, p), i. e. A(n, p) = pĀ(n, p). We can now express T (n, p)
as

T (n, p) = T (n)/p + Ā(n, p). (*)

The total amount of work performed on p PEs is

W (n, p) = T (n) + pĀ(n, p) = T (n) + A(n, p).

Our goal is to find good approximations for T (n) and Ā(n, p)
to estimate the parallel runtime T (n, p) using Equation (*). More-
over, we will use Ā(n, p) as a measure for scalability. As Ā(n, p)
depends on two parameters, we will investigate the behaviour of
Ā(n, p) depending on one of its parameters while the other one is
fixed.

The distinction between the sequential time T (n) and the “par-
allel” time on a single PE T (n, 1) is essential for distinguishing be-
tween the absolute speedup T (n)/T (n, p) and the relative speedup
T (n, 1)/T (n, p), the latter usually being higher than the former be-
cause of the overhead of the parallel system on a single PE. Analo-
gously we distinguish between an absolute reference point for our
estimations, using sequential time T (n) and a relative reference
point, when T (n, 1) is used. In the following, we consider three dif-
ferent algorithmic skeletons which cover a huge amount of typical
parallel program structures. We will derive special instances of the
above general formulae for T (n, p) and W (n, p) for the different
skeletons. We use skeletons as an abstract parallelisation paradigm
description. The program to be analysed is not required to be imple-
mented using skeletons, although our Eden examples in Section 4
are.

2.1 Parallel Map
The parMap skeleton captures a simple form of data parallelism.
Each element of an input list of type [a] is in parallel transformed
via a parameter function of type (a → b), in total yielding a list
of type [b]. Correspondingly, in Haskell and in Eden the parMap
skeleton has the type (a → b) → [a] → [b]. The skeleton
instantiates a new worker process for each element of the input list.
We assume that the work (and time) needed to process different
elements of the input list is the same. Otherwise, one should use
a dynamically load-balancing workpool instead of parMap. Our
assumption means that T (n) = nT (1). Thus, the amount of work
for parMap is WparMap(n, p) = nT (1) + pĀ(n, p), while the time
is

TparMap(n, p) =
n

p
T (1) + Ā(n, p).

If n � p, process creation overhead can substantially be re-
duced by creating only as many worker processes as processing
elements are available. The input list is then statically divided into
almost equally sized blocks, one per worker process. Each worker
process works on its block sequentially. The implicit assumption is
still the equal “cost” of single tasks. The tasks are mapped statically
onto the processes, thus implementing a static load-balancing. Fol-
lowing [30], we call this skeleton farm. The time needed for such
a farm can be described by

Tfarm(n, p) = T (n/p) + Ā(n, p),

with the work being Wfarm(n, p) = pT (n/p) + pĀ(n, p).
In Section 4.1, we consider a parallelisation of an example

program (Gauß elimination) with the farm skeleton. In Section 4.2
we consider a large-scale data parallel program.

Figure 1. A binary tree of depth 3 for flat divide and conquer
expansion skeleton.

2.2 Divide and Conquer
Divide and conquer is a typical example for task parallelism. We
consider a regular divide and conquer scheme with a fixed branch-
ing degree r. There are different possibilities to parallelise such a
scheme. In the following, we use a flat expansion skeleton, i. e. the
input is split sequentially up to a given depth. Independent worker
processes are then created to evaluate the sub-trees on this tree
level. Figure 1 shows a binary divide and conquer tree unfolded
up to depth 3. Processes are indicated by squares.

Again, we assume a regular distribution of work complexity
among the tasks of the same tree level. When descending to the d-th
level of the divide and conquer tree, rd processes will be created.
Starting with input size n, these processes will process subtasks of
size n/rd. At a certain level of parallel descent with input size k,
we have the penalty of Ā(k, p) for spawning parallel tasks and for
communication. It might be hard to distinguish between communi-
cation overhead and parallel overhead, but we can estimate the sum
of them . However, T (n) might not be linear, i. e. T (n) 6= lT (n/l).
Therefore, we add another term O(n, k, p) for the work needed for
dividing and merging the tasks from size n to size k. So the sequen-
tial time of r-ary divide and conquer of depth d for input size n can
be expressed as

T (n) = rdT
(n

rd

)
+ O

(
n,

n

rd
, 1
)
.

The work of the flat expansion skeleton amounts to

Wflat DC(n, p) = p

d−1∑
i=0

riĀ
(n

ri
, p
)

︸ ︷︷ ︸
=:Ā(n,p)

+rdT
(n

rd

)
+ pO

(
n,

n

rd
, p
)
,

and time is

Tflat DC(n, p) =

d−1∑
i=0

riĀ
(n

ri
, p
)

+
rd

p
T
(n

rd

)
+ O

(
n,

n

rd
, p
)
.

Section 4.3 shows an example (Karatsuba multiplication) using this
divide and conquer skeleton.

2.3 Iteration
The iteration skeleton represents a parallel do-while loop, where
p iterations are done in parallel before the predicate is evaluated.
Depending on its value the program either processes further p it-
erations or it terminates. It is natural, that the runtime of this
skeleton directly depends on the worker function for a single it-
eration, the execution time of which we denote with s(n). We
assume that the loop comprises exactly k iterations and that the
work s(n) is the same for each iteration. Hence: T (n) = ks(n)
and Witer(n, p, k) = ks(n) + pĀ(n, p). It follows

Titer(n, p, k) =
k

p
s(n) + Ā(n, p).

In Section 4.4 we discuss parallelisation of an example program
(Rabin-Miller test) with this skeleton.

n 40 50 60 70 80 90 100 120 150

T (n, 1) 0.7368 1.3365 2.3677 3.6826 5.1556 7.4163 10.059 17.352 34.50

T (n, 7) 0.2772 0.4833 0.8069 1.2549 1.7971 2.6108 3 .6038 6.2055 11.535

T (n, 8) 0.2535 0.4447 0.6985 1.0636 1.3628 2.0783 2.6459 4.6065 10.036

Table 1. Gauß elimination. Measured time. Bold items will be forecast w. r. t. n, boxed items will be forecast w. r. t. p.

3. Analysing the Penalty Term
The shape of Ā(n, p) is the key to rating the parallel performance
quality. As this penalty term depends on both the problem size n
and the number p of PEs, it is important that it does not increase for
growing p. Otherwise, the implementation does not scale well.

We estimate T (n) and Ā(n, p). Our aim is to find separate
approximations for these two terms, as T (n) and Ā(n, p) have a
different nature. In order to do so, we determine several values
of T (n) and Ā(n, p), then we use statistical techniques on the
resulting data sets.

We use different methods to predict values of T (n) and Ā(n, p)
for non-measured input sizes. We could use straightforward poly-
nomial interpolation, but for better results we sample more points
and use one of the following methods. One approach is cubic spline
interpolation [13], another one is local polynomial regression fit-
ting [6, Chapter 8] (cf. [8, 9]). We refer to these approaches using
the R function names spline and loess [31]. Also we use linear
model fitting with orthogonal polynomials constructed from the ac-
tual input [6, Chapter 4]. We denote this approach with lm(poly).
A simple linear model fitting is just lm. Finally mean is not a real
method, but the mean of the two best methods for a particular ap-
proach.

The decision on the best method can be done automatically.
Given an ε > 0 and some existing runtime measurements, we
predict a known(!) value with other ones using various methods.

• First, discard methods producing nonsense results, e.g. time
estimation < 0.

• If some of the remaining methods produces a relative error < ε,
we will pick one with the smallest relative error.

• If none of the methods produces a relative error < ε, but the
relative error of the mean of the two nearest methods w.r. t. the
actual value is < ε, we will pick the mean.
If the real value is unknown (“real life” estimation) and we have
to resort to the mean of two methods, two strategies exist on
choosing the best two methods. Both require some “training”:
we need to predict few known values first. Then, for predicting
an unknown value, we use the information from the training.
Either we pick the mean of the two methods, which produced
best results in the training. Or we decide in the training phase on
three best methods. In the “real life” estimation we discard the
more distant value and compute the mean of the two remaining
values.

• If none of the methods yields a satisfying result, reconsider ε.
Make further measurements. Otherwise fail.

The spline method interpolates the measured data points ex-
actly, while the other methods utilise regression fitting. The latter
means that it is not attempted to fit all the input data points, but
rather to capture the “trend”. The method lm tries to fit a straight
line, hence it is less appropriate for our purposes. Its generalisation
lm(poly) uses orthogonal polynomials to weaken this drawback.
The loess method is a modern statistical approach to polynomial
regression. It is local, so distant data points have little influence

on the shape of the fitted curve. loess is similar to spline with
respect to this property.

By transforming Equation (*) we get

Ā(n, p) = T (n, p)− T (n)/p

Thus, we can compute the parallel overhead per PE from the total
parallel runtime for p PEs minus the sequential runtime divided by
p, where these values can be measured or estimated. Note however
that Ā(n, p) depends on p.

4. Experiments
Most our runtime experiments have been performed on an eight
core 64 bit Intel machine with 16 GB RAM. We have used the Glas-
gow Haskell Compiler 6.8.3 for the sequential program executions
and the parallel Eden extension of this compiler for the parallel ex-
ecutions. We always determined the mean runtime of five program
runs. We started the programs with default settings for memory al-
location and garbage collection.

However, Section 4.2 presents results from the measurements
conducted from a physical simulation on a supercomputer. These
data originate from the Jülich Blue Gene/P machine. It is built using
a system-on-a-chip approach with quadcore PowerPC chips with
2 GB of RAM as the base. Each core is a 32-bit processor, running
at 850 MHz. So, a single node is a traditional multicore processor.
The nodes are assembled into racks with 1024 nodes in each.

4.1 Gauß Elimination – Parallel Map
We have measured the time needed to compute the LU decompo-
sition of a permuted scaled n × n Pascal matrix modulo r primes.
The program has been parallelised using the simple farm skeleton
with an input list of size r, as the map is done over the different
residue classes [26].

In our setting, r corresponds to the total number of PEs, i. e. r =
8 and 8 parallel processes will thus be created. Note that this is not
the optimal way to parallelise this program for p < 8. When we
have more processes than PEs, multiple processes will be executed
by the same PE. This causes an imbalance when the processes
cannot be evenly distributed to PEs, i. e. when 8 is not a multiple
of the number of PEs. Thus, the 2, 4 and 8 PE configurations
perform best. This knowledge could be acquired using source code
inspection or process activity profiles, e.g. using Eden TV [4]. In
Section 5 we will see, how to obtain the same information with our
approach.

In spite of this, we refrain from estimating the execution time at
8 PEs, as this special case is not connected with 6 and 7 PE config-
urations. We could use only the special cases, but then we would
not have enough data points, as we perform our measurements on
an 8 PE machine. We stress again that we use a non-optimal pro-
gram with known weaknesses to demonstrate the strength of our
approach.

Table 1 shows the measured times. Figure 2 shows the estima-
tion of the sequential runtime T (n). Figure 3 shows the estima-
tion of Ā(n, p) w.r. t. n and p. With mean we denote the mean of
spline and loess methods.

● ● ● ● ●
●

●
●

●

●

●

●

20 40 60 80 100 140

0
5

10
15

20
25

30

Input, n

T
im

e,
 s

ec
on

ds
● measured time

spline
loess
lm(poly)

Rel. error for n = 120

Method Rel. err., %

spline −16.17
loess −6.605

lm(poly) −3.41

Figure 2. Gauß elimination. Predicting T (n) for n = 120, 150.

Now, as can be seen in the figures, we have the best method for
estimating Ā—mean—and the best method for estimating T (n)—
lm(poly). Note, that we did not consider lm(poly) for estimat-
ing Ā due to the poor performance there. Combined, we can apply
Equation (*) and obtain the complete time estimation. We obtain
an estimate T (120, 7) = 6.10 seconds, which corresponds to the
appropriate value from Table 1 up to the relative error −1.69%. In
this example we have assumed, there was the possibility to mea-
sure time on a 7 PE machine, but no one had run the test program
for the input length 120 or 150. Now we do the converse: we have
measurements for task size 100 on smaller PE numbers, but do not
have a machine with 7 PEs to measure time there. So we use the
data for the estimation of Ā(n, p) w.r. t. p and the already mea-
sured T (100). We obtain an estimate T (100, 7) = 3.564 seconds,
which is −1.1% accurate. So, it is possible to estimate the parallel
runtime both w.r. t. task size and w.r. t. PE count with significant
accuracy.

4.2 Mass Transport in Porous Media – Parallel Map
As a further example we consider the lattice-Boltzmann method
from fluid flow and mass transport simulation. The data originate
from [21, 22], the experiments were performed by Siarhei Khire-
vich and Anton Daneyko on the Jülich Blue Gene/P supercomputer.
They used all available PE nodes, resulting in an experiment on up
to 294912 cores.

Overview The aim of [22–24] was to simulate the transport pro-
cesses in porous media, e.g. in the chromatographic separations.
Pumped into a long thin pipe, filled with some matter, what paths
does an injected solution follow? The matter is modelled with
spheres. The pumped solution is simulated in two steps: first fluid
flow is simulated, subsequently the actual movement of the matter
is studied. The simulation consists of several phases:

1. Random close-sphere packing and its spatial discretisation. We
do not consider this phase.

2. Simulation of the fluid flow with lattice-Boltzmann method
(LBM). This is the phase we focus on.

20 40 60 80 100 140

0
2

4
6

8

7 PEs, absolute reference point
Input, n

A
(n

, p
)

● ● ● ● ●
●

●
●

●

●

●

●
● measured time

spline
loess
mean

(a) Penalty values w. r. t. n

1 2 3 4 5 6 7 8

1.
5

2.
0

2.
5

3.
0

n=100, absolute reference point
PEs

A
(n

, p
)

●

●

●

●

●

●

●

●

● measured time
spline
loess
lm(poly)
mean

(b) Penalty values w. r. t. p

Method spline loess mean

Rel. error, % −3.601 2.143 −0.7294
(c) Relative error for n = 120

Method spline loess lm(poly) mean

Rel. error, % −16.9 13.53 43.064 −1.682
(d) Relative error for p = 7

Figure 3. Gauß elimination. Left: predicting Ā(n, p) w.r. t. n. We
fix p = 7 and predict values for n = 120, 150 using the values for
n ≤ 100. Right: predicting Ā(n, p) w.r. t. p. We fix n = 100 and
predict the value for p = 7 using the values for p ≤ 6.

3. Simulation of the advective-diffusive mass transport. It is
performed with the random-walk particle tracking method
(RWPT).

The latter two phases clearly dominate the computational com-
plexity of the method. We chose to focus on the LBM phase. Due
to the dimensions of the chosen lattice—632 × 632 × 294912—a
one-dimensional decomposition is possible. Basically, the pipe is
cut in length and each “slice” is assigned to a PE. Hence, we have a
data parallel implementation. The amount of spheres in each slice
also varies, the maximal difference is 27%.

The LBM phase generates the data, used later in the RWPT
phase. Basically, the flow of the fluid around the sphere packing
is computed, it is done with sophisticated variants of cellular au-
tomata, cf. [7]. We show the speedup curves for both LBM and
RWPT in the left part of Table 2.

Discussion of RWPT The RWPT method consumes data, gen-
erated in the LBM phase. It traces the paths of single molecules
through the pipe. The simulation, regarded here, uses 40 million
“tracings”. Each tracing adds the closest neighbourhood vector of
the fluid flow, obtained with LBM, and some random diffusion vec-
tor.

The separate slices—tasks!—are distributed to PEs in a round-
robin manner. Thus in [22], Khirevich and Daneyko observe lower
speedups in cases when some PEs have more tasks than others.
As the computation time for a single task is proportional to the
amount of spheres, the developers decided against dynamic task
balancing. However, bad static task balancing leads to problems
with speedups, as we will explain in the following. We show the
execution times for thousand iterations of RWPT, starting with
16384 PEs and up to 294912 PEs in the top right part of Table 2.
As the program data is too large to fit in memory in the sequential
case, we take the time on 16384 PEs to be the “sequential” point of
reference for our computations.

As we see in left part of Table 2, RWPT has major speedup
problems in the middle part of the scale, i. e. when using between
100000 and 250000 PEs. The reason is a task distribution imbal-

●

●●

●●

●

●

50000 250000

1.
0

2.
0

3.
0

4.
0

LBM

PEs

S
pe

ed
up

 *
 3

27
68

measured
linear ●

●

●

● ●
●

●

●

50000 250000

2
4

6
8

10
12

RWPT

PEs

S
pe

ed
up

 *
 1

63
84

measured
linear

RWPT

PE, p 16384 32768 65536 98304 131072 196608 262144 294912

T (n, p) 1.93 0.99 0.55 0.345 0.355 0.33 0.255 0 .155

Imbalance, % 0 0 50 0 25 50 12.5 0

LBM

PEs, p 32768 65536 98304 131072 196608 262144 294912

T (n, p) 16.285 9.99 6.82 6.80 5.284 5 .273 3.675

Table 2. RWPT and LBM on a supercomputer, courtesy of [21]. The task size n is fixed. Left: the speedups for both computations. Right,
top: RWPT execution times. Right, bottom: LBM execution times. The boxed values will be estimated.

ance, cf. the imbalance values given in the top right part of Table 2.
Let p be the number of PEs. As in total n = 294912 tasks are to
be computed, nmod p remaining tasks are computed by some PEs,
while some other PEs are idling. This is bad, as the factor bn/pc is
small, so the imbalance is severe. Our farm scheme is not suitable
for this, as it assumes n � p. We do not consider RWPT further,
because we have no suitable prediction approach. LBM has a simi-
lar problem, but it is not as severe as in the RWPT case.

LBM: Time measurement The time measurement data for LBM
on Jülich Blue Gene/P presented in the right bottom part of Ta-
ble 2 have been taken from [21]. The time required for 10 it-
erations is given. We assume T (n) in our computations to be
T (n, 32786) · 32768. In other words: a perfect speedup for up to
32768 PEs is assumed. This is rather a convenience convention than
an assumption: we could as well “downscale” the PE numbers by
dividing them by 32768. It is impossible to obtain the real sequen-
tial time, as the data to be processed does not fit into the memory
of a single machine.

Estimation Given the time measurements and the knowledge,
that the program in question performs computations in an essen-
tially data-parallel manner (i. e. using parallel map), we start our
prediction round. The task size is fixed, but we can estimate the
scalability w. r. t. the PE number p. Note that we have neither the
source code nor a binary version of the program we investigate. All
we know is the scheme used for parallelisation.

We present the values for Ā(n, p) w.r. t. p in the top part of
Figure 4. The lm(poly) method with polynomials of degree 3
results in the estimation 3.16 seconds for Ā(n, 262144). Using
it and approximating T (n) with 16.285 · 32768, we obtain the
estimation for the execution time T̂ (n, 262144) = 5.196 seconds.
This estimation is exact up to the relative error−1.47%. We present
it graphically in the bottom part of Figure 4. Notably, a direct
runtime estimation—an attempt to predict the parallel time directly
from the number of PEs, using the same data, but without using
Equation (*)—fails. The all-best relative error for direct estimation
is −31%.

This shows that our approach is applicable to large-scale pro-
duction applications. An accurate forecast has been made with a
non-application centred approach.

Generalisation We have seen a good performance of lm(poly)
for estimating Ā w.r. t. p for LBM. However, the same method
seems to fail for Gauß elimination as reported in Section 4.1.
We assume that this is due to the “regular” cases of perfectly
distributed tasks. We have tried to estimate Ā w.r. t. p for Gauß
elimination without the regular cases, that is for p 6= 2, 4, 8. We
were estimating the parallel overhead for p = 7 using all other

PEs, p 32768 65536 98304 131072 196608 262144

Ā(n, p) 0 1.85 1.39 2.73 2.57 3 .24

●

●
●

●

●

●

50000 150000 250000

0.
0

1.
0

2.
0

3.
0

fixed task size
PEs

A
(n

,p
)

● measured time
lm(poly)

Figure 4. Computing Ā(n, p) for LBM. Top: computed values
for Ā. The boxed value will be estimated on the bottom.

available values. We obtained quite bad results because too few
measured data points remained. However, judging by relative error,
spline and lm(poly) of degree 3 were equally good. Hence, we
can conjecture that for parMap-related skeletons lm(poly) is the
most suitable method of the statistical techniques regarded here.

4.3 Karatsuba Multiplication – Divide and Conquer
The Karatsuba multiplication is a ternary divide and conquer al-
gorithm for multiplying large integers. The following results have
been obtained with Eden on a multicore machine. We perform the
computation for integers of equal size, where the size of a large in-
teger is its number of digits. The integer size has been uniformly
distributed between 16000 and 64000 digits. We predict the values
for 60000 and 64000. See the top of Table 3 for a snapshot of the
data. Since the relative reference point is used, we are not able to
separate O(n, k, p) from T (n). We discard O(n, k, p) in our set-
ting, as the communication cost on the multicore machine is very
small. We have estimated T (60000) with the spline method pro-
ducing a relative error of −0.014%. The next best estimation has
been achieved with lm(poly) of the third degree with relative er-
ror 1.3%. The latter method for T (64000) has the best relative er-
ror of 1.9%, whereas the spline method produces a relative error

Uniform

n · 1000 16 20 24 28 32 36 40 44 48 52 56 60 64

T (n, 8) 1.29 1.78 2.61 3.19 3.74 4.47 5.37 7.14 8.05 8.98 9.95 11.0 11.86

Non-uniform

n · 1000 0.5 1 2 4 8 16 32 64 128

T (n, 8) 0.0654 0.0818 0.129 0.222 0.47 1.28 3.74 11.86 36.66

Table 3. Karatsuba multiplication on 8 PEs. The bold values will be estimated.

20000 40000 60000

20
40

60
80

Input size, n

T
im

e,
 s

ec
on

ds

●
●

●

●

●

●

●

●

●

●

●

●

●● measured time
spline
loess
lm
lm(poly)

Relative error for T (60000)

Method spline loess lm lm(poly)

Rel. error, % −0.014 −2.08 −3.76 1.30

Figure 5. Karatsuba multiplication. Estimating the sequential run-
time T (n) for n = 60000 and 64000 on uniform data.

of 2.76%. The loess method is not significantly worse. See Fig-
ure 5 for more details. As for Ā(n, p) w.r. t. n, we obtain a relative
error of 2.3% for Ā(60000, 8) with lm(poly) of degree 3. The
most reliable estimation is produced by loess with −5.4% and
2.08% relative errors for the estimations of input lengths 60000
and 64000 respectively. This results in parallel runtime estimation
values 11.01 seconds and 12.09 seconds for the same inputs. This
corresponds to relative errors 0.14% and 1.78%. Thus an appropri-
ate estimation of runtime does also work for a divide and conquer-
based computation.

We have also experimented with a non-uniform input data dis-
tribution, given at the bottom of Table 3. The input size varied be-
tween 500 and 128000 digits. Under the assumption that the first
8 data points are available, we have predicted the ninth point with
n = 128000. We predict the value of 36.66 seconds with an accept-
able quality using the spline method: 8.984% relative error. But
we are exceptionally successful with the lm(poly) approach of de-
gree 3. We obtain the estimation value of 36.67 seconds (rounded
up to second digit) with a remarkable relative error of 0.021% with
prior knowledge of the runtimes only up to 64000. Hence our for-
malism is also applicable to such “long-distance” runtime estima-
tions.

4.4 Rabin-Miller Primality Test – Iteration
The Rabin-Miller primality test is an iterative application, which
performs k iterations to check whether its input value is prime or
not. The positive result of the test does not ensure that the input is

n 2203 2281 3217 4253 4423 9689 11213

T (n, 1) 1.882 2.094 5.284 10.77 12.16 96.95 144.82
T (n, 7) 0.304 0.332 0.814 1.639 1.849 14.63 21.80
T (n, 8) 0.304 0.334 0.812 1.635 1.843 14.66 21.78

Methods Estimate for Relative
T (n) Ā(n, 8) T (n, 8) error, %

spline + spline 127.25 3.32 19.23 −11.70
spline + loess 127.25 3.59 19.50 −10.56

spline + lm(poly) 127.25 3.82 19.73 −9.42
spline + lm(poly) 127.25 3.71 19.61 −9.94
loess + spline 136.73 3.32 20.41 −6.26
loess + loess 136.73 3.59 20.69 −5.02

loess + lm(poly) 136.73 3.82 20.91 −3.98
loess + mean 136.73 3.71 20.80 −4.50

lm(poly) + spline 144.59 3.32 21.40 −1.75
lm(poly) + loess 144.59 3.59 21.67 −0.50

lm(poly) + lm(poly) 144.59 3.82 21.89 0.53

lm(poly) + mean 144.59 3.71 21.78 0.01

Table 4. Rabin-Miller test. On the top: measured times. The bold
value is estimated at the bottom with all available methods.

prime, but does so with a certain probability. We perform the test
on Mersenne primes, the parameter n means that the number 2n−1
is tested for primality. We have chosen n in such a way that 2n − 1
is a prime number, in order to guarantee that all k iterations are
performed. This leads to a non-uniform distribution of input values.
We show the time measurement data in the top part of Table 4.

For estimating Ā(11213, 8) we used spline, loess, lm(poly)
of degree 3 and mean of latter two. We use T (n, 1) as an estimate
for T (n): in other words, we calculate with relative and not with
absolute reference point. The results are presented in the bottom
part of Table 4. An overview for single components is available in
Figure 6. Our best method is using lm(poly) and mean for esti-
mating T (n) and Ā(n, p) respectively, resulting in 0.01% relative
error. Thus the prediction of runtime of parallel Rabin-Miller test
has been quite accurate.

5. Serial Fraction
In their work “Measuring Parallel Processor Performance” [20]
A. H. Karp and H. P. Flatt introduced the notion of serial frac-
tion. Given the parallel time T (n, p) on p PEs and the sequential
time T (n), the absolute speedup is T (n)/T (n, p). The serial frac-
tion is

f(n, p) =
T (n, p)/T (n)− 1/p

1− 1/p
.

The serial fraction should be constant: if it increases, we have
a parallelisation resulting in poor speedups. If the serial fraction

●●
●

●●

●

●

2000 4000 6000 8000 10000

0
20

40
60

80
12

0

Relative reference point
Input, n

T
im

e,
 s

ec
on

ds
● measured time

spline
loess
lm(poly)

2000 4000 6000 8000 10000

0
1

2
3

4

Relative reference point
Input, n

A
(n

, p
)

●●
●

●●

●

●● measured time
spline
loess
lm(poly)
mean

Relative error for T (n)

Method spline loess lm(poly)

Rel. error, % −12.13 −5.59 −0.1566

Relative error for Ā(n, p)

Method spline loess lm(poly) mean

Rel. error, % −9.58 −2.21 3.91 0.851

Figure 6. Predicting values for both components for Rabin-Miller test. Left T (n), right Ā(n, p).

decreases, this shows problems with the sequential implementa-
tion. We have computed the serial fraction for the test cases pre-
sented above. For Gauß elimination, we have used n = 100.
Both measures—our parallel penalty Ā and the serial fraction—
are shown in Figure 7(a). The shapes of the curves correspond to
the load distribution in the computation, as we might deduce from
the knowledge of the source code. Noteworthy, both our notion of
parallel penalty and the serial fraction have minima at 4 and 8 PE.
The value of the parallel penalty Ā(n, p) is almost constant for 2,
4 and 8 PE versions. Exactly these versions are optimal in the load
distribution. The serial fraction shows the same for 4 and 8 PE ver-
sions, but indicates a larger serial component for 2 PEs.

The serial fraction for Rabin-Miller primality test with the in-
put 9689 is shown in Figure 7(b), the numerical values are in Fig-
ure 7(c). We can clearly see problems with load balancing for 3
and 6 PEs, as we need to perform exactly 20 tasks. However, this
amount of tasks cannot be fairly distributed to 3 or 6 PEs, some PEs
are idling, thus increasing the parallel overhead. Consider 6 PEs.
There will be 6—6—6—2 tasks during the four parallel iterations,
thus 4 PEs will be idle in the last iteration. Only one PE in the last
iteration is idle for a 7 PEs configuration, however the overhead
increases again for 8 PEs, resulting in a 8—8—4 scheme. We de-
duce, that for executing exactly 20 tasks in parallel, 4 or 5 PEs in
a system are ideal. Simple thoughts on task distribution result in
the same observation. Here, again, all the discussed effects can be
observed in both approaches.

6. Related Work
Our approach bears—as everything on this topic—a certain grade
of similarity to Amdahl’s law [1]. Exactly as Amdahl did, we as-
sume a perfect parallelisation of the computation, but consider also
the unavoidable overhead. However we divide the parallel compu-
tation not into Amdahl’s perfectly parallel and strictly sequential
fractions, but into fractions of effective computation and of parallel
overhead.

Related publications on performance forecasting include the
book chapter on skeletons in Eden [27] and the formal cost model

of NESL [5]. However, our approach is different. We derive the
time and work from time measurements for the runs on different
numbers of PEs, while the skeleton analysis in [27] is based on la-
tency and message-passing costs. The NESL complexity model [5]
takes a “bottom-up” approach, trying to assign cost to single se-
mantic operations. We look in a “top-down” manner on the total
runtime and divide it into very coarse blocks.

Further approaches on skeleton-based performance evaluation
include [3, 11]. In [11] Cole and Hayashi regard a BSP-like cost
model, assigning costs to basic elements of a parallel program. A
similar approach to ours, but more fine-grain and still focusing on
BSP is [35]. Beside BSP [33], models like LogP [12] and message
passing models exist. See [32] for a runtime prediction approach
for the latter. A rather theoretical well-investigated performance
model is the PRAM model [14] and its variants. An alternative
program classification approach are Berkley dwarfs [2], however in
this case several particular types of tasks are identified, in contrast
to abstracting from the task type with skeletons [10].

Regarding approaches for parallel quality measure, the notion
of serial fraction as defined in [25] is similar to ours. Isoeffi-
ciency [16], scaled speedup [18] and other approaches are less sim-
ilar to penalty values Ā(n, p), as we do not aim for a larger input
on a larger PE count, which keeps the efficiency the same.

A further research direction, orthogonal to our approach is
hotspot and bottleneck analysis. We refer to modern visualisation
tools, like [15]. In parallel functional programming, Eden TV [4]
and ThreadScope [34] are used. We were able to confirm our as-
sumptions on bad process placement of programs from Sections 4.1
and 4.4 with Eden TV.

7. Conclusions and Future Work
We predict the execution times of parallel programs in an ele-
gant manner. Our method is different from previously known ap-
proaches. It does not depend on source code analysis or on spe-
cial semantic rules. Instead, our method is empowered by compu-
tational statistics and the skeleton abstraction. We separate estima-
tions for parallel computation and parallel overhead, hence differ-

●

●

●

●

●

●
●

●

1 2 3 4 5 6 7 8

1.
4

2.
0

A
(n

, p
)

●

●

parallel penalty
optimal conf.

1 2 3 4 5 6 7 80.
20

0.
30

PEs

f(
n,

 p
)

serial fraction
optimal conf.

(a) Gauß elimination

● ●

●

● ●

●

●

●

1 2 3 4 5 6 7 80.
0

2.
0

A
(n

,p
)

● parallel penalty

1 2 3 4 5 6 7 80.
00

0.
03

PEs

f(
n,

p)

serial fraction

(b) Rabin-Miller test

Rabin-Miller test

p 1 2 3 4 5 6 7 8

Ā(9689, p) 0 0.0844 1.796 0.0731 0.1433 3.30 0.7793 2.5442
f(9689, p) − 0.001741 0.027790 0.001005 0.001847 0.04084 0.009379 0.029992

(c) Comparing the numerical values for Rabin-Miller test

Figure 7. Comparing the serial fraction with our approach.

ent forecasting models can be used for each. This makes sense,
given the different nature of these processes, and enables better es-
timations. We have used our technique to predict execution times
for four scientific computing methods, abstracted in three algorith-
mic skeletons.

In this paper, we have tested our technique primarily with Eden
and multicore SMP hardware, but also on a peta-scale supercom-
puter, using C+MPI. We look forward to more experiments with
large-scale systems, further languages and middleware. We also
would like to perform detailed analyses of further, more complex
skeletons. We need to experiment with the estimation of combined
skeletons, the two prominent cases are skeleton composition and
nested skeletons. We also need to extend our formalism for imbal-
anced parallel map: i. e. farm where p < n < kp for a small k. This
has hindered a detailed analysis of RWPT method in Section 4.2.
The same problem existed also in other case studies we have con-
sidered, however not to such an extent. Some kind of precondition-
ing the data to the regular case could help. Moreover, we plan to
seek for more advanced prediction methods for sequences. More
sophisticated statistical methods are necessary. A proper direction
would be, for instance, the separation of special performance cases
(like 4 and 8 PE versions of Gauß elimination in Section 4.1 or the
aforementioned task imbalance). Statistically sound statements on
the distance of robust extrapolation using the structure of the pre-
sented model is also left for future work. An approach for absolute
reference point divide and conquer estimation would be interesting
(relative reference point in Section 4.3). Another interesting topic
is predicting how many measured values do we need for a good
prediction of runtime. A machine learning approach for estimat-
ing of separate sequences and an adaptive runtime environment for
parallel programs present rather long-term ideas for future work.

Acknowledgments
We would like to thank Thomas Horstmeyer for fruitful discussions
on divide and conquer evaluations. Big thanks go to Siarhei Khire-
vich for sharing his Blue Gene/P time measurements with us. We
thank the anonymous reviewers for their helpful comments.

References
[1] G. M. Amdahl. Validity of the single processor approach to achieving

large scale computing capabilities. In Proc. of the spring joint com-
puter conf. ACM, 1967.

[2] K. Asanovic, R. Bodik, et al. The landscape of parallel computing
research: A view from Berkeley. Technical Report UCB/EECS-2006-
183, EECS Department, University of California, Berkeley, Dec 2006.

[3] A. Benoit, M. I. Cole, S. Gilmore, and J. Hillston. Evaluating the
performance of skeleton-based high level parallel programs. In The
International Conference on Computational Science (ICCS 2004),
Part III, LNCS 3038.

[4] J. Berthold and R. Loogen. Visualizing Parallel Functional Program
Executions: Case Studies with the Eden Trace Viewer. In Proceedings
of the Intl. Conf. ParCo 2007 – Parallel Computing: Architectures,
Algorithms and Applications. IOS Press, 2007.

[5] G. Blelloch. Programming Parallel Algorithms. Communications of
the ACM, 39(3):85–97, 1996.

[6] J. M. Chambers and T. J. Hastie. Statistical models in S. CRC Press,
1991.

[7] S. Chen and G. D. Doolen. Lattice Boltzmann method for fluid flows.
Annual Review of Fluid Mechanics, 30(1):329–364, 1998.

[8] W. S. Cleveland. Robust locally weighted regression and smoothing
scatterplots. Journal of the American Statistical Association, 74(368):
829–836, 1979. ISSN 01621459.

[9] W. S. Cleveland and S. J. Devlin. Locally weighted regression: An ap-
proach to regression analysis by local fitting. Journal of the American
Statistical Association, 83(403):596–610, 1988. ISSN 01621459.

[10] M. I. Cole. Algorithmic skeletons: structured management of parallel
computation. Research Monographs in Parallel and Distributed Com-
puting. Pitman, 1989.

[11] M. I. Cole and Y. Hayashi. Static performance prediction of skeletal
programs. Parallel Algorithms and Applications, 17(1):59–84, 2002.

[12] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos,
R. Subramonian, and T. Von Eicken. LogP: Towards a realistic model
of parallel computation. ACM SIGPLAN Notices, 28(7):12, 1993.

[13] G. E. Forsythe, M. A. Malcolm, and C. B. Moler. Computer methods
for mathematical computations. Prentice Hall Professional Technical
Reference, 1977.

[14] S. Fortune and J. Wyllie. Parallelism in random access machines.
In Proceedings of the tenth annual ACM symposium on Theory of
computing, pages 114–118. ACM, 1978.

[15] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, and
B. Mohr. The Scalasca performance toolset architecture. Concurrency
and Computation: Practice and Experience, 22(6), 2010.

[16] A. Y. Grama, A. Gupta, and V. Kumar. Isoefficiency: Measuring the
scalability of parallel algorithms and architectures. IEEE Conc., 1(3):
12–21, 1993. ISSN 1063-6552.

[17] A. Y. Grama, V. Kumar, A. Gupta, and G. Karypis. Introduction to
parallel computing. Addison Wesley, 2003.

[18] J. L. Gustafson, G. R. Montry, and R. E. Benner. Development of
parallel methods for a 1024-processor hypercube. SIAM J. Sci. Stat.
Comput., 9(4):609–638, 1988.

[19] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era.
Computer, 2008.

[20] A. H. Karp and H. P. Flatt. Measuring parallel processor performance.
Comm. ACM, 33(5):539–543, 1990.

[21] S. Khirevich. Private communication, May 2010.
[22] S. Khirevich and A. Daneyko. Simulation of fluid flow and mass

transport at extreme scale. In B. Mohr and W. Frings, editors, Jülich
Blue Gene/P Extreme Scaling Workshop 2010. Jülich Supercomputing
Centre, March 2010.

[23] S. Khirevich, A. Höltzel, S. Ehlert, A. Seidel-Morgenstern, and U. Tal-
larek. Large-scale simulation of flow and transport in reconstructed
hplc-microchip packings. Analytical Chemistry, 81(12):4937–4945,
2009.

[24] S. Khirevich, A. Höltzel, A. Seidel-Morgenstern, and U. Tallarek.
Time and length scales of eddy dispersion in chromatographic beds.
Analytical Chemistry, 81(16):7057–7066, 2009.

[25] V. Kumar and A. Gupta. Analyzing scalability of parallel algorithms
and architectures. J. of Parallel and Distributed Computing, 22(3):
379–391, 1994.

[26] O. Lobachev and R. Loogen. Implementing data parallel rational
multiple-residue arithmetic in Eden. In Computer Algebra in Scientific
Computing, LNCS 6244, pages 178–193. Springer, 2010.

[27] R. Loogen, Y. Ortega-Mallén, R. Peña, S. Priebe, and F. Rubio. Par-
allelism Abstractions in Eden. In F. A. Rabhi and S. Gorlatch, edi-
tors, Patterns and Skeletons for Parallel and Distributed Computing.
Springer, 2002.

[28] R. Loogen, Y. Ortega-Mallén, and R. Peña-Marí. Parallel Functional
Programming in Eden. Journal of Functional Programming, 15(3):
431–475, 2005.

[29] MPI Forum. MPI-2: Extensions to the Message-Passing Interface.
Technical report, University of Tennessee, Knoxville, July 1997.

[30] R. Peña and F. Rubio. Parallel functional programming at two levels
of abstraction. In PPDP ’01: Proceedings of the 3rd ACM SIGPLAN
international conference on Principles and practice of declarative
programming, pages 187–198. ACM, 2001.

[31] R Development Core Team. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2009. URL http://www.R-project.org.

[32] J. L. Roda, C. Rodríguez, D. G. Morales, and F. Almeida. Predicting
the execution time of message passing models. Concurrency: Practice
and Experience, 11(9):461–477, 1999.

[33] L. G. Valiant. A bridging model for parallel computation. Communi-
cations of the ACM, 33(8):111, 1990.

[34] K. B. Wheeler and D. Thain. Visualizing massively multithreaded ap-
plications with ThreadScope. Concurrency and Computation: Prac-
tice and Experience, 22(1):45–67, 2009.

[35] A. Zavanella. Skeletons, BSP and performance portability. Parallel
Processing Letters, 11(4):393–407, 2001.

