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Abstract

This document serves as a supplementary text to the main paper. It handles some details not mentioned there, shows additional
figures, and gives an exact definition of quality measures used. Here, we prefix all the references to the main paper with “M.”
The main paper prefixes all the references to this document with “S.”

Keywords: registration, multi-resolution, feature detection, splines, histology

1. Supplementary Materials

1.1. Technical Details on Matching (Section M3.2)

A direct match of all-against-all key points is neither feasible
nor produces good results, see Fig. 1. We rematch the key point
pairs basing on a weighted implementation of radius match.
Then least-squares optimization follows to yield the positions
of B-spline control points for the actual non-rigid distortion.
Compare the matches of a rigid stage with the matches of the
non-rigid stage: in Fig. 1, a) shows decimated direct matches, b)
is the rigid match we find in the first iteration, c) shows matches
from the non-rigid registration.

1.2. Pipeline (Section M3.3)

We present a side view on serial sections of spleen, double-
stained, in Fig. 2 (a–c) show the horizontal the z-stacks and
demonstrate that our method is superior not only to the single-
resolution registration (“A”), but also to the repeated application
of single-resolution registration to the ROI (“A–A”). Compare
Fig. 2 a) to Fig. 2 b): we see some positive effects of a second
application of non-multi-resolution registration. However, in
Fig. 2 c) we see a more significant effect of our method (“A–
B”). The shapes of the blood vessels and other objects in this
z-stack are better, esp. in marked positions. This is even more
pronounced in the volume renderings in Fig. M11 in the main
text.

In Fig. 3, (a) shows the crop zone and the ROI (whole image
shown) used for the fine-grain registration. Fine capillaries are
not properly registered using the slice-wide, coarse registration
in (b). We used the method “A” here. It served as an input
for (c) and (d). Compare the fine-grain registration using (c)
single-resolution registration “A” again (yielding “A–A”) with
(d) our method “B”, the multi-resolution registration (resulting
in “A–B”). Small capillaries should profit from our method as
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they are too small to produce features that are large enough to
be regarded by a single-resolution method, esp. in a slice-wide
application. We compare these two methods in detail in main
paper.

1.3. Results: Volume Renderings (Section M4.3)

Fig. 4 shows the full volume rendering of a single-stained
spleen specimen. Figure M7 (in main paper) shows a region
from this image that was only cut out, without any re-registering.

Fig. 5 shows the processed bone marrow specimen as a vol-
ume rendering of the alignment with our method. We used two
levels of multi-resolution registration.

1.4. Discussion (Section M5)

To further highlight our method we show z-stacks and further
volume renderings of another bone marrow ROI in Figures 6–7.
Observe the precision of section matching in the z-stacks (Fig. 6).
These images are not directly comparable to each other, because
different registrations have distorted them differently. Instead,
compare the quality of the separate shapes without comparing
the shapes directly. We also show complete volume renderings
accompanied by more detailed crops (Fig. 7). The crops in
Fig. 6 b), d), f) show visually the benefit from using our method.

1.5. Applying Our Method to Standard Images (Section M5.5)

To show that our method is applicable not only to histological
images, we generated distorted series from standard test images
and registered them with our method.

We took two standard images from signal processing: “Lena”
and “mandrill”. To use them for the image registration, we ran-
domly distorted the images. We moved random points of the
input in random direction and distance using Shepard’s distor-
tion. Both the offsets and the initial positions were generated
using a normal distribution with σ = 204 for positions; with
µ = 2.5 and σ = 4 for offsets. (Fig. 8) All the difference im-
ages here are negated for the sake of presentation—white is no
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(a) naive matching, showing each 10th match (b) matches during rigid matching (c) matches during the non-rigid registration

Figure 1: Matches in a ROI from spleen data, double staining. Fig. (c) shows matches at the end of the first non-rigid registration phase, i. e. those with largest search
radius and size. We add further (smaller) matches within a smaller search radius in the next phases. The registered data set is in Figure M8 in the main text.

(a) Only section-scaled single-resolution registration.

(b) Single-resolution registration applied again to the ROI only.

(c) Our approach, 2-level multi-resolution registration applied to the ROI.

Figure 2: Stack of 24 serial human spleen sections double-stained for CD34 plus
SMA (brown) and CD271 (blue). Compare the z-profiles of this specimen. All
the sections underwent a single-resolution registration and were then cropped to
ROI. Note the differences in the vascular network at the marked positions.

difference. The image size was 512 × 512 pixels. We upscaled
the input images after the distortion 6×. Then we performed the
registration using our method, see Fig. 8, page 6 for the results.

2. Extended Quantitative Evaluation

2.1. Definitions of the Quality Measures (Section M5.3)

We discuss seven different quantitative measures of registra-
tion quality for each of the specimens (Fig. M4–M6) below. The
paper has omitted the formula for the quality measures used, we
fix this here.

For the notation, consider two images A and B, two single
pixel values at (i, j) are Ai j and Bi j, the mean values at (i, j)-
centered window are Ai j and Bi j, i.e. for n × m-sized window,

Ai j =
1

nm

j+n/2∑
k=i−n/2

j+m/2∑
l= j−m/2

Akl.

The cross-correlation in the same n × m window is

ρi j(A,B) =
1

nm

i+n/2∑
k=i−n/2

j+m/2∑
l= j−m/2

(Akl − Ai j)(Bkl − Bi j).

With ∂Ai j/∂x we denote the derivative of A at (i, j) in the direc-
tion of x axis.

(a) Overview (b) Coarse (“A”) (c) “A” again (d) “A–B”, ours

Figure 3: Stack of 24 serial human spleen sections double-stained for CD34
plus SMA (brown) and CD271 (blue). We showcase how well small capillaries
are represented, this is pivotal for histological research basing on this images.
Capillary sheaths are visible as blue areas around brown capillaries. Compare
the crops from the volume rendering, from left to right: (a) legend, a single slice
showing the registered ROI and post-registration crop location, magnification
factor 30, (b) coarse, section-wide registration only using single-resolution
registration of Ulrich et al., (c) the series from b) was registered again using the
single-resolution method, (d) the series from b) was registered using our method.
We used four levels of multi-resolution registration. The magnification factor
for (b–d) is 120.8.

To obtain the data for quality evaluation we registered the
whole series with each method, picked a pair of consecutive
images and compared them using the following measures over
the whole ROI (we show later a detailed view when applicable):

• structural similarity (SSIM) is

(2Ai jBi j + C1)(2 ρi j(A,B) + C2)

(A
2
i j + B

2
i j + C1)(ρi j(A,A) + ρi j(B,B) + C2)

,

with stabilization constants C1 and C2, using 11 × 11 Gaus-
sian weighting. Final single SSIM value is the mean over
the overall SSIM image.

• pixel-wise sum of squared differences (SSD), i.e.
∑

(Ai j −

Bi j)2.

• zero-mean sum of absolute differences (ZSAD) with win-
dow 16 × 16, ∑

(Ai j − Ai j) − (Bi j − Bi j).

We compute the absolute differences pixel-wise, but be-
forehand subtract the mean of the values in the window
around the pixel from the actual pixel values. The resulting
images are quite dark, for the sake of presentation we adjust
the brightness and contrast to +50 in all presented ZSAD
images. The numerical values are not corrected.
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Figure 4: Volume rendering of spleen, single-stained for CD34. We overlay 24
images after 4-levels of our multi-resolution registration. Figure M7 in the main
text shows a crop of this 9× overview image.

• mutual information (MI) increase. We compute the mutual
information for an image pair. For the actual value we
divide the mutual information in two registered consecutive
images of a scan series by the mutual information in the
original, unregistered image pair to obtain the increase of
mutual information compared to baseline.

• gradient cross-correlation (GCC):

ρi j(∂Ai j/∂x, ∂Bi j/∂x), ρi j(∂Ai j/∂y, ∂Bi j/∂y).

We compute the gradient separately in the direction of the
x and y axes using Scharr operator, compute the cross-
correlation using window size 16 and then blend both im-
ages together. As the result is too dark, we use gamma
correction with γ = 6 before blending. The numerical
values are not corrected.

• Farnebäck’s dense optical flow that is defined in the fol-
lowing way. We model a signal with quadric polynomials,
e.g. f1(x) = xT A1x + bT

1 x + c1 for a symmetric matrix A1, a
vector b1 and a scalar c1. A globally displaced by d signal
f2 is defined in a similar way in terms of A2,b2 and c2.
We can express d as −A−1

1 (b2 − b1)/2. Now, to make the

Figure 5: Stack of 30 human bone marrow sections single-stained for CD34
and CD141 (both in brown). In contrast to Section M4 and Figure M10, it was
registered with two levels of our method, after the single-resolution registration
was applied both to the full section and to the ROI. We evaluate this ROI in
Figure 16.

computation more practical we use local polynomial ap-
proximations of images. In the following description of the
optical flow we omit the x argument, e.g. A always stands
for A(x), a local approximation. Let

A := (A1 + A2)/2 and ∆b := −(b2 − b1)/2.

The distance is now a spatially varying displacement field
d with Ad = ∆b. Let w be a weight function—the edges of
an image have a smaller weight. Now, in a neighborhood I
following holds:

d(x) =

∑
I

wAT A
−1∑

I

wAT ∆b,

the sums run over all x in I, as x is an omitted for brevity
argument to A, ∆b, and w. In practice we compute AT A,
AT ∆b, and ∆bT ∆b (needed for the confidence value) point-
wise.

The flow is computed on multiple scales to alleviate the
problem with larger displacements. We computed it based
on a classical 2n image pyramid with 3 levels, averaging
window size of 15 pixels, three iterations at each level,
neighborhood size for polynomial expansion of 5 pixels.
The derivatives for polynomial expansion are smoothed
with σ = 1.2.

• The Jaccard similarity measure for two sets X and Y is
defined as

J(X,Y) =
#(X ∩ Y)
#(X ∪ Y)

,
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(a) Original (after slide-wide single-resolution registration)

(b) ROI-based single-resolution registration, used as input for our method

(c) Our method improves the overlay

(d) For reference: z-profile using elastix on saturation channel, negated for
presentation

Figure 6: Human bone marrow, z-profiles of 30 sections single-stained for CD34
and CD141 (both in brown), showing the same ROI as in Figure 7

the valid values lie between zero (no similarity) and one
(full similarity). As our inputs are images, say, A and B we
threshold the data at a given value, yielding a coarse kind
of segmentation. Let the binary threshold of an image A
at value x be tx(A). Then we compute the Jaccard measure
for the resulting binary images. For multi-channel images
we perform the computation channel-wise and take the
maximum. Let r, g, b be the channels, and Ar a single
channel of an image A. Hence, the Jaccard measure we use
is

J(A,B) = max
c∈{r,g,b}

# (tx(Ac) ∩ tx(Bc))
# (tx(Ac) ∪ tx(Bc))

,

we use RGB channels when applicable.

The result is presented in Fig. 9 (SSIM for all specimens),
Figs. 10–12 and Table M2 in the main text (optical flow), Table 1
(Jaccard measure for all specimens), Fig. 14 for spleen, single-
stained, Fig. 15 for spleen, double-stained, Figs. 16 and 17 for
bone marrow present results of SSD, ZSAD, mutual information
increase, and GCC for respective specimens.

Figs. 9, 16 and 17 show the results both for bone marrow
with two levels of registration with our method and with four
levels of registration. This facilitates the comparison of different
multi-resolution approaches and underlines the importance of
iteratively decreasing feature sizes in a registration.

2.2. Full Evaluation (Section M5.3)

Section M5.3 (main document) does not show the complete
evaluation because of article size limitations. We show it here in
complete detail.

Images in Figs. 14–16 show crops to emphasize details of
the registration. Below the images we show mean values for
whole images, not for the crops shown. All differences and
improvements in per cent are relative values.

The SSIM and Jaccard measure images and values are better
when lighter and higher. SSD, ZSAD, GCC, optical flow images
and values are better when darker and lower.

2.2.1. SSIM for All Specimens (Fig. 9)
Figure 9 shows the structural similarity index for spleen,

single-stained (b–f), spleen, double-stained (h–l), and bone mar-
row (n–r). Figs. 9 a), g), m) show corresponding specimens
registered using our method.

The SSIM images were very convincing for spleen, single-
stained specimen. The input overlay Fig. 9 b) produced a very
dark (i.e. bad) image, our method (f) was much lighter, the light-
est in the series. The images for elastix (d) and the method of
Ulrich et al. (e) were quite similar to rigid-only transformation
(c), but a bit darker, which corresponded to a minor decrease of
the quality value. Overall, our method showed 45% improve-
ment over baseline, while elastix yielded 31% of improvement.
The relative difference between the SSIM for our method Fig. 9 f)
and for elastix (d) was over 10%. The difference between SSIM
for our method (f) and for the method of Ulrich et al. (e) was
over 14%.

Again, SSIM for spleen, double-stained were much darker
for the initial overlay (h) than for our method (l). The SSIM
value here improved more than by 146%, the best overall result.
As for elastix (j) the improvement was 90.5%. All three non-
rigid methods, (j–l), showed SSIM images much lighter than the
rigid-only transformation (i).

As for bone marrow at two levels of our method, the difference
was not that high. The image for our method Fig. 9 r) appeared
a bit lighter (i.e. better) than the input overlay (n). Our multi-
resolution method improved the overlay of two images by 5.7%,
however repeated application of the non-multi-resolution method
by Ulrich et al. (q) did not improve the situation at all. The SSIM
quality decrease was here −6.8%. Same holds for elastix (p), it
impaired the registration by −19%.

The bone marrow specimen at four levels of our method (x)
showed more than 50% of SSIM improvement over the coarse-
only registration (t) for a 4k × 4k ROI. The result of elastix (v)
was visibly darker, indeed it showed a decrease in SSIM value
w.r. t. baseline (t). It corresponded to over 44% quality decrease
when compared to our method. Ulrich et al. (w) facilitated 37.6%
improvement over baseline (t).

2.2.2. Optical Flow (Section M5.3.2, Figs. 10–12)
We measure the magnitude of dense optical flow between to

consecutive images based on work of Farnebäck. This method
basically approximates the both signals locally in neighborhood
with quadric polynomials, then solves for the translation vector.
For the practical reasons the neighborhoods are averaged and
the fitting happens iteratively on multiple scales. We use pairs of
consecutive registered images as input and evaluate the motion
vector field in terms of its magnitude and angle.

Table M2 lists the means of the magnitude of translation vector
between two consecutive registered images. Here we extend it
with Figures 10, 11, and 12 that show angle and magnitude
between two slices as a color coded image for single-stained
spleen, double-stained spleen, and bone marrow specimens.
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(a) Original (after slide-wide single-resolution reg-
istration)

(b) A detail from (a)

(c) ROI-based single-resolution registration,
shows almost no effect in volume rendering, used
as input for our method

(d) Single-resolution registration, a detail from (c)

(e) Our method improves the overlay (f) Our method, a detail from (e)

Figure 7: Stack of 30 human bone marrow sections single-stained for CD34 and CD141 (both in brown), showing another ROI.
The stack shows capillaries (microvessels with small diameter) and sinuses (microvessels with large diameter). Both microvessels form a network with smooth
transitions from capillaries to sinuses. Sinuses may form round or flattened structures. It is impossible to represent blood microvessels in such length without
registering a series of sections.
A repeated application of single-resolution registration to a) would not show a better result, as it only operates on larger key points. These, however, were already
aligned in (c). We need to align smaller key points with our method to yield a difference (e). These results are clearly visible in selected details (b), (d), and (f): notice
the blurry blood vessel contour in d) and how it is more pronounced in f).
Figures b), d), f) where shown in a smaller magnification in the main paper as Fig. M3. Fig. 6 also shows the same ROI. Our registration method here uses four levels
to produce an even better stack than in Fig. 5. Fig. M10 (main document) is similar to (e), but shows another ROI, a larger view of Fig. 5.
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Figure 8: Registration of the standard images. Top line: Lena image, bottom line: mandrill image, both from the USC-SIPI image database. From left to right: original
image, a distorted image used for registration, the difference between them, the difference between two differently distorted images used as input for registration, a
registered image using our approach, the difference between two registered distorted images.

The color-coded optical flow for single-stained spleen speci-
men (Fig. 10) appeared quite dark for rigid-only transform (b)
and our method (e) which is good, Ulrich et al. (c) and elastix (d)
appeared somewhat lighter, while input overlay was the brightest
(i.e. the worst). This corresponded well with Table M2.

In double-stained spleen spleen analysis in Figure 11,
elastix (d) and our method (e) were dark, where Ulrich et al. (c)
showed some colored spots. These were almost everywhere
in input overlay (a) and rigid-only transform (b), though in a
different manner. This visual did not quite correspond with the
numerical findings of Table M2, but the probable culprit was the
difference between single-channel and color data (elastix ran on
blue channel only), the distribution of motion magnitudes, or
even the dimension of the filter kernels in the implementation
of dense optical flow we used as detailed in the main document
(Sec. M5.3.2).

Bone marrow specimen showed a very bright picture of op-
tical flow between two consecutive images (Fig. 12) in input
overlay (a) and elastix (d). Images for rigid-only transform
(b), method of Ulrich et al. (c), and our method (e) were quite
dark. The numerical evaluation in Table M2 stated that Ulrich et
al. outperformed our method by a relatively small margin, but
it also stated that rigid-only transform was worse than elastix,
which contradicted with the visuals. Judging from visuals only
(i.e. Fig. 12 c) and e)) we would deem these two methods as
approximately equal.

At this point we can only re-state the assumption from the
main paper that the averaging window of the dense optical flow
method used was larger than the finest-grain improvements in
capillaries and similar small structures. Visual inspection and
results of 3D reconstruction (Figs. 6–7) clearly indicated than
the result of Ulrich et al. was less usable than the result of our
registration, which contradicts Table M2.

2.2.3. Jaccard Measure (Section M5.3.3, Table 1)
Table 1 extends the Table M3 from the main text. Fig. 13

shows the results of thresholding for double-stained spleen spec-

imen (top) and bone marrow specimen (bottom).
We chose the threshold value quite high to obtain distinctive

values; the Jaccard measure for our method applied to single-
stained spleen specimen reaches 1.0 at threshold 100. The stain-
ings we used were quite distinctive, thus we chose the threshold
220 for the same specimen in Table 1.

In Table 1 our method outperformed all other methods used.
Both the method Ulrich et al. and elastix were worse than base-
line for spleen, single-stained. In fact, elastix performed not so
well against this measure, it was consequently below the baseline
for all specimens.

This table differs from Table M3 in the main text in the last
line: we experimented with a larger threshold on bone marrow
specimen. Our method showed again its superiority w.r. t. this
measure. As for elastix, we obtained in this setting an absurdly
low value which we did not include in the table.

2.2.4. Spleen, Single-Stained (Fig. 14)
Visually, the SSD did not change a lot between rigid-only reg-

istration, elastix, and our method; ours might be a little clearer.
The numerical values, however, showed that our method dis-
played a better mean value. Our method was 14.5% better.

ZSAD for our method in single-stained spleen was visually
much clearer and of less intensity. (For the sake of presentation
we even had to increase brightness and contrast in all ZSAD
images.) The numerical values showed that the ZSAD mean was
the best in our method, with 22.7% improvement.

MI showed a slight increase between rigid-only registration
and our method. The value for elastix was formally better, but it
was not really comparable as elastix used only the red channel
of the images. Thus we evaluated the information increase for
this color channel only. (Section 2.2.5 discusses an experiment
with grayscale-based elastix and grayscale-based MI on our
registration to obtain comparable values.)

The GCC values—basically, the “movement” in the image
pair—improved in all cases compared to the original overlay.
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Structural similarity

Registered image SSIM for

(a) Spleen, single-stained
0.556 0.746 0.730 0.706 0.808

(b) input (c) rigid (d) elastix (e) Ulrich et al. (f) our method

(g) Spleen, double-stained
0.180 0.252 0.343 0.377 0.443
h) input (i) rigid (j) elastix (k) Ulrich et al. (l) our method

(m) Bone marrow, 3k
0.470 0.480 0.380† 0.438† 0.497

(n) input (o) rigid (p) elastix (q) Ulrich et al. (r) our method

(s) Bone marrow, 4k
0.314 0.351 0.263† 0.432 0.474
(t) input (u) rigid (v) elastix (w) Ulrich et al. (x) our method

Figure 9: Structural similarity index (SSIM). This is an extended version of Figure M12 in the main text, showing SSIM for spleen, single-stained (top row, (a–f),
magnification factor 3.0), spleen, double-stained (second row, (g–l), magnification 12.08×), bone marrow (3k side, two levels of our method, third row, (m–r),
magnification 20.05×), bone marrow (4k side, four levels of our method, bottom row, (s–x), magnification 15.01×) specimens. The left column, (a), (g), (m), (s),
shows a registered image, all other columns show SSIM images and SSIM values: the second column (b), (h), (n), (t) shows SSIM for input data, third one, (c), (l), (o),
(u), shows SSIM for rigid-only registration, fourth and fifth columns show state of the art: (d), (j), (p), (v) features elastix, (e), (k), (q), (w) shows Ulrich et al., sixth
and last column, (f), (l), (r), (x), shows our method.
The higher the value and the lighter the image, the better. Bold shows the best value, italics with † denotes decrease from baseline.
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(a) input (b) rigid (c) Ulrich et al. (d) elastix (e) our method

Figure 10: Color-coded optical flow as displacement angle and magnitude for single-stained spleen specimen.

Figure 11: Color-coded optical flow as displacement angle and magnitude for double-stained spleen specimen.

(a) input (b) rigid (c) Ulrich et al. (d) elastix (e) our method

Figure 12: Color-coded optical flow as displacement angle and magnitude for double-stained spleen specimen. From left to right: input, Ulrich et al., elastix, our
method. Top row shows whole slice, bottom row shows a crop. The smaller the intensity of the image, the better.
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Table 1: Jaccard measure for all three specimens. The values were computed channel-wise where applicable, we show here the value for the best channel. This is the
extended version of Table M3.
We denote the best overall value in bold, the values worse than baseline are marked with emphasis and †, values with possible compatibility problems (single-channel
vs. best of three RGB channels) are marked with ∗. The value marked with ¶ was too low (< 0.06558) due to a too high threshold.
The values are scaled between 0 and 1.0, the higher the better.

Specimen / Registration Size Levels Threshold Method
input rigid Ulrich et al. elastix ours

Spleen, single-stained 8000 4 220 0.9701 0.9785 0.9762† 0.9774∗,† 0.9829
Spleen, double-stained 5032 4 100 0.8622 0.8755 0.8917 0.8158∗,† 0.9062

Bone marrow 4032 4 150 0.9583 0.9562† 0.9612 0.8083∗,† 0.9631
220 0.6744 0.6905 0.7169 −¶ 0.7224

Our method delivered the best average value overall: 0.64 vs.
0.80, i.e. a 25% improvement.

Our method showed best results for all quality measures up to
MI increase, where the data was not quite comparable.

2.2.5. Spleen, Double-Stained (Fig. 15)

The SSD images showed basically noise, however, in case of
elastix and our method one might find some stationary points,
especially with our method. This corresponded to best mean
(and also median, not shown) improvements.

ZSAD was much more informative for this specimen: the
”noise” was greatly reduced, the image for our method looked
less noisy and also visibly darker. Numerically this meant
that our method delivered the best results. The mean value
of ZSAD for elastix showed roughly 4% quality decrease, while
our method had a 21% better mean ZSAD value than rigid-only
registration. The median for our method (not-shown) was 24%
better.

We obtained an MI increase of 195% which is the best value
across the methods tested. However, the value delivered by
elastix (183%) was not really comparable to our results. The
reason for this was that mutual information increase (i.e. a quo-
tient of mutual information in the registered image pair and in
original image pair) was computed for RGB images in case of
rigid-only transform and our method in Figure 15, but only the
blue channel was used in both image pairs for elastix. This was
the same image channel elastix operated on in Fig. M11. If
we used only the blue channel for our method, we would ob-
tain 176.48% increase. However, this would not be fair towards
our method as it did not operate on separate color channels. If
we compared the intensities only (and run elastix on intensity
images), elastix would outperform our method by 3.6%.

The gradient cross-correlation (GCC) showed some darker
areas in case of our method, these might guide us to perceive
the whole image as more dark, esp. when compared with the
original, unregistered image pair or with the rigid-only method.
As for mean values, the improvement of our method translated to
12.3%. (The non-shown maximal values improved up to 61%.)

Our method showed better results than elastix for all measures
on double-stained spleen specimen, however the MI values were
not quite comparable.

2.2.6. Bone Marrow, Two Levels (Fig. 16)

Here we compare the method of Ulrich et al., a non-multi-
resolution feature-based registration method, to our approach
w.r. t. bone marrow images at two levels of multi-resolution
registration. We also show the unregistered overlay and rigid-
only registration as intended baselines.

The sum of squared differences (SSD) for bone marrow im-
ages basically showed noise everywhere besides the interior of
large unstained cells (adipocytes, light gray blobs in the micro-
scopic images) and the non-stained interior of a blood vessel.
Still, our method showed the best mean value (by a narrow mar-
gin) and was equal to the older method in median and maximum
(not shown).

ZSAD quite clearly showed the edges of the blood vessels in a
light color with an apparent matching problem, e.g. in rigid-only
registration (h). These values seemed to increase for the method
of Ulrich et al. (i) and decrease for our method (j) which led to
the best mean value (and also maximum, not shown) in our case
and to a ZSAD-quality decrease for the method of Ulrich et al.
The difference between mean ZSAD for Ulrich et al. and our
method was about 10%.

As we compared MI for RGB images, all values were fully
comparable. Unfortunately, all registrations of the ROI were
worse than the initial coarse-grained registration (“original”).
Our method posed a 21% improvement over Ulrich et al., which
was, however, still not enough to come over the baseline. We
have no plausible explanation for this behavior.

The GCC images showed quite nicely how the gradient cross-
correlation values in our method fade on a larger surface to
darker gray, the same color as the distinctively visible large
unstained cells. These images were gamma-corrected with a
quite high value of γ = 6 for presentation sake, so that dark
gray was a rather low value. The numerical data for the full and
gamma-uncorrected ROIs confirmed this. Our method was best
in both directions for the mean value.

If we would simply sum up how often we obtained the best
values for each quality measure, we obtain would a score of our
method to the method of Ulrich et al. of 5 to 1. We ignored here
MI, as both methods performed non-ideally w.r. t. this measure.
Still, the MI value for our method was 21% better than that of
Ulrich et al. We discussed the non-ideal performance of optical
flow as a quality measure above.
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(a) Spleen, double-stained

(b) Bone marrow

Figure 13: The pixels occurring in numerator or denominator of the Jaccard
measure shown for: (a): a ROI in the double-stained spleen specimen at threshold
100, (b): a ROI in the bone marrow specimen at threshold 150. In (a) the
blue staining shows additional information, the brown staining mirrors the
microvascular system. In (b) the pixels shown show quite nicely the stained
blood vessel walls. Hence the Jaccard measure compares the performance of the
registration methods exactly at the point of our interest.

Spleen, single-stained

(a) Overview, detail selection. 4.5× (b) Full ZSAD

26.76× Sum of squared differences

(c) detail #13
17.9 19.0† 15.3

(d) rigid (e) elastix (f) our method

26.76× Zero-mean sum of absolute differences

(g) detail #14
4.4 4.7† 3.4

(h) rigid (i) elastix (j) our method

original rigid elastix our method
100% 154.93% 163.26%∗ 158.23%

(k) Mutual information increase

Gradient cross-correlation

0.79 0.68 0.69 0.64
0.80 0.68 0.70 0.64

(l) original (m) rigid (n) elastix (o) our method

Figure 14: Quality measures for single-stained spleen, full section (same as
Fig. 4). (a) Detail selection. (b) Zero-mean sum of absolute differences (ZSAD)
measure for the whole image. Brightness and contrast for ZSAD images was
corrected with +50. (c) and (g) The detail of the first and second sections.
Magnification factor 26.76. (d–f) sum of squared differences (SSD). (h–j) Zero-
mean sum of absolute differences (ZSAD). (k) Mutual information (MI) increase.
(l–o) Combined cross-correlation of gradient approximation (GCC) with gamma
enhanced to +6. The values below the images show the mean values of full
image-wide quality measure. In case of GCC the first (second) line states the
mean of derivatives in the direction of the x (y) axis.
Aside from (k), the smaller the values and the darker the images the better. Bold
is best, italics with † denotes decrease from the baseline, ∗marks not comparable
values.
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Spleen, double-stained

(a) Overview and detail selection (b) Full ZSAD

82.8× Sum of squared differences

(c) detail #7
99.7 98.5 96.3

(d) rigid (e) elastix (f) our method

82.8× Zero-mean sum of absolute differences

(g) detail #8
33.1 34.5† 26.2

(h) rigid (i) elastix (j) our method

input rigid elastix our method
100% 107.08% 183.06%∗ 195.37%

(k) Mutual information increase

Gradient cross-correlation

1.95 1.90 1.96† 1.71
1.99 1.94 1.98 1.77

(l) input (m) rigid (n) elastix (o) our method

Figure 15: Quality measures for double-stained spleen (same ROI as in Fig. M8.)
(a) Detail selection. The ROI is displayed at magnification 17.53. (b) Zero-
mean sum of absolute differences (ZSAD) for full ROI. (See (h–j) for crops.)
ZSAD images were enhanced with brightness and contrast +50. (c, g) The
details of the first and second sections, displayed at 82.8×. (d–f) Sum of squared
differences (SSD). (h–j) Zero-mean sum of absolute differences. (k) mutual
information (MI) increase with original image pair as a baseline. Note that
elastix (marked with asterisk) shows data for the blue channel only, but our
method produces RGB images. (l–o) Combined cross-correlation of gradient
approximation (GCC). Images are +6 gamma-corrected. We show mean values
of full image-wide quality measures. For GCC we state both the mean of the
derivative in the direction of the x axis (first line) and y axis (second line).
Aside from (k), the smaller the values and the darker the images the better. Bold
shows the best value, italics with † denotes decrease from baseline, asterisk (∗)
marks incomparable values.

Bone marrow, 2 levels, 3k

(a) Overview and detail selection (b) Full ZSAD

82.8× Sum of squared differences

(c) detail #12
49.1 50.5† 48.5

(d) rigid (e) Ulrich et al. (f) our method

82.8× Zero-mean sum of absolute differences

(g) detail #13
12.3 12.6† 11.3

(h) rigid (i) Ulrich et al. (j) our method

original rigid Ulrich et al. our method
100% 97.52%† 75.46%† 91.32%†

(k) Mutual information increase

Gradient cross-correlation

1.36 1.33 1.36 1.30
1.38 1.42† 1.38 1.34

(l) original (m) rigid (n) Ulrich et al. (o) our method

Figure 16: Quality measures for bone marrow specimen, same ROI as in Fig. 5.
(a) The detail selection at 29.09×, (b) Complete ZSAD quality measure. (See
(h–j) for crops.) (c) The detail of the first section, at 82.8×. (d–f) Sum of squared
differences (SSD). (g) The detail of the second section. (h–j) Zero-mean sum
of absolute differences (ZSAD). We enhanced the brightness and contrast. (k)
Mutual information (MI) increase from baseline to the method from the corre-
sponding column. (l–o) Combined cross-correlation of gradient approximation
(GCC). These images are enhanced with brightness and contrast +50.
We state the mean values for each image-wide quality measures. For GCC the
first (second) line states the mean of derivatives in the direction of the x (second)
axis.
Aside from (k), the smaller the values and the darker the images the better. Bold
shows the best value, italics with † denotes decrease from baseline.
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2.2.7. Bone marrow, Four Levels (Fig. 17)
This discussion is based on four levels of our registration

method, the input ROI is 4k × 4k, everything else is as in Sec-
tion 2.2.6.

Our method showed the best overall mean SSD value. The
result of Ulrich et al. was marginally worse than the input overlay.
In a contrast, our method managed to improve over the same
overlay by 4.7%. The SSD images were not very informative,
it is basically noise outside of larger cells. Still we saw some
minor improvements (dark areas) in SSD for our method, that
were not present in other versions.

ZSAD showed the contours of the blood vessels with an ap-
parent matching problem quite clearly in a light color, e.g. in (e)
and (f). These values seemed to decrease both for Ulrich et al. (g)
and for our method (h), however our method showed less bright
spots that would correspond to a mismatch. This led to the best
mean value (and also maximum and median, not shown) The
difference between mean ZSAD for the method of Ulrich et al.
and our method was almost 20%.

As we compared MI for RGB images, all values were this
time fully comparable. Here, the single-resolution registration
was marginally (< 0.7%) better than our method. Both showed
improvements over rigid-only registration and input images.

The reason for the not so well performance of our method
w.r. t. MI might lie in the specimen, there were a lot small cells
that basically constitute background noise. Visual comparisons
of reconstructions based on method of Ulrich et al. and on our
method (Figs. 6–7) underlined the superiority of our method in
the representation of small capillaries.

The GCC images showed how the gradient cross-correlation
values in our method faded on a larger surface to darker gray, the
same color as the distinctively visible large unstained cells. We
also saw in Fig. (m) some black spots not present in other images.
Notably, even dark gray was a quite low value (γ = 6 was ap-
plied). The numerical data on full and gamma-uncorrected ROIs
confirmed this. In the direction of x (y) axis, Ulrich et al. (l) im-
proved 10.6% (6.6%) over input overlay, our method (m) showed
17.2% (16.1%) improvement, and elastix (not shown) was 9.2%
(7.6%) better than its single-channel input. Our method (m) was
best in both directions.

If we simply summed up how often we obtained the best
values for each quality measure, our method would clearly out-
perform the method of Ulrich et al.

3. Online Materials

Further supplementary material, including input data,
full-scale volume renderings, full-scale images of quan-
titative evaluations, Windows executable of our appli-
cation, and elastix parameter files, is available under
https://gdv-server.inf.uni-bayreuth.de/gdvcloud/

index.php/s/NnSov0O65n9Gp01.
The supplementary video for this paper is uploaded as supple-

mentary material alongside this document, but it is also avail-
able under https://gdv-server.inf.uni-bayreuth.de/
gdvcloud/index.php/s/sl3s5Ilyf4BrDe7.

Bone marrow, 4 levels, 4k

(a) Overview and detail selection (b) Full ZSAD

82.8× Sum of squared differences

(c) detail #12
56.4 54.5† 52.5

(d) rigid (e) Ulrich et al. (f) our method

82.8× Zero-mean sum of absolute differences

(g) detail #13
13.8 13.0 10.9

(h) rigid (i) Ulrich et al. (j) our method

original rigid Ulrich et al. our method
100% 121.4% 140.8% 139.8%

(k) Mutual information increase

Gradient cross-correlation

1.51 1.49 1.36 1.29
1.50 1.43 1.41 1.30

(l) original (m) rigid (n) Ulrich et al. (o) our method

Figure 17: Quality measures for bone marrow specimen, extended version of
Fig. M15. (a) The detail selection at 29.09×, (b) Complete ZSAD quality mea-
sure. (See (h–j) for crops.) (c) The detail of the first section, at 82.8×. (d–f)
sum of squared differences (SSD). (g) The detail of the second section. (h–j)
Zero-mean sum of absolute differences (ZSAD). We enhanced the brightness
and contrast. (k) Mutual information (MI) increase from baseline to the method
from the corresponding column. (l–o) Combined cross-correlation of gradient
approximation (GCC). These images are enhanced with brightness and con-
trast +50.
We state the mean values for each image-wide quality measures. For GCC the
first (second) line states the mean of derivatives in the direction of the x (y) axis.
Aside from (k), the smaller the values and the darker the images the better. Bold
shows the best value, italics with † denotes decrease from baseline.
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