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Abstract. Residue systems present a well-known way to reduce compu-
tation cost for symbolic computation. However most residue systems are
implemented for integers or polynomials. This work combines two known
results in a novel manner. Firstly, it lifts an integral residue system to
fractions. Secondly, it generalises a single-residue system to a multiple-
residue one. Combined, a rational multi-residue system emerges. Due
to the independent manner of single “parts” of the system, this work
enables progress in parallel computing. We present a complete imple-
mentation of the arithmetic in the parallel Haskell extension Eden. The
parallelisation utilises algorithmic skeletons. We compare our approach
with Maple. A non-trivial example computation is also supplied.
Keywords: residue system, rational reconstruction, EEA, CRT, homo-
morphism, parallelisation, functional programming, parallel functional
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1 Introduction

A common approach to reduce computation complexity of symbolic compu-
tations, i.e., intermediate expression swell, is a residue arithmetic. We regard
residues of integers in this paper. A residue system w.r.t. some prime m is the
field Z \ 〈m〉. The addition and multiplication are the usual operations in Z,
combined with an integer division by m. The actual result is the residue of the
division. The focus of this paper lies on systems with a) using multiple residues
at the same time, b) capable of representing fractions. If we have an a priori up-
per bound on the result of our computation, then we can perform it in a certain
residue class with the result remaining exact. The benefit is reduced computa-
tion time, especially for intermediate expressions, which might be significantly
larger than the bound [18]. Using the Chinese Residue Theorem we can split
a single large residue class into multiple smaller residue classes. The latter can
be designed to fit into a machine word, making the single operation in a small
residue class a constant time one. Thus we can obtain arbitrary precision by
increasing the numbers of small residue classes.
? Supported by DFG grant LO 630-3/1.



farmBase :: Int → (Int → [a] → [[a]]) --^ n, distribute
→ ([[b]] → [b]) --^ combine
→ ([a] → [b]) --^ worker function
→ [a] → [b] --^ what to do

farmBase np distr combine f tasks = combine $ parMapBase f $ distr np tasks

farm :: (a → b) → [a] → [b]
farm = ( farmBase noPe unshuffleN shuffleN ) ◦ map

Fig. 1. The implementation of farm in Eden. Type context for transmissible data
is omitted.

The approach mentioned above is traditionally implemented for integer arith-
metic. However, it is possible to represent certain subsets of rational numbers
as integers in a residue class—and to recover the rational numbers from inte-
gers. This property holds for a bound on the input rational numbers and output
residue class [8].

Eden This paper presents a parallel Haskell programmer’s approach to a ra-
tional multiple-residue arithmetic. We develop it in the broader context of the
SPICA project1, an implementation of selected computer algebra algorithms us-
ing novel parallelisation techniques, i.e., algorithmic skeletons. Such skeletons
implement common patterns of parallel computation like process farms, divide-
&-conquer schemes, etc. The source code is written in Haskell [13] with GHC
extensions. The parallelism constructs reside in a controlled subset of the code
base. It is written in the parallel Haskell extension called Eden [12]. The latter
incorporates explicit process creation and implicit communication. An algorith-
mic skeleton library is available for Eden [11]. Contrary to the typical imperative
approach, the skeletons are implemented in Eden itself, as they are just higher-
order functions. The skeleton library contains, for instance, a parallel process
farm, implemented as a statically load-balanced parallel map, cf. Figure 1. This
function applies its first argument which is a function to each element of its
second argument which is a list. The farm skeleton divides the input list into
packages of almost equal size which are processed in parallel. Using only skeleton
calls for parallelism, we can refrain from using parallel primitives in Eden pro-
grams. Eden is implemented as a distributed memory language, but it performs
also well on multicore SMP machines. Haskell and thus Eden is a statically
typed language with polymorphism. Each language object has a type, obtained
with Hindley-Milner type inference. We denote the type with object :: type.

Plan of the Paper The next section presents the rational-to-integer and inte-
ger-to-rational mappings. Section 3 presents in short an integer multiple-residue
arithmetic. Section 4 reports on conversion of integer multiple-residue represen-
tation back to integers. Section 5 is the actual focus of the paper. Subsections 5.1
and 5.2 present the rational multiple-residue arithmetic, whereas Subsection 5.3
1 http://www.mathematik.uni-marburg.de/~lobachev/



describes our approach to parallelism. Section 6 presents an example implemen-
tation using the arithmetic. Section 7 presents related work. Section 8 concludes.
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2 From Fractions to Integers and Back

Definition 1 (Residues and division). We denote integer division with a =
cm + r as c = a div m and r = a mod m. The latter forms a residue class for
given m. We define (Zm,⊕,�) := (Z,+, ·)/〈m〉. If m prime, (Zm,⊕,�) is a
field with x} y = (x ◦ y) mod m for x, y ∈ Zm and ◦ ∈ {+,−, ·, /}. An element
of Zm = {0, . . . ,m − 1}, denoted with |a|m, is a mod m. With a small abuse
of notation, we write in further simply Zm for (Zm,⊕,�). Further, if in the
division above r = 0, then we write m | a, else m - a. A residue class modulo
multiple residues β = [m1,m2, . . . ,mn] is defined as Zβ := Zm1 × . . . × Zmn

.
The corresponding arithmetic operations will be defined later.

The well-known notion of an extended euclidean algorithm (EEA) in a matrix-
vector form can be represented as follows.
Algorithm 1 (Standard EEA).

Input: seed matrix
(
a1 b1
a2 b2

)
.

1. If a2 = 0, return [a1, b1].
2. Let t = a1 div a2. Set pairwise (a1, a2) ← (a2, a1 − ta2) and (b1, b2) ←

(b2, b1 − tb2). Go to step 1.

Output: [a1, b1].
We implement Algorithm 1 in Figure 2, see top of the figure. The 2×2 matrix

is represented by a nested pair of pairs. The Integral type class is a Haskell
notion for ring Z, which abstracts from the integer representation.

Definition 2. We define the residue-based representation of the rationals |a/b|m
as elements of Q̂m per [8]. The elements of Q̂m are integers in the m-modular
residue arithmetic. The notion of |a/b|m stands for an integer modulo m, con-
gruent to |a|m � |b−1|m. Here � denotes the multiplication modulo m.

We can compute |a/b|m efficiently, using EEA.
Algorithm 2 (Rational-to-integer mapping).
Input: A fraction a/b, an integer m with m - a, m - b.
Start Algorithm 1 with input matrix(

m 0
b a

)
.



eeaStep :: ( Integral a) ⇒ ((a, a), (a, a)) → ((a, a), (a, a))
eeaStep (( a1 , a2 ), ( b1 , b2 )) = (( a2 , a3 ), ( b2 , b3 ))

where t = a1 ‘div ‘ a2
a3 = a1 ‘mod ‘ a2
b3 = b1 - t∗b2

eea :: ( Integral a) ⇒ ((a, a), (a, a)) → ((a, a), (a, a))
eea (( a1 , a2 ), ( b1 , b2 ))
| a2 == 0 = (( a1 , a2 ), ( b1 , b2 ))
| otherwise = eea $ eeaStep (( a1 , a2 ), ( b1 , b2 ))

convertFraction :: ( Integral i) ⇒ Fraction i → i → Mod i
convertFraction (F x y) p

= let ((d,_),(r,_)) = eea ((p,y),(0,x))
in if d 6= 1 then error " convertFraction " else makeZ r p

-- Type Mod i and function makeZ are explained in Figure 3.

eeaSearch :: ( Integral a) ⇒ ((a, a), (a, a)) → a → Maybe (a, a)
eeaSearch (( a1 , a2 ), ( b1 , b2 )) n
| a2==0 = Nothing
| a26=0 ∧ ¬( criteria a2 b2 n)

= flip eeaSearch n $ eeaStep (( a1 , a2 ), ( b1 , b2 ))
| otherwise = Just ( a2 , b2 )
where criteria x y n = abs x < n ∧ abs y < n

restoreFraction :: ( Integral i) ⇒ i → i → Maybe (i, i)
restoreFraction a m = eeaSearch ((a, m), (0, 1)) n

where n = nFromM m -- converts m to n per (1) , see Figure 3.

Fig. 2. A generic (Algorithm 1) and two special (Algorithms 2 and 3) imple-
mentations of extended euclidean algorithm in Eden.

Return the second element of the output vector.
Output: an integer, representing |a/b|m.

Algorithm 2 returns the desired recoverable result if a bound on m and a/b holds.
It is rigorously discussed [7,19,20,9,8]. We summarise.

Definition 3 (Farey fractions). All vulgar fractions a/b satisfying |a| ≤ N ,
|b| ≤ N are called Farey fractions of order N .

Proposition 4. If

N ≤
√
m

2 (1)

holds, it is possible to recover the original Farey fraction a/b of order N from
integer |a/b|m.

Algorithm 3 (Integer to Farey fraction).
Input: an integer x = |a/b|m, m.

1. Compute N from m per (1).
2. Start Algorithm 1 with seed matrix(

m 0
x 1

)
.



data Mod a = Z a a
makeZ :: Integral a ⇒ a → a → Mod a
lift2z :: Integral a ⇒ (a → a → a) → Mod a → Mod a → Mod a
lift2z f (Z a p) (Z b q)
| p 6= q = error " Different residue classes !"
| otherwise = makeZ (f a b) p

-- P.+ denotes (+) instances for Integral type class
-- from the Prelude . It corresponds to the ring Z.
instance ( Integral a) ⇒ Num (Mod a) where

(+) = lift2z (P.+)
(−) = lift2z (P.-)
(∗) = lift2z (P.∗)

instance ( Integral a) ⇒ Fractional (Mod a) where
(/) (Z a p) (Z b q) = -- use EEA

Fig. 3. Required function types for single-residue arithmetic in Eden.

type IMods a = [Mod a]
makeIZ ′ :: ( Integral a, Integral b) ⇒ a → [a] → IMods b
makeIZ ′ value primes = map ( makeZ value ) primes
instance ( Integral a) ⇒ Num ( IMods a) where

(+) = zipWith (+)
-- and so on ...

Fig. 4. Implementing the multiple-residue integer arithmetic.

3. In each step of the algorithm check, whether |a1| and |b1| are both ≤ N . If so,
return the fraction b1/a1 (sic). If Algorithm 1 terminates without producing
such a pair of numbers, fail.

Output: either a Farey fraction a/b or a failure.

The correctness of Algorithm 3, the uniqueness of the fraction b1/a1, and the
criteria for the input of the algorithm, needed to succeed, are proved in [8]. The
first proof known to us is in [20]. We name the mapping “rational reconstruction”
per [18]. We show Eden implementations of Algorithms 2 and 3 on Figure 2.
Further, we need a way to refer to a single residue arithmetic in Z/〈m〉 = Zm.
The details are well-known, we present source code signatures in Figure 3.

3 An Integer-based Multiple-Residue Arithmetic

Let us consider a multiple-residue system Zβ with more than one residue. Hence,
β is a vector. For the sake of simplicity we consider elements of β to be prime
numbers. Then for β = [m1,m2, . . . ,mn] single residue classes are Zm1 , . . . ,Zmn

.
With M = m1 · · ·mn, it holds that

Zm1 × . . .× Zmn
= Zβ ∼= ZM . (2)

The equation (2), read from left to right, is widely known as Chinese Residue
Theorem, which we abbreviate to CRT. There are many different proofs of the



CRT; some of the constructive ones allow the algorithmic construction of the
“large” residue. We call such proofs implementations of CRT, the other name
in the literature is “Chinese Residue Algorithm”, cf. [18]. We show a known
approach to it in Section 4.

Further (2) facilitates a background for forth and backwards mappings be-
tween Zβ and ZM as well as for defining the arithmetic. We will present this
known result with a notion from functional programming.

Definition 5 (Map function). For all functions operating on single elements:
f :: a → b, we define a function map, which takes as its arguments such f
and a collection of type [a] of elements of type a. The function map applies f to
each element of its input collection and combines the results of each such appli-
cation to its output collection of type [b]. Hence, map has the type (a → b) →
[a] → [b] and a partial application map f has the type [a] → [b]. So we
write
map :: (a → b) → [a] → [b]
map f xs = [ f x | x ∈ xs ]

Corollary 6 (ZipWith function). We define a binary version of map.
zipWith :: (a → b → c) → [a] → [b] → [c]
zipWith f xs ys = [ f x y | x ∈ xs | y ∈ ys ]

Now we can define all four integral multiple-residue arithmetic operation
on Zβ as a kind of map of their single-residue counterparts. Because map ap-
plies f to each single element in an independent manner, such definition of a
multiple-residue arithmetic underlines its strength for vectorisation. All of the
computation within a single “residue element” can be done independent from
other residue elements. This will be the basis for the parallel implementation in
Subsection 5.3. The implementation of the arithmetic falls back to zipWith—a
variant of map for binary functions. Hence, the type for the multiple-residue sys-
tem is just a list of single-residues. See Figure 4 for details. Now we can sketch
the following.

Algorithm 4 (To integral multiple-residue).
Input: vector of primes β, integer x with no common factors with elements of β.
Compute |x|mi

for all elements mi of β.
Output: |x|β

4 Mixed-Radix Representation

We use the mixed-radix representation to convert entries from Zβ to ZM . This
approach is described in detail in [8].

Definition 7 (Mixed-radix representation). For a representation of an in-
teger x w.r.t. a base vector ρ = [r1, . . . , rk−1] write 〈x〉ρ = [d0, . . . , dk−1] with
s = d0 + d1r1 + d2r1r2 + . . .+ dk−1r1r2 · · · rk−1. Naturally, 0 ≤ di < ri+1.



It is easy to prove that a mixed-radix representation is unique using repeated
division with a remainder. The intriguing case is ρ = β. Thus we can obtain a
mixed-radix representation 〈x〉β to a given multiple-residue representation |x|β .
Then we can convert the mixed-radix representation to |x|M with M =

∏
mi

for β = [m1, . . . ,mn]. But we need to find a mixed-radix representation first.
Denote with β{i,...,n} a reduced vector [mi, . . . ,mn]. Further notation: tk is the
k-th element of the vector t, t(k) is the whole k-th vector t.
Algorithm 5 (To mixed-radix representation).
Input: |x|β.

1. Set t(1) ← |x|β and i← 1. Let d0 ← t
(1)
1 and n is the length of β.

2. For i < n do the following.

t(i+1) ←

∣∣∣∣∣ t(i) − |di−1|β{i+1,...,n}

mi

∣∣∣∣∣
β{i+1,...,n}

di ← t
(i+1)
i+1

i← i+ 1

Output: 〈x〉β = 〈d0, . . . , dn−1〉.
The length of ti is reducing in each iteration step. It is now immediately clear
how to compute s = |x|M from 〈x〉β .
Algorithm 6 (From mixed-radix representation to an integer).
Input: 〈x〉β
1. Set s1 ← dn−1
2. For i = 2 to i ≤ n compute si ← dn−i + si−1mn−i+1.

Output: |x|M = sn.

Algorithm 7 (From integral multiple-residue to an integer).
Input: |x|β.
1. Compute 〈x〉β with Algorithm 5.
2. Compute |x|M from 〈x〉β with Algorithm 6.

Output: |x|M .

Our implementation is presented in Figure 5. Other implementations of CRT
are widely known and can be found in [3,18].

5 Rational Multiple-Residue System

5.1 The Mappings

Definition 8 (Elements). We define an element of a rational multiple-residue
system Wβ as follows. Let n be the length of prime list β. Then such element is
a list of pairs

[(ui, vi) : i = 1, . . . , n] .



data SingleRadix a = MR a a
deriving (Eq , Show )

type MixedRadix a = [ SingleRadix a]

-- ommited because of simplicity
valuesPrimes :: Integral a ⇒ IMods a → [(a, a)]
valuesRadices :: Integral a ⇒ MixedRadix a → [(a, a)]
getPrimes :: Integral a ⇒ IMods a → [a]
takeFirstValue :: ( Integral a) ⇒ IMods a → a

restoreIZ :: Integral a ⇒ IMods a → Z a
-- Wrapper around restoreIZ ′ . In fact we restore Z a!
restoreIZ ′ :: Integral a ⇒ IMods a → a
restoreIZ ′ input = let (values , primes ) = unzip $ valuesPrimes input

in convertMixedRadix $ mixedRadix input

inverses :: ( Integral i) ⇒ i → [i] → IMods i
inverses k ps = flip makeIZ ps $ map ( inverse k) ps

-- P. div is ‘div ‘ from standard Prelude
lagrangians ps = let bigP = product ps

in map ((P.div) bigP) ps

-- a single step of mixed radix algorithm
mixedRadixStep :: Integral a ⇒ IMods a → IMods a
mixedRadixStep input

= let (values , primes ) = unzip $ valuesPrimes input
h = head values
diffs = ( tail input ) - ( makeIZ ′ h $ tail primes )
lagranges = inverses ( head primes ) ( tail primes )

in diffs ∗ lagranges

mixedRadix :: Integral a ⇒ IMods a → MixedRadix a
mixedRadix input = zipWith (λb v → MR v b) ( getPrimes input )

$ map takeFirstValue
$ takeWhile (λx → length x > 0)
$ iterate mixedRadixStep input

convertMixedRadix :: Integral a ⇒ MixedRadix a → Mod a
convertMixedRadix mixed

= let residue = product primes
(values , primes ) = unzip $ valuesRadices mixed
primes ′ = 1: primes
-- (P.+) is (+) from standard Prelude , same with (∗)
conv (v, p) acc = (P.∗) ((P.+) acc v) p -- (acc + v) ∗ p

in flip makeZ residue $ foldr conv 0 $ zip values primes ′

Fig. 5. Converting from Zβ to ZM with mixed-radix algorithm.



data FSingleMod a = FM (Mod a) a
type FMods a = [ FSingleMod a]

nFromM , mFromN :: Integral i ⇒ i → i
-- convert M to n per (1)
makeFZ :: Integral i ⇒ Fraction i → FMods i
-- forth mapping , see Figure 7
restoreFZ :: Integral i ⇒ FMods i → Maybe ( Fraction i)
-- backwards mapping , see Figure 8

Fig. 6. Basic outline of rational multiple-residue implementation in Eden.

Here the components ui are the residues and vi are the powers of corresponding
elements of β.

The implementation is in Figure 6. The authors of [8] define a similar residue sys-
tem, we callMβ here. Its elements are similar to those ofWβ and the arithmetical
operations definitions coincide. The major difference lies in how the forth and
backwards mappings are defined. Noteworthy, [7,9] define a yet another residue
system, which differs from both Mβ and Wβ in not separating out the powers of
primes vi from the residues ui. It is the predecessor of Mβ .

Given a fraction a/b and β = [m1,m2, . . . ,mn], satisfying (1) and (3), we
can state the following.

Algorithm 8 (Common outline of forth mapping).
Input: fraction a/b, residues β = [m1, . . . ,mn].

1. Extract common factors vi of all mi and a/b. Remember v1, . . . , vn.
2. Convert the resulting fraction to an integer modulo M = m1 · · ·mn with

Algorithm 2.
3. Convert the resulting integer to a multiple-residue system modulo β with

Algorithm 4. Store the results in a list [u1, . . . , un].

Output: rational multiple-residue representation of a/b being [(u1, v1), . . . , (un, vn)].

The key difference between our approach and Mβ is in

a(1)

b(1) = a

b
mv1

1
a(2)

b(2) = a

b
mv2

2 . . .
a(n)

b(n) = a

b
mvn
n . (3)

With these equations, the forth mapping forWβ takes in step 2 the value a(i)/b(i)

for i-th residue class in the system. The forth mapping forMβ extracts all factors
from the input fraction for all residue classes. Unfortunately, this leads to an
instable addition. Our approach does not have such a problem. We will show
an example, underlying the difference of both approaches after the definition of
arithmetic operations as Example 13 on page 12.

Algorithm 9 (Forth mapping).
Input: fraction a/b, residues β = [m1, . . . ,mn].



detectPower :: ( Integral i, Num n) ⇒ i → i → (n, i)
-- Code omitted . Example : detectPower 40 2 = (3, 5)

convertFraction :: ( Integral i) ⇒ i → i → i → Mod i
-- Code omitted . Converts fraction to integer modulo m

extractFactors :: ( Integral i, Num n) ⇒ i → [i] → [(n, i)]
extractFactors x ps = map ( detectPower x) ps

makeFZ ′ :: Integral i ⇒ i → i → [i] → FMods i
makeFZ ′ a b ps | gcd a b == 1

= let (ws , ys) = unzip $ extractFactors a ps
(qs , zs) = unzip $ extractFactors b ps
vs = zipWith (−) ws qs -- well - defined
cs = zipWith3 convertFraction ys zs ps

in zipWith FM (cs) vs
| otherwise = -- recursive call

makeFZ :: Integral i ⇒ Fraction i → FMods i
makeFZ = -- a trivial constructor expansion

Fig. 7. Forward mapping (Algorithm 9).

1. Extract common factors vi from a/b per (3). This results in v1, . . . , vn and
a(1)/b(1), . . . , a(n)/b(n).

2. For i ∈ {1, . . . , n} convert each a(i)/b(i) to a value ui modulo mi with Algo-
rithm 2.

Output: an element [(u1, v1), . . . , (un, vn)] of Wβ, being rational multiple-residue
representation of a/b.

The implementation of this algorithm is on Figure 7. Note that in Algo-
rithm 9 we convert each fraction a(i)/b(i) separately, resulting in up to n calls of
Algorithm 2. The backward mapping is defined as follows.

Algorithm 10 (Backward mapping).
Input: [(u1, v1), . . . , (un, vn)] ∈Wβ, β = [m1, . . . ,mn]

1. Compute M = m1 · · ·mn and N =
√
M/2.

2. Compute a′/b′ = mv1
1 · · ·mvn

n .
3. For i ∈ {1, . . . , n} distort the values of ui. Let

ûi := ui/
∏
j 6=i

m
vj

j .

4. Regard [û1, . . . , ûn] an integer multiple-residue value in Zβ. Find its repre-
sentation q in ZM with an implementation of CRT (Algorithm 7).

5. Find fraction a/b of order N , such that |a/b|M = q with Algorithm 3. If it
succeeds, continue. Else fail.

Output: aa′/bb′ or failure.

Implementation of the latter algorithm is presented on Figure 8. How does the
input set of Algorithm 9 look like? This set consists of Farey fractions of corre-
sponding order N and their products with powers v1, . . . , vn of m1, . . . ,mn. For



getM :: Integral i ⇒ FMods i → Integer
-- returns the product of all primes in the system

stripPowers :: Integral i ⇒ FMods i → (i, i, FMods i)
-- set vi = 0 for all i and compensate

restoreFZ ′ :: Integral i ⇒ FMods i → ( Maybe (i,i), (i,i))
restoreFZ ′ x = let m = getM x

n = nFromM m
(nom , denom , strips ) = stripPowers x
z = convertToIntResidues strips
r = toIntegral $ restoreIZ ′ z
e = eeaSearch ((m, r), (0, 1)) n

in (e, (nom , denom ))

restoreFZ :: Integral i ⇒ FMods i → Maybe ( Fraction i)
restoreFZ = -- compute in Maybe monad the product of fraction e with nom/denom

Fig. 8. The outline of the backwards mapping (Algorithm 10).

the restricted values of vi the shape of this set is shortly discussed in [10]. If we
do not restrict the values of vi, then it is infinite. Further questions on the shape
of this set are open.

5.2 The Arithmetic

Now we have to define the actual arithmetic on Wβ . Each operation is defined
for a single residue (use map! The rational system is still independent in its
components). These definitions coincide with ones for Mβ from [8], but not with
ones from [7]. We begin with the definition of multiplication, since it is the
simplest operation in the system.

Definition 9 (Multiplication). The product of (u, v) and (µ, ν) modulo m is
defined as (|uµ|m, v + ν).

The implementation is straightforward:
(FM u1 v1) ∗ (FM u2 v2) = FM (u1∗u2) (v1+v2)

Definition 10 (Multiplicative Inverse). The inverse of (u, v) is (|u|−1
m ,−v).

Note, it is easy and well-known, how to compute |u|−1
m , the multiplicative inverse

of u modulo m with EEA, Algorithm 1, for such u and m, that gcd(u,m) = 1.
It coincides with computing an integer representation of a fraction 1/u with Al-
gorithm 2, a standard approach in residue rings. The sum of (u, v) and (µ, ν)
modulo m is (|u+ µ|m, v) if v = ν and just (u, v) for |v| < |ν| with a single ex-
ception for sum of something with zero being the non-zero summand, regardless
of the power of m. A more formal definition follows.

Definition 11 (Addition). The sum of (u, v) and (µ, ν) modulo m is defined
as follows. Let u⊕µ = |u+µ|m. We write in this table v for positive values, −v



for negative and 0 for zero.

+ (0, z) (u, v) (u, 0) (u,−v)
(0, ζ) (0, 0) (u, v) (u, 0) (u,−v)
(µ, ν) (µ, ν) A (u, 0) (u,−v)
(µ, 0) (µ, 0) (µ, 0) (u⊕ µ, 0) (u,−v)

(µ,−ν) (µ,−ν) (µ,−ν) (µ,−ν) B

The two subcases are:

A =


(u, v) if v < ν

(u⊕ µ, v) if v = ν

(µ, ν) if v > ν

B =


(u,−v) if − v < −ν
(u⊕ µ, v) if v = ν

(µ, ν) if − v > −ν

Further holds, z, ζ ∈ Z. The zero element is not unique because of (0, z) with
z 6= 0, but we norm it to the standard representation (0, 0).

Definition 12 (Additive Inverse). The additive inverse of (u, v) modulo m
is (| − u|m, v).

The actual arithmetic operations on Wβ are defined by lifting the above single-
element operations with zipWith to lists:
instance ( Integral a) ⇒ Num ( FMods a) where

(+) = zipWith (+)
(−) = zipWith (−)
(∗) = zipWith (∗)

instance ( Integral a) ⇒ Fractional ( FMods a) where
(/) = zipWith (/)

The code for addition, the most complicated operation even for single-element
inputs, is presented in Figure 9.

Now, given the arithmetic, we can show that our approach is better than Mβ

from [8]. Regard an example computation [10].

Example 13 (Counterexample for Mβ). Let a = 1/21 and b = 1/3. We compute
in Mβ modulo β = [5, 7, 11, 13]. Per (1), all fractions of order 50 are on the safe
side. As Mβ needs to extract all factors of elements of β from all elements of
the residue system, we obtain representations [(2, 0), (5,−1), (4, 0), (9, 0)] for a
and [(2, 0), (5, 0), (4, 0), (9, 0)] for b. The sum is [(4, 0), (5,−1), (8, 0), (5, 0)], we
obtain 2/21 as the result, contrary to the correct result 8/21. The same exam-
ple with Wβ of the same scale results in [(1, 0), (5,−1), (10, 0), (5, 0)] for a and
[(2, 0), (5, 0), (4, 0), (9, 0)] for b. The sum is [(3, 0), (5,−1), (3, 0), (1, 0)], yielding
the correct result 8/21.

Theorem 14 (Well-definiteness). The arithmetic operations in Wβ produce
correct results.

Proof. We consider again the element-wise operations.



instance ( Integral a) ⇒ Num ( FSingleMod a) where
(+) x y = addSingle x y
(−) x y = x + ( additiveInverseSingle y)
-- etc.

addSingle :: ( Integral a) ⇒ FSingleMod a → FSingleMod a → FSingleMod a
addSingle (FM (Z 0 p) _) (FM (Z 0 p ′ ) _) | p==p ′ = FM (Z 0 p) 0
addSingle (FM (Z 0 _) _) y = y
addSingle x (FM (Z 0 _) _) = x
addSingle (FM u 0) (FM u ′ 0) = FM (u+u ′ ) 0
addSingle (FM u v) (FM u ′ 0) | v >0 = FM u ′ 0

| v <0 = FM u v
addSingle (FM u 0) (FM u ′ v ′ ) | v ′>0 = FM u 0

| v ′<0 = FM u ′ v ′

addSingle (FM u v) (FM u ′ v ′ ) | v<v ′ = FM u v
| v>v ′ = FM u ′ v ′

| v==v ′ = FM (u+u ′ ) v
addSingle _ _ = error "Bad case!" -- never happened

additiveInverseSingle (FM (Z u p) v) = FM (Z (p-u) p) v

Fig. 9. Additive operations in a single fractional residue class.

1. The addition works, despite looking somewhat strange. Let (|a/b|m, v) and
(|α/β|m, ν) be the summands. The trivial case for summation with zero is
clear. The case of v = ν is also not endearing. All left is the complicated
case v 6= ν. Without loss of generality, let |v| < |ν|. Now we have three non-
trivial sub-cases for different signs of v and ν, all other cases can be seen
as one of those with places swapped. Let us consider one of them: the case
“0 < v < ν”.

amv

b
+ αmν

β
= amv

b
+ αmν−vmv

β
= amv

b
+ αmv

β
mν−v.

If we extract all we can, namely mv, the summand with further factor of m
turns into zero modulo m, we have exactly (|a/b|m, v) remaining. All other
cases are analogue.

2. The additive inverse is correct. Changing the sign changes not the factors,
thus no change at v. The addition of (u, v) and (| − u|m, v) returns (0, v),
which is zero.

3. The multiplication is straight-forward. It follows
a

b
mv · α

β
mν = aα

bβ
mv+ν ,

which is exactly what we see.
4. The multiplicative inverse is also correct:

(u, v) · (|u|−1
m ,−v) = (|u · u−1|m, v − v) = (1, 0).

ut

Remark. Note that Wβ does not give any guarantee on the correctness of the
result, if the latter does not satisfy the bound (1).



Theorem 15 (Correctness). The algorithms 9 and 10 are correct.

Proof (Sketch). Call ϕ the mapping, defined by Algorithm 9 and ψ the one of
Algorithm 10. Let FN be Farey fractions of order N , let X ⊂ Q be the domain
of ϕ with codomain Wβ . It holds FN ⊂ X, if (1) holds for N and M =

∏
β.

Theorem 14 essentially shows ϕ(a ◦ b) = ϕ(a) ◦ ϕ(b) for ◦ ∈ {+, ·}. It is easy to
show that zero and unity are preserved. Hence, ϕ is a ring homomorphism. X

As for ψ, it is a bit more tricky. The mapping ψ : Wβ → Q is partial.
However, if we constrain it2 to FN in the domain: ψ|N : Wβ → FN , where N
and β are in the same relation as above, then ψ|N is total per Proposition 4.
Because Q =

⋃
N∈N FN , if a proper scale β is chosen, a fraction of arbitrary size

can be mapped back to Q. X †

5.3 Parallelism

Multiple-residue arithmetic is known for its data parallelism potential. We com-
pute with different residues in a fully independent manner, without a need for a
communication in-between. As our implementation of rational multiple-residue
arithmetic conforms to this principle, we can immediately make a step from a
(sequential) Eden implementation to (parallel) Eden code.

Suppose, we have some function f :: FMods Int → FMods Int. This func-
tion could be implemented in Eden as f = map g, where g :: FSingleMod Int
→ FSingleMod Int. It suffices to write f = farm g to obtain a parallel Eden
implementation. The skeleton farm implements a parallel map behaviour and is
part of Eden’s skeleton library.

A further advantage is provided by the Eden type system. As both FMods
and FSingleMod are instances of the standard Num and Fractional type classes,
we could use the standard arithmetical notation of +,−, ·, / in the implemen-
tation of the function g from above. Even more: the generalised type of g is
g :: (Num a, Fractional a) ⇒ a → a. This means, that we can use g for
any arithmetic of our choice: be it the standard one, or the one presented above.
In terms of computer algebra, one says that g is symbolic.

6 Testing the Arithmetic

In order to have a large enough task, we use matrix computations for testing the
arithmetic. We choose the LU decomposition of matrices as our test problem.

6.1 Gauß Elimination

The idea of Gauß elimination is simple: we subtract multiples of one matrix
column from another one to obtain zeroes beneath the matrix diagonal. Details
2 In fact, the domain, on which ψ for a given β is total, seems to be some Y ⊂ Q,
with the evident assumption X = Y . However for the proof technique it is easier to
limit ψ to FN ⊂ Y ⊂ Q.



-- matrix !(j, k) selects a single element of the matrix
gaussIterator (i, bound , matrix )

= let ((ln , lm), (n, m)) = bound
zs = [ ((j, k), makeEl i j k) | j ∈ [i+1..n], k ∈ [i..n] ]
makeY (i, j) = matrix !(j, i) / matrix !(i, i)
makeEl i j k = matrix !(j, k) - makeY (i, j) ∗ matrix !(i, k)

in (i+1, bound , matrix//zs)

gauss :: (Num x, Fractional x) ⇒ MatArr Int x → MatArr Int x
gauss matrix

= let ((ln , lm), (n, m)) = bounds matrix
(_, _, result ) = last $ take (n-ln+1)

$ iterate gaussIterator (ln , ((ln , lm), (n, m)), matrix )
in result

Fig. 10. Gauß elimination in Eden.

on Gauß elimination can be found in any numerical linear algebra book, like the
classic [6]. We use determinant computation via Gauß elimination as a test for
our arithmetic.

However, contrary to common approaches, we perform the exact computa-
tion. The input matrix is filled with fractions, the determinant is also fractional.
As an upper bound on determinant size for a given matrix exists, we can ensure
our arithmetic is exact.

We implement matrices in Eden as arrays. This data type is not quite na-
tive for pure functional language, but we did not want to use nested lists for
matrix representation. We write type MatArr a b = Array (a, a) b whereas
the typical usage of this type would be MatArr Int (Fraction Integer) or
MatArr Int (FMods Int). The sequential determinant computation would be
as simple as
det :: (Num x, Fractional x) ⇒ MatArr Int x → x
det = product ◦ diag ◦ gauss

with a trivial implementation of diag :: (Ix a, Num b) ⇒ MatArr a b→ [b].
We omit here our implementation of gauss, it is really straight-forward. It has
the type (Num x, Fractional x) ⇒ MatArr Int x → MatArr Int x. We do
not use pivoting here. To obtain a parallel implementation, we use higher-order
function lift1, described below in Subsection 6.2. The actual parallel implemen-
tation of parallel Gauß elimination and a subsequent determinant computation
is presented in Figure 11.

6.2 Technical Details of Implementation

In order to be able to distribute the data parallel tasks across the PEs, we need
to rotate the hypercube, being matrix over a list of the fractional residue classes.

A quite performance boost resulted from two design decisions.

– Do not send unneeded data. We have implemented a special transmission
data type for diagonal matrices. We take the diagonal of the transformed



-- lift1 is defined in Figure 12
gaussResidue myMap = lift1 myMap gauss
detResidue = product ◦ diag ◦ gaussResidue

-- parMap and farm are standard Eden skeletons
parMap , farm :: (a → b) → [a] → [b]
-- two parallel invocations
detParMap = detResidue parMap
detFarm = detResidue farm

Fig. 11. Residue-based invocation of parallel Gauß elimination. Implementation
of detResidue is slightly simplified.

matrix before the communication takes place, thus majorly reducing com-
munication bottleneck in the direction “workers to master”.

– List chunking. This issue is very technical. Supporting Eden library defines
list communication in form of streams, however each list element is sent
separately. This is inefficient of large lists. A common solution to this problem
among Eden programmers is “list chunking”—reducing a list to a nested
list for the sake of communication, thus sending multiple list elements in a
single message. Our experiments have shown that 100 elements “chunking”
provides best results in this particular case.

6.3 Test Results

We have implemented distributed determinant computation of permuted, scaled
with 1/3 Pascal matrices, using the above approach. As a Pascal matrix is uni-
modular, the final result is always known. The arithmetic of a right scale always
performed correctly in our tests. A visualisation of the parallel program execu-
tion with EdenTV [1] is depicted in Figure 13. In the diagram, the horizontal axis
indicates the time, the vertical axis shows PEs. The bars show process activity
over time. Multiple processes can be placed on one PE. The colours correspond
to a traffic light: red • (dark grey in a black and white version) is blocked, i.e.,
waiting for input. Yellow • (light grey) is “runnable”, but not running, typical
causes are garbage collection and communication in progress. Green • (grey)
stands for running.

The initial delay of 1.3–1.5 second is due to the generation of the input
matrix. Probably, some part of this computation is also due to the boilerplate
code for parallelisation. Each parallel residue computation, seen from 1.25 second
to 2.5–2.6 second perform for about 1.3 seconds. Then, the needed results—only
the diagonal of the whole matrix!—are sent back to the PE 1. After a very
short post-processing phase the program terminates. The visualised run was
performed on a eight-core Intel Xeon machine with a 2.5 GHz CPU and 16 GB
RAM. We used no special memory management and fixed the message buffer
at 2 MB pro PE. The input matrix size was 100× 100, we used 8 residues with
primes of size ≈ 5 · 104. The bound on fraction size was ≈ 1017, the determinant



type TransMat i n = ((i, i), [n])
type SparseDiagMat i n = ((i, i), [((i,i), n)])

toL :: (Ix i, Num n) ⇒ MatArr i n → TransMat i n
fromL :: (Ix i, Num i, Num n) ⇒ TransMat i n → MatArr i n

toSD :: (Ix i, Num n) ⇒ MatArr i n → SparseDiagMat i n
fromSD :: (Ix i, Num i, Num n) ⇒ SparseDiagMat i n → MatArr i ( Maybe n)

liftL :: (Ix i, Num i, Num n) ⇒
( MatArr i n → MatArr i n ) → TransMat i n → TransMat i n

liftL f = toL ◦ f ◦ fromL

liftLS :: (Ix i, Num i, Num n) ⇒
( MatArr i n → MatArr i n ) → TransMat i n → SparseDiagMat i n

liftLS = toSD ◦ f ◦ fromL

toResiduePrimes :: (Ix i, Integral n) ⇒
[n] → MatArr i ( Fraction n) → [ MatArr i ( FSingleMod n)]

fromResidueMaybe :: (Ix i, Integral n) ⇒
[ MatArr i ( FSingleMod n)] →

MatArr i ( Maybe ( Fraction n))

-- a map implementation / working function / primes / input value
-- lift1 :: ((a → b) → [a] → [b]) → (c → d) → [n] → m1 → m2
lift1 mymap f = fromResidueMaybe ◦ map fromL ◦ mymap ( liftL f)

◦ map toL ◦ toResiduePrimes

Fig. 12. The function lift1 and supporting code signatures. We omit technical
details here.

Fig. 13. A fragment of the runtime diagram of the test executable.



n 10 50 70 100

Eden, Wβ 0.0025 0.39 0.94 2.6
Maple, Q 0.002 0.175 0.60 2.0

Table 1. Permuted scaled Pascal matrices. Comparison of our approach with
Maple. Time is in seconds.

was a Farey fraction of order ≈ 5 · 1047. We stress that the matrix operations’
implementation is a prototype one. The essence of this example is not to make
performance records, but to show that the arithmetic produces correct results
in practice.

7 Related Work

7.1 Comparison with Maple

We compare our parallel implementation from above with a reference software:
Maple 13. We compute the determinant of the same matrix using exact rational
arithmetic and the determinant of the unscaled integer matrix using small single-
residue arithmetic. In all cases the time measurement is incorporated in the
software itself, we do not measure the time to generate the matrix, cf. Figure 13.
We run all applications on the same hardware: the aforementioned eight core
Intel machine.

The results are depicted in Table 1. We see that our Eden implementation is
just a factor slower than optimised Maple implementation with standard frac-
tions. So we have two different approaches to implement fractions mechanically,
which are comparable in runtime. Still, our Eden measurement is based on a
parallel execution on 8 PEs and Maple uses majorly only a single PE. The same
Eden program on a single PE would run in 11.2 seconds. However, The time
for the single residue-based computation in Maple is very low. Hence, solely the
ability to compute the same result with a residue arithmetic would be a major
advantage for Maple. This together with a possibility to execute the arithmetic
in parallel on many cores would produce very high speedups. The reason for
such improvement is reduced computational complexity, as described in [18]. We
consider this issue next.

7.2 Speedups

For our Eden implementation we obtain the relative speedup of 4.31 and the
absolute speedup is 3.34 on the same 8 PE machine as in previous sections.
However, a parallel sparse Gauß elimination with parallel pivoting [4] produces
for dense matrix input the speedup of ≈ 3.5 on 8 PE Cray C90 and ≈ 5 on 8 PE
DEC AlphaServer 8400. Still for special sparse inputs the same algorithm on



Maple method
n default Q Zm
100 0.07 4.9 0.012
300 2.2 494 0.018

1000 325 − 0.75

Speedup
n s̄ ŝ

100 5.8 408
300 122 27378

1000 433 −

Table 2. Random sparse matrices. Comparing Maple methods and stating upper
bound on the speedups. Time is in seconds.

the latter machine achieves speedup of ≈ 7. Noteworthy, [4] describe an SMP
implementation. Our approach works in a distributed memory setting.

As a further indicator of possible benefit, we compute in Maple 13 determi-
nants of larger random-generated matrices of small (≤ 1000) integers of density
1/2 using default, rational and residue-based implementations of built-in Maple
function Determinant. We show the result in Table 2. The residue-based ap-
proach measures time for one residue class at m = 1013. Note, that the timings
for the same matrix size differ for vulgar fraction computation in Tables 1 and 2.
The values at s̄ are the best possible speedup of default method and values at ŝ
show the best possible speedup of rational computation method, both provided
ideal scalability of the multi-modular arithmetic. The latter assumes that com-
puting p residues at p PEs takes as long as computing one residue at a single PE
and that we have as many PEs as we need. Hence, this is the maximal possible
speedup in the particular case. Of course practically measured values may and
will vary. Still, we see a huge potential for using a multi-residue arithmetic for
rational computations.

7.3 Further Related Work

Any decent system implements residue-based approach for reducing the interme-
diate expression swell. A lot of work on rational residue systems was done in [8]
and preceding papers [7,19,20,9,14]. Another proof of Proposition 4 is in [15],
[16] states an alternative divide-&-conquer algorithm. The earliest approaches
to rational residues known to us are [17] and [2]. Our own work on this topic
is [10].

8 Conclusions and Future Work

We have presented a rational multiple-residue arithmetic and its parallel imple-
mentation in Eden. We constructed a test case and provided a visualisation of the
program execution. We present in this paper concise source code for almost all
operations. The omitted parts are straightforward. Nevertheless, the complete
source code package is available from the project homepage3.
3 http://www.mathematik.uni-marburg.de/~lobachev/code/multimod/



Further direction is the development of a parallel benchmark, based on the
presented implementation, coupled with certain test input. Another point for
future work would be an attempt for an adaptive computation. It would be
interesting to see a Maple implementation of our approach. A distributed im-
plementation, based on the remote data concept [5] should improve the speedup
values of our implementation.
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