
Implementation and Evaluation of
Algorithmic Skeletons:

Parallelisation of
Computer Algebra Algorithms

Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaěen
(Dr. rer. nat.)

dem

FĵķļĶĹŇĹĽķļ MĵŉļĹŁĵŉĽĿ Ŋłĸ IłĺŃŇŁĵŉĽĿ
ĸĹŇ PļĽŀĽńńň -UłĽŋĹŇňĽŉ́ŉ MĵŇĶŊŇĻ

vorgelegt von

Oleg Lobachev

aus Gießen

Marburg/Lahn, ƿƽƾƾ

Implementation and Evaluation of Algorithmic Skeletons:
Parallelisation of Computer Algebra Algorithms

Oleg Lobachev

th November

Contents from our own publications [Lobachev and Loogen, , Berthold et al., b, Lobachev and Loogen,
a] have been reproducedwith a kind permission of Springer-Verlag Berlin /Heidelberg, Germany. Contents
from our own publication [Lobachev and Loogen, c] has been reproduced with a kind permission of ACM
New York, NY, USA.
Figure . is a redrawn version of a part of Figure . from [von zur Gathen and Gerhard,].

Vom Fachbereich Mathematik und Informatik der Philipps-Universität Marburg
als Dissertation am .. angenommen.
Tag der mündlichen Prüfung: ...

Erstgutachterin: Prof. Dr. Rita Loogen
Zweitgutachterin: Prof. Dr. Yolanda Ortega Mallén

Abstract

is thesis presents design and implementation approaches for the parallel algorithms of computer
algebra. We use algorithmic skeletons and also further approaches, like data parallel arithmetic and
actors. We have implemented skeletons for divide and conquer algorithms and some special parallel
loops, that we call ‘repeated computation with a possibility of premature termination’. We introduce in
this thesis a rational data parallel arithmetic. We focus on parallel symbolic computation algorithms,
for these algorithms our arithmetic provides a generic parallelisation approach.

e implementation is carried out in Eden, a parallel functional programming language based on
Haskell. is choice enables us to encode both the skeletons and the programs in the same language.
Moreover, it allows us to refrain from using two different languages—one for the implementation and
one for the interface—for our implementation of computer algebra algorithms.

Further, this thesis presents methods for evaluation and estimation of parallel execution times.
We partition the parallel execution time into two components. One of them accounts for the quality
of the parallelisation, we call it the ‘parallel penalty’. e other is the sequential execution time. For
the estimation, we predict both components separately, using statistical methods. is enables very
confident estimations, although using drastically less measurement points than other methods. We
have applied both our evaluation and estimation approaches to the parallel programs presented in this
thesis. We haven also used existing estimation methods.

We developed divide and conquer skeletons for the implementation of fast parallel multiplication.
We have implemented the Karatsuba algorithm, Strassen’s matrix multiplication algorithm and the
fast Fourier transform. e latter was used to implement polynomial convolution that leads to a fur-
ther fast multiplication algorithm. Specially for our implementation of Strassen algorithm we have
designed and implemented a divide and conquer skeleton basing on actors. We have implemented the
parallel fast Fourier transform, and not only did we use new divide and conquer skeletons, but also
developed a map-and-transpose skeleton. It enables good parallelisation of the Fourier transform.
e parallelisation of Karatsuba multiplication shows a very good performance. We have analysed the
parallel penalty of our programs and compared it to the serial fraction—an approach, known from
literature. We also performed execution time estimations of our divide and conquer programs.

is thesis presents a parallel map+reduce skeleton scheme. It allows us to combine the usual
parallel map skeletons, like parMap, farm, workpool, with a premature termination property. We use
this to implement the so-called ‘parallel repeated computation’, a special form of a speculative parallel
loop. We have implemented two probabilistic primality tests: the Rabin–Miller test and the Jacobi
sum test. We parallelised both with our approach. We analysed the task distribution and stated the
fitting configurations of the Jacobi sum test. We have shown formally that the Jacobi sum test can
be implemented in parallel. Subsequently, we parallelised it, analysed the load balancing issues, and
produced an optimisation. e latter enabled a good implementation, as verified using the parallel
penalty. We have also estimated the performance of the tests for further input sizes and numbers of
processing elements. Parallelisation of the Jacobi sum test and our generic parallelisation scheme for
the repeated computation is our original contribution.

e data parallel arithmetic was defined not only for integers, which is already known, but also
for rationals. We handled the common factors of the numerator or denominator of the fraction with
the modulus in a novel manner. is is required to obtain a true multiple-residue arithmetic, a novel
result of our research. Using these mathematical advances, we have parallelised the determinant com-
putation using the Gauß elimination. As always, we have performed task distribution analysis and
estimation of the parallel execution time of our implementation. A similar computation in Maple em-
phasised the potential of our approach. Data parallel arithmetic enables parallelisation of entire classes
of computer algebra algorithms.

Summarising, this thesis presents and thoroughly evaluates new and existing design decisions for
high-level parallelisations of computer algebra algorithms.

Abstract (Deutsch)

Die vorliegende Arbeit beschreibt den Entwurf und die Implementierung paralleler Computeralge-
braalgorithmen mithilfe von algorithmischen Skeletten und weiteren Ansätzen, wie datenparallele
Arithmetik und Actors. Wir implementieren algorithmische Skelette für Divide and Conquer und spe-
zielle, spekulative parallele Schleifen. Ähnlich zu den Skeletten ist die rationale datenparallele Arith-
metik ebenfalls ein Parallelisierungschema, allerdings ist dieses speziell für Algorithmen der Compu-
teralgebra ausgelegt.

Die Parallelisierungwird in der parallelen funktionalen Sprache Eden vorgenommen. Eden ist eine
Erweiterung vonHaskell. Mit Eden ist es möglich, sowohl die Skelette als auch die Programme in einer
Sprache zu definieren. Ein ähnlicher Ansatz erlaubt uns, die „innere“ und die „äußere“ Sprache einer
Computeralgebra-Implementierung zu vereinigen.

Desweiteren schlägt diese Arbeit eine Methode zur Auswertung und Abschätzung der parallelen
Laufzeiten vor. Im Gegensatz zu den gängigen Ansätzen werden statistische Verfahren verwendet. Da-
durch können wir sehr überzeugende Vorhersagen liefern. Im Vergleich zu den anderen Verfahren
verwenden unsere Methoden deutlich weniger Datenpunkte. Eine von uns eingeführte Komponente
der parallelen Laufzeit erlaubt eine strikte Kontrolle der Güte der Parallelität. Wir führen sowohl die
Qualitätsmerkmale als auch die Abschätzung der parallelen Laufzeit für die in der Arbeit vorgestellte
Implementierungen aus.

Mit den Divide and Conquer Skeletten werden die Algorithmen für schnelle Multiplikation, näm-
lich Karatsuba Algorithmus und Strassen Matrixmultiplikation sowie die schnelle Fouriertransforma-
tion, entwickelt. Letzteres wird auch mit einem map-and-transpose Skelett umgesetzt. Damit haben
wir eine gute Parallelisierungmerkmale beobachtet. Wir verwenden die schnelle Fouriertransformati-
on, um eine schnelle Faltung von Polynomen umzusetzen, was zu einem weiteren Algorithmus zur
schnellen Multiplikation führt. Der parallele Algorithmus von Karatsuba zeigt sehr gute Parallelisie-
rungmerkmale. Für den Algorithmus von Strassen implementieren wir ein Actors-basiertes Divide
and Conquer Skelett. Wir analysieren die Messungen ausführlich, um die Güte der Parallelisierung
sicherzustellen.

Wir stellen ein map+reduce Schema vor. Es erlaubt, gängige parallele Skelette wie parMap, farm,
workpool mit einer Abbruchsklausel zu versehen. Wir setzen mit diesem Skelettschema die Algorith-
men zu probabilistischen Primzahlprüfung um. Wir implementieren den Rabin–Miller-Test und den
Jacobi-Summen-Test. Bei dem ersten optimieren wir die Aufgaben- und Prozessorenanzahl. Bei dem
Jacobi-Summen-Test beweisenwir zuerst, dass es überhauptmöglich ist, unserenAnsatz zu verwenden.
Danachwird die Implementierung erzeugt und parallelisiert. Dabei nehmenwir eineOptimierung der
Aufgabenreihenfolge vor, was die Speedup Werte deutlich verbessert. Ebenfalls werden auch hier die
beiden Implementierungen ausführlich analysiert. Die Laufzeiten werden für weitere Problemgrößen
und Prozessorenzahlen abgeschätzt.

Die datenparallele Arithmetik wurde nicht nur für ganze Zahlen, sondern auch für Brüche umge-
setzt.Wir stellen eine neuartige Lösung vor, die die gemeinsamen Faktoren des Zähler oderNenner des
Bruches mit der Zahl eliminiert, modulo der man rechnet. Das ist notwendig um eine hinreichende
Skalierung der multimodularen Arithmetik zu ermöglichen. Unter Verwendung dieser Erkenntnisse
haben wir die Determinantenberechnung mittels Gauß Elimination parallelisiert. Eine vergleichbare
Berechnung in Maple zeigte die großen Vorteile unseres Ansatzes.

Die vorliegende Dissertation präsentiert Implementierung und gründliche Auswertung von high-
level Parallelisierungen verschiedener Computeralgebraalgorithmen.

To my mother

ACKNOWLEDGEMENTS

F
 of all I would like to thank my thesis adviser Prof. Dr. Rita Loogen for the invaluable
collaboration and support. Her supervision and encouragement made this work possible
in the first place. I am very grateful to Prof. Dr. Yolanda Ortega-Mallén for her deep and
helpful comments. Further, I would like to thank my colleagues Dr. Jost Berthold, Mischa

Dieterle, Prof. Dr.Michael Guthe andomasHorstmeyer for collaboration and discussions. Dominik
Krappel, Kent Kwee, Bernhard Pickenbrock, Florian Pfeiffer and Steffen Vaupel supported the imple-
mentation of the codebase, which is used in this thesis. I was also lucky to have fruitful discussions
with Paolo Giarrusso, Egbert Fohry, Kathi Haselhorst and Tillmann Rendel. I want to specially thank
Tillmann for the discussion on monoids and many other very interesting conversations. I benefited
from the collaboration with my colleagues in Scotland: I thank Prof. Dr. Phil Trinder and Dr. Abyd Al
Zain for the possibility to use the Beowulf cluster of the Heriot-Watt University. Further, I thank Dr.
Alexander Konovalov (University of St. Andrews) for his support. Dr. Siarhei Khirevich and Anton
Daneyko from the Faculty of Chemistry at Philipps-UniversitätMarburg kindly providedme their run
time measurements on a supercomputer. ese helped me a lot.

A loud ‘thank you’ goes to Mark Schäfer and all my former colleagues at Identass GmbH & Co.
KG for the possibility to work together in the first phase of this project. e material for this work
emerged under the support of Deutsche Forschungsgemeinscha under the grant number LO -/
and Hessian Ministry for Science and the Arts’ HMWK LOEWE KMU programme.

I am very grateful to my family for all support and patience I enjoy. I deeply appreciate all and
every kind of assistance, my parents give to me.

Oleg Lobachev

i

CONTENT S

Acknowledgements i

Contents iii

1 Introduction 1
1.1 Parallel Programming . 2
1.2 Goals of is Work . 4
1.3 Structure of e esis . 5

2 Programming Languages And Symbolic Computation 7
2.1 Symbolic Computation . 8
2.2 Language Unity . 9
2.3 Dependent Typing . 11
2.4 An Example: Laziness . 12
2.5 Conclusions and Outlook . 14

3 Parallel ProgrammingWith Eden 15
3.1 Eden as Haskell Extension . 16
3.2 Skeletons Survey . 22
3.3 Eden Tracing . 35
3.4 Measurement Methodology . 36
3.5 Conclusions . 37

4 Estimating Parallel Performance 39
4.1 Related Work for Parallel Performance . 40
4.2 Our View on Parallel Computation . 41
4.3 Estimation . 42
4.4 Example I: Hamming Numbers . 43
4.5 Example II: Lattice-Boltzmann Method . 44
4.6 Comparing Serial Fraction and Parallel Penalty . 48
4.7 Related Work on Performance Estimation . 50
4.8 Conclusions . 50

5 Primality Testing — Repeated Computation 51
5.1 Repeated Computation Skeletons . 51
5.2 Map+Reduce . 55
5.3 Case Studies . 61
5.4 Rabin–Miller Test . 62
5.5 Jacobi Sum Test . 67
5.6 Conclusions . 89

6 Fast Multiplication — Divide and Conquer 91
6.1 History . 92
6.2 Divide and Conquer Skeletons . 94
6.3 Univariate Polynomials . 98
6.4 Fast Fourier Transform . 107
6.5 Matrices . 127

iii

iv Contents

6.6 Divide and Conquer with Actors . 135
6.7 Conclusions . 141

7 Data Parallel Arithmetic 143
7.1 Why We Cannot Use Vulgar Fractions . 144
7.2 Single Integer Residue Class . 145
7.3 Mapping a Fraction to Integer and Back . 146
7.4 An Integral Multiple-Residue Arithmetic . 148
7.5 Rational Multiple-Residue System . 151
7.6 Counterexample for Mβ . 157
7.7 Correctness of Wβ . 159
7.8 Parallelism . 162
7.9 Related Work . 172
7.10 Conclusions and Future Work . 175

8 Conclusions, Future, and Related Work 177
8.1 Contributions . 177
8.2 Related Work . 180
8.3 Future Work . 183

A Foundations 187
A.1 Notation . 187
A.2 Groups, Rings, Fields I: e Definitions . 189
A.3 e Numbers . 190
A.4 Euclidean Algorithm . 191
A.5 Primes . 193
A.6 Groups, Rings, Fields II: Domains and Ideals . 194
A.7 Matrices and Vectors . 197

B Code 199
B.1 Helper Functions for Rabin–Miller Test . 199
B.2 Helper functions for Jacobi sum test . 199
B.3 Skeletons of dcF Class . 201
B.4 e Optimised Boilerplate Code for Gauß Elimination 201

List of Figures 203

List of Tables 207

List of Algorithms 209

Bibliography 211

Index of Personalities 239

Index 241

Lebenslauf 245

Erklärung 247

C

INTRODUCT ION

H
 seen, computing methods were numerical first. Plenty of tasks in scientific
computing require representation of real or complex values and soware-technically ad-
vanced data structures like polynomials or matrices. So the initial approaches were to use
various approximations toR. emost popular one since at least years ago has been the

floating point representation. With it we represent the first fewmost significant digits of a number—the
mantissa—and their position as a power of the number system base—the exponent. is approach is
inexact to the extent it gave birth to a whole branch of science: the numeric error analysis. One of the
questions the latter strives to answer is: Given the largest initial error δ, i.e., the difference between
the actual and the represented value, and performing a particular sequence of arithmetical operations,
what is the figure for the final error, i.e., what is the difference between the result we should have ob-
tained and the result we have actually computed in terms of δ? Numeric analysis was motivated by an
example by Wilkinson (James Hardy Wilkinson, *.., †..).

Example (Wilkinson monster []). We perform a simple test of a polynomial equation solver. Con-
sider a polynomial

w(x) =
20
∏
j=1
(x − j)

in a closed form—we computed the product—and in single-precision floating point representation. en,
if we search for the zeros ofw(x) with the classical Newton method, we obtain complex-valued solutions.
Two plots for the w(x) are shown in Figure ..

e reason for such a behaviour of the Wilkinson monster is the inexact floating point representa-
tion and the numerical instability of the polynomials. is particular polynomial w(x) has both very
large and very small coefficients. us, its representation in floating point system becomes more and
more distorted as the computation progresses. e usage of a single-precision arithmetic makes this
process more outrageous. Let the distorted polynomial be w̃(x). e polynomials are very instable
numerically, and the zeros of w̃(x) differ from the zeros of w(x) to the extent that the former are
complex and the latter are not—by construction.

What we in fact desire to obtain aremethods for the exact computation. We call them fromnow on
‘symbolic methods’ and consider them as an opposite of the numeric methods. However, the latter can
and will serve as a ‘guide’ (in many senses) for our approaches. Still, numeric and symbolic computing
methods differ. To give an example: it is very hard to computeGröbner bases [Buchberger, , Becker
et al.,] with floating point numbers [Sasaki andKako,]. As symbolicmethods aremuchmore
resource-demanding than numeric ones, parallel symbolic computing is a highly important research
direction.

Let us perform a practical experiment. Start Maple [Redfern, , Monagan et al.,], we
took the version , available at Faculty of Mathematics and Computer Science at Philipps-Universität
Marburg. Generate a large random matrix over rational numbers

with(LinearAlgebra):
A := RandomMatrix(100, 100, generator = rand(-99..99) / rand(1..99));

and compute its determinant

Determinant(A);

It took us . seconds on an -coremachine sakania, until the full result was computed. Admittedly,
it is a quite large fraction, as we demanded the exact result. However, we observed that while the
computation was in progress, only one core of our mighty -core machine was in fact computing the

2 Chapter . Introduction

-1.5e+12
-1e+12
-5e+11

 0
 5e+11
 1e+12

 1.5e+12
 2e+12

 2.5e+12

 6 7 8 9 10 11 12 13 14 15

w(x)

-2e+16

-1e+16

 0

 1e+16

 2e+16

 3e+16

 4e+16

 5e+16

 18.8 19 19.2 19.4 19.6 19.8 20 20.2

w(x)

Figure .: e Wilkinson monster: the polynomial w(x). Note the amplitude of the values.

determinant, the remaining cores were idle. So, if we could occupy these idle cores too, we would
not need to wait almost one and a half minute for the result. We have seen that the parallelisation is
very important for computer algebra methods.

We will consider a radically different method of computation, namely a residue-based rational
arithmetic, inChapter . Wewill revisit theMaple determinant computation example on pages –.
We will also consider existing algorithms of computer algebra and search for a generalisable high-level
parallelisation techniques for these algorithms.

We work in the research parallel language Eden [Loogen et al.,], which enables us to use Has-
kell [Peyton-Jones,] for specifying both the parallelisation methods and the code to parallelise.
We will use ad-hoc polymorphism, higher-order functions, futures and further features of our target
language. Our high-level approach will add such benefits as good abstraction from unneeded details
and high productivity of the developer to the performance increase drawn from the parallelisation.
Our goal is to uncover parallel processing approaches and techniques. We hope that some day, a par-
allel computer algebra system will emerge which will have utilised this knowledge to become faster.
is would serve for the benefit of anyone who has ever been staring in the monitor, waiting for the
computation to finish.

Related Computer Algebra Systems

Various (sequential) computer algebra systems exist. An overview is in [Grabmeier et al.,]. First
systems include Macsyma [Martin and Fateman,], Reduce [Hearn,], Axiom [Bronstein et al.,
], see also [Davenport,]. Standard commercial systems nowadays are Maple [Redfern, ,
Monagan et al.,] and Mathematica [Wolfram, ,]. More special open source systems
include CoCoA [Capani and Niesi, , CoCoA,], GAP [GAP,], GiNaC [Bauer et al., ,
GiNaC], KANT V [Daberkow et al.,], PARI [Batut et al.,], Singular [Greuel et al., ,
Decker et al.,]. An open source bundle of available free systems with a Python-based ‘glue’ to hold
them together is SAGE [Stein and Joyner, , Stein et al.,].

Approaches towards parallel computer algebra as a complete system include PARSAC [Kuechlin,
] and PACLIB [Schreiner andHong, , Schreiner,]. MuPAD [Naundorf,], Macaulay
[Eisenbud, , Grayson and Stillman,] and Cannes/Parcan [Gloor and Muller,] feature
SMP support using threads in an otherwise sequential system. is is a low-level approach. An early
approach to parallel Maple is [Watt,]. ere are also techniques to separate parallel orchestration
from computer algebra implementation, see, e.g., ∥Maple∥ [Siegl,], Distributed Maple [Schreiner
et al.,], SCIEnce Project [Hammond et al., , SCIEnce,].

. Parallel Programming

Parallel programming, a large problem field in computer science, has gained much attention over the
last few years. It is considered a new, important front line of the research due to the current trends of
computer hardware development [Geer, , Hill andMarty,]. For a few years now chipmakers
have been not able to scale CPU performance by increasing speed of a single core. e only recourse is
to maintain existing—and needed!—performance growth is to increase the number of processors on a
single chip. is still reflects theMoore’s law formulation for the number of the transistors on the same

.. Parallel Programming 3

die [Moore,], but should the current development continue, we will face thousands of cores on
a single die [Agarwal and Levy,]. However, parallel programming has some caveats [Skillicorn,
, Foster, , Grama et al.,]. It is much harder than its sequential counterpart. We need
to take care of data partitioning, communication and synchronisation issues. Deadlocks are possible.
Good speedups depend on many factors. It is hard to foresee the behaviour of a parallel program for
further input sizes or number of processing elements.

Wewant to combine complicated algorithms and (hard) parallel programming. is requires high-
level, abstract, generic programming schemes [Charles et al., , Chamberlain et al.,]. We
aim for language-independent techniques. Possible techniques include i) algorithmic skeletons [Cole,
], ii) data parallel approach [Grama et al.,], iii) actors [Hewitt et al., , Haller and Oder-
sky,], iv) a monad for deterministic parallelism [Marlow et al.,], v) soware transactional
memory [Harris et al.,], vi) communicating sequential processes [Hoare, , Abdallah et al.,
]. is list includes both approaches towards concurrency and parallelism. We do not assess
all of them equally detailed. We concentrate our interest on the parallel methods. We aim to model
mathematical algorithms with as few side effects as possible.

• e main focus of this work is set on algorithmic skeletons. Skeletons capture parallelisation
schemes and communication patterns. ey provide a more formal framework for program
construction [Gorlatch, b, Rabhi and Gorlatch,]. With skeletons it is possible to reuse
the most complex part of a parallel algorithm: its parallelisation. Skeletons are oen used in
parallel functional languages, as they can be encoded as higher-order functions in this setting.

ese properties of algorithmic skeletons make them best candidates for a high-level parallelisa-
tion ofmultiple (formally stated) algorithms, divided in groups, sharing the same paradigm—ex-
actly the context of this thesis. With skeletons we aim to save much effort for the parallelisation
of the algorithms in our application area.

• We will use the data parallel paradigm from the point of view of algorithm transformations. We
search for a better suitable arithmetic, which would limit the intermediate expression swell and
enable parallelisation. is is a mathematical technique, which is easily applicable for the prob-
lems in computational mathematics. However, it is not a general parallel processing method.
Our data parallel approach—aer the algorithm transformation is done—would still require a
skeleton to implement the obtained parallelism.

ough there are techniques to flatten nested data parallel programs [Blelloch, , Chakrav-
arty et al.,], and thus to make data parallel approach more widely usable, we do not see
such techniques to be versatile enough. We search for mathematical techniques to transform
algorithms to data parallel representation and do not use nested data parallelism.

• We will also briefly discuss actors [Hewitt et al., , Haller and Odersky,]. e typical
actor approach is very different from ours. We will see in Chapter how it is possible to model
actors in a high-level manner in the setting of a lazy functional language. Actors are an approach
to concurrency, however, we will model them in a parallel setting.

• e approach of [Marlow et al.,], the deterministic Par monad, confines all the implement-
ation in a monad. Our algorithmic skeletons would require the sequential code to use the (se-
quential) higher-order functions, which will be then replaced by skeletons. Par requires all the
code to be monadic, which is a larger transition. Further, the preliminary measurements show
[Marlow et al.,] that the Parmonad is inmost cases significantly slower than traditionalMul-
ticore Haskell [Marlow et al.,]. erefore, we do not consider this approach to parallelism
in more detail.

• A rather high-level approach to concurrency is soware transactional memory (STM). First pub-
lications on this topic are [Knight, , Herlihy and Moss,], see also [Shavit and Touitou,
, , Harris et al., , Herlihy,]. e basic idea is that transactions for memory
access either succeed or fail. In the latter case, the STM implementation just tries again, until

4 Chapter . Introduction

success is reached. It can be used for lock-free data structures. STM is quite accepted in the
industry, cf. [Adl-Tabatabai and Shpeisman,], furthermore it can be nicely implemented
inHaskell [Peyton-Jones, , Harris et al., , O’Sullivan et al.,]. STM can also be used
to fix some possible inconsistencies [Bieniusa et al.,].

In our view, using STM for our aims has multiple drawbacks. Firstly, STM can be used only
in the shared memory setting. We aim for techniques usable both in distributed and in shared
memory settings. Networks of multicore machines need both approaches [El-Rewini and Abd-
El-Barr,]. Secondly, it is not a very high-level approach. STM can free the programmer
from locking, but it still enforces a quite low-level programming model, involving transactions
and atomic blocks. e third reason is the same as with Par monad: Haskell’s implementation
of STM is monadic. Hence, we will need to majorly restructure sequential code to use STM.
And the most important reason is: STM is an approach for concurrency, not for parallelism.
Contrarily to actors, we see no easy way to implement STM in the parallel functional setting.
We do not regard STM in further, focusing on parallel high-level methods.

• e communicating sequential processes [Hoare, , Abdallah et al.,] is a quite formal
approach. In fact, it is a calculus for concurrency. Implementations include [Jones and Jones,
, Brown and Welch, , Welch and Barnes, , Brown,]. We do not consider this
model here. e reasons are twofold. Firstly, it is an approach towards concurrency. Contrarily
to this fact, we focus on the parallel computing, as detailed above. Secondly, available Haskell
implementation is monadic, hence we have similar drawbacks as in Par monad and STM.

. Goals ofis Work

We aim to answer the following question.

Whether and how can we utilise high-level approaches for the efficient parallelisation of the
core algorithms of computer algebra? Can we extract skeletons from common computer
algebra algorithms? How do we make the symbolic computation possible in the chosen
setting? Which skeletons do we need to implement? How can we ensure portability and
reuse of our work? Are we able to apply the above mathematical technique not only in
theory? How can we model actors in our setting?

is thesis proceeds in two directions towards the answers to these questions. Firstly, we contribute
high-level parallelisations for some popular problems in computer algebra. Secondly, we introduce
further evaluation methods, see below.

.. Parallel Symbolic Computation

• We require basic support for symbolic computations, i.e., a way to express computer algebra
algorithms independently from concrete underlying algebraic structure. To give an example:
not ‘polynomials over Z’, but ‘polynomials over a unique factorisation domain’. is thesis will
present our approach to this issue.

We need to represent values of arbitrary size, and not only the ones fitting in some hardware
registers: unsigned hardware integers are bounded with 264 on bit hardware. We require an
implementation of fractions. It is possible to represent them as pairs of integers. However, we
embark on a different route. We will present an alternative approach to the representation of
fractions, which maps well to a parallel processing paradigm. We need to represent not only
rationals, but also irrational values exactly. e algebraic method is adjunction. With it we add
the needed irrational value symbolically to the number system we work in. We will present our
implementation of adjunction in this work.

.. Structure of e esis 5

• We contribute skeletons for parallel polynomial and integer multiplication. Our approach is to
parallelise fast divide and conquer methods. We are interested in both Karatsuba multiplication
and in methods based on the fast Fourier transform. e latter account for the complexity of
the multiplication beingO(n log n) for the polynomials of degree n, provided some limitations
hold. e consequence is: we implement the parallel fast Fourier transform. As it is also a divide
and conquer algorithm, we will investigate to what extent it is possible to share a single divide
and conquer skeleton between such very different algorithms.

• We contribute approaches for parallelising matrix multiplication and decomposition. We paral-
lelise the fast matrix multiplication algorithm by Strassen [] (again a divide and conquer
algorithm!) and the LU decomposition of matrices (also known as Gauß elimination). An im-
portant application of the latter is the determinant computation.

• In some algorithms of computer algebra, e.g., in Gauß elimination, naive polynomial GCD,
Buchberger’s algorithm, a very fast increase of the rational entries in the mathematical struc-
tures occurs. Examples are coefficients of polynomials for GCD and Gröbner bases, and entries
of the matrices for Gauß elimination. Such growth is called intermediate expression swell [To-
bey, , von zur Gathen and Gerhard, , Brickenstein,].

We require a method to prevent the intermediate expression swell—and to do so in parallel. We
contribute a residue arithmetic for this goal. We present approaches for both integers and ra-
tionals. Further, it should be possible to compute with the residue arithmetic in parallel. An
apparent approach is to use multiple residue classes a in data parallel manner. Some questions
arise. It it correct? Residue classes are well known for the integer residues. How can we tackle
fractions? Is it possible to usemultiple residue classes for fractional residues? Wewill answer the
above questions in this thesis. e approach towards a fractional multiple-residue arithmetic is
the result of our long-term research.

• For the residue arithmetic we implement methods to find quite large primes. Even leaving the
residues aside, primality testing is a very interesting and required discipline. Not least this is so
because of public key cryptographic systems like RSA [Rivest et al.,], which require large
prime numbers. We will abstract the parallelisation patterns (i.e., the skeletons) for probabilistic
primality tests. We will also discuss and evaluate the performance of these methods.

.. Evaluation Methods

Secondly, aer obtaining some results for the performance of our new-craed implementations on the
hardware available to us, we contribute methods to to i) evaluate thoroughly these results, ii) find and
apply an approach to generalise these results. is means, we contribute

• A method to predict the execution time of a given program for non-measured input sizes and
for non-measured numbers of processors.

• An ability to verify the quality of a parallel implementation quantitatively. We apply it to the
parallel programs we will present.

. Structure ofeesis

eremaining text is structured as follows. Chapter discusses the choice of a lazy functional program-
ming language for the implementations in question. We also introduce the language unity approach in
Chapter . Chapter presents the parallel functional language Eden [Loogen et al.,], which is well
suited for the development of the skeletons in the further chapters. We will see in further chapters why
some features of Eden are essential for this thesis. Chapter presents the methods for the estimation
of parallel programs’ run times mentioned above. ese methods are our novel work. We examine

6 Chapter . Introduction

the probabilistic primality testing methods and develop new skeletal approaches for their parallelisa-
tion in Chapter . We consider fast multiplication routines for polynomials, integers, and matrices
in Chapter . All algorithms in this chapter are divide and conquer algorithms. We will see how we
can reduce the implementation overhead with skeletons. e same chapter features actors. A through-
out evaluation is also included. A novel parallel rational residue arithmetic is presented in Chapter .
e same chapter also presents an integer residue arithmetic. ese implementations form the data
parallel approach. Further, we present there an example using matrix decomposition and evaluate its
performance with the new arithmetic. Conclusions, future, and related work follow in Chapter .

C

PROGRAMMING LANGUAGES AND
SYMBOL IC COMPUTAT ION

ere is no mode of action, no form
of emotion, that we do not share
with the lower animals. It is only by
language that we rise above them, or
above each other—by language,
which is the parent, and not the
child, of thought.

Oscar Wilde, e Critic as Artist

B
 and A.D. Muhammad ibn Mūsā al-Khwārizmī, *c. , †c. , wrote Al-
Kitāb al-mukhtasar fī hīsāb al-ğabr wa’l-muqābala ,الكتاب المختصر في حساب الجبر والمقابلة) “eCom-
pendious Book on Calculation by Completion and Balancing”). It features the concepts
of al-ğabr and muqābala—the symbolic computation and term reduction. is book’s

content and its author’s name are also good known for giving us the words ‘algebra’ and ‘algorithm’
respectively [Rāshid, , Chabert, , Grabmeier et al.,]. Rafael Bombelli (*, †) pub-
lished Algebra in , introducing rules for computation with complex numbers. John Pell, *..,
†.., tabelised in the factors of all integers up to . Leonhard Euler, *..,
†.., significantly advanced algebra, number theory, and various other fields of mathematics.
Another mathematical genius, Johann Carl Friedrich Gauß, was born ... He proved the funda-
mental theorem of algebra in . His Disquisitiones Arithmeticae appeared . It features advances
in number theory and algebraic constructions. e latter part of this book utilises the complex roots
of unity. Gauß died .. [Eves, , Chabert, , MacTutor,].

John Napier (also: Neper, Nepair) of Merchiston, *, †.., introduced Napier’s bones, a
kind of mechanical calculator. Napier is one of the discoverers of logarithms, alongside with Briggs
and Bürgi. Edmund Gunter (*, †..) develops Gunter’s scale, a mechanic device capable
of multiplication using logarithms, in . is device was the predecessor of a slide rule. John von
Neumann (*.., †..) and Norbert Wiener (*.., †..) produced the founda-
tions of contemporary computing hardware. James Hardy Wilkinson, *.., †.., was one
of the first scientists to raise awareness towards approximate methods and numeric computing—the
finesse of the computation, adapted to the hardware of the digital computers [MacTutor,].

e symbolic computation in themodern sense, as opposed to the numeric computation, is merely
a few dozen years old: various sources state either [Kahrimanian, , Nolan,] or [Birch and
Swinnerton-Dyer,] as emerging publications on this topic. We generally use the terms ‘symbolic
computation’ and ‘computer algebra’ as synonyms, for the fine difference between these concepts see,
e.g., [Watt,]. Symbolic computing is computationally very intensive not only because of the
symbolic representation of data, but also because of somenegative effects, e.g., intermediate expression
swell [Tobey, , von zur Gathen and Gerhard,]. ese facts motivate the development of
parallel computer algebra systems. We will focus on parallel programming languages in Chapter .
Here we discuss the (sequential) features of a language for symbolic computation. is chapter will
provide the programming language foundation of this thesis.

We chose Haskell for our implementation of the algorithms of computer algebra. It is a statically
typed lazy functional programming language [Peyton-Jones,]. We will see below which features
of Haskell make it especially suitable for our tasks. e first section discusses the problems, an efficient
implementation of a computer algebra system needs to solve. e remaining part of this chapter is
organised as follows. Section . discusses the language unity concept. Section . explains the type
problems, connectedwith algebraic domain construction. Section . provides an example of symbolic

8 Chapter . Programming Languages And Symbolic Computation

computing with Haskell. It emphasises the importance of laziness. Section . concludes the chapter.
Wewill discuss the details connectedwith the implementation of parallel algorithms in the next chapter.
We assume a good knowledge of Haskell [Peyton-Jones,], see, e.g., [Doets and van Eijck, ,
Hutton, , O’Sullivan et al.,].

. Symbolic Computation

So, we want to perform a symbolic computation. Systems doing so are called ‘computer algebra sys-
tems’, abbreviated CAS. As we move away from floating point arithmetic (and overflowing hardware
integer arithmetic), the first step is an arbitrary precision integer arithmetic. However, the cost of
a single arithmetic operation with such arithmetic is no longer constant—it depends on the length
of the integers. (See Chapter for fast multiplication routines.) e implementations of arbitrary
precision integers include the GNU multiprecision library [Granlund and Swox,] and the CLN
library [Haible and Kreckel,]. Also noteworthy is the NTL [Shoup,], which, focusing on
number theory, begins with implementing the foundations for it. An increasing number of modern
programming languages, includingHaskell, provide access to an implementation of arbitrary precision
integers [Peyton-Jones, , van Rossum, , Flanagan andMatsumoto, , Odersky et al.,].
We can take arbitrary precision integers for granted in these languages. Haskell with its approach to
polymorphism is especially convenient. In Haskell the arbitrary precision integers are called Integer,
as opposed to the hardware integer type Int. We can use the usual arithmetic operations’ signs:

f :: Integer → Integer
f x = 10^10000 + x

In the GHC implementation ofHaskell the Integer type is implementedwith the GNUmultiprecision
library.

In Haskell we can easily manipulate mathematical objects in a manner quite conventional to a
mathematician. To give an example, we can define the factorial as product [1..n], which maps very
well to the usual mathematical notation.

Beyond integers. However, arbitrary precision integers are just a first step to symbolic computing.
We require an implementation of fractions, which can be accomplished quite simply using pairs of ar-
bitrary precision integers. Still this aspect is interesting, see the aforementioned packages for elaborate
implementation.

To give an example, one of the important questions, arising from a traditional implementation
of fractions, is ‘when do we reduce?’ Recall, a fraction a/b is called irreducible, when a and b have
no common factors. A fraction ka/kb is not reduced, in other words: not in its lowest terms. e
irreducibility test involves a computation of the greatest common divisor (GCD), which is quite costly
to perform aer each arithmetic operation. On the other hand, not reduced fractions are larger, so
further arithmetic operations would be more expensive.

But there is a larger problem. We need to represent irrational values in our system. is issue is not
present in floating point arithmetic, as it simply uses approximations. e key solution comes from
algebra and is well known: it is called adjunction. For the sake of it we switch from rationals to rings
of polynomials over rationals, as we will see below.

Example (Adjunction). We want to adjunct
√
2 to Q. e result is written formally as Q(

√
2). e

technical side is that we compute from now on in Q ×Q, where for the second component similar rules
apply, as for the imaginary part of C. For instance, (a +

√
2b) ⋅ (c +

√
2d) = (ac + 2bd ,

√
2(bc + ad)).

A classic example for adjunction is C, which is in fact R(
√
−1). For the generic adjunction to

be feasible on a computer, factor rings modulo the ideal, generated by specific polynomials, are used.
ese polynomials have roots, which are exactly the values to adjunct, and these polynomials are ir-
reducible¹. So, if we want to represent Q(

√
2), we use in fact Q[x]/⟨x2 − 2⟩. In Section .. we will

¹For the definition of irreducible polynomials see Definition A. on page in the Appendix or any algebra book.

.. Language Unity 9

see more on how to work with such polynomials. Such an approach accounts for the infamous RootOf
expressions in computations, using CAS.

We consider polynomials (as well as other mathematical structures) over an arbitrary field F. So,
F could be Q(

√
2), but we actually do not care, as we simply construct F[x] over it. is is one of

the meanings of symbolic computation: we abstract from the representation of base elements of our
structures. is is our principal approach throughout the thesis. For the sake of completeness, the
other meaning is the possibility to introduce symbols. We do not discuss the latter side of symbolic
computing in detail. Our approach, elaborated below, provides these features for free.

As we have indicated before, symbolic computations take more resources into account than nu-
meric ones. is lies partially in the nature of the algorithms used. Partially, the data representation
is at fault. If we work inQ[x]/⟨ f ⟩ with an irreducible polynomial f of degree n, then we have up to n
times more work, as compared to a computation directly in Q. A parallelisation can provide capacity
to deal with such an increasing workload. We will see in Chapter how to implement adjunction in
Haskell.

Other caveats. But even an efficient implementation of Q is not a silver bullet! Some algorithms,
like naive polynomial euclidean algorithm, Gauß elimination, or Buchberger’s algorithm, suffer from
so-called intermediate expression swell [Tobey, , von zur Gathen and Gerhard, , Brickenstein,
]. is means that the intermediate expressions grow very fast. is growth is stimulated by the
fact that small-valued fractions might still be large expressions. For instance,

9999999999
10000000000

is a very small fraction, near to 1. However its representation is quite large.
ere are a fewworkarounds. We can divide them into two approaches. Firstly, we can use another

arithmetic. is is a quite generic technique, Chapter elaborates on our approach, the residue-based
arithmetic. Further possible methods include some other residue-based approaches, arbitrary pre-
cision floating point numbers [Priest,], and continued fractions [Perron, , Khinchin,].
While all residue classes pursue the same goal with likely methods, which method is better is a vast
topic for research. However, any residue arithmetic requires an upper bound on the final result. e
two other approaches are unfortunately unsuitable here. Arbitrary precision floating point number
systems should be prescaled to a desired size. An expert is needed to choose the required size. ere is
some work on adaptive, self-scaling arbitrary-size floating point arithmetic [Shewchuk,], but in
practise problems with rounding in the hardware floating point numbers can arise. As for continued
fractions, they have very suitable properties for representing rational values and even approximations
to real values. But actually computing with continued fractions is a rather hard task.

Secondly, in some cases, e.g., in a polynomial euclidean algorithm, we do not particularly need
exact representation of all coefficients of intermediate polynomials, an approach pioneered by Lehmer
[]. Methods using a similar idea belong to the area of symbolic-numeric computing. Great success
has been achieved, e.g., in the acceleration of the LLL algorithm [Koy and Schnorr, , Nguyen and
Stehlé, , Stehlé,]. We do not elaborate on this approach here.

Symbolic algorithms. Another feature our target programming language should support is an ability
to express generic symbolic algorithms. To give an example, an implementation of polynomials R[x]
should work fine, regardless of which base unique factorisation domain R is currently used. We will
see in Chapter how Haskell’s type system, especially type classes, help to implement symbolic com-
putation.

. Language Unity

In this section we generally follow [Lobachev and Loogen,]. e problems the programmer of a
computer algebra system (CAS) needs to solve are hard [Cohen, , von zur Gathen and Gerhard,

10 Chapter . Programming Languages And Symbolic Computation

language
internal external

implementation interaction
efficient comfortable
compiled interpreted

static dynamic

Table .: Two languages of a CAS.

, Grabmeier et al., , Ribenboim, , Levandovskyy,]. For that, an expressive program-
ming language with high-level concepts is desired. But the actual situation with programming lan-
guages of a CAS is more difficult. A CAS is a large piece of soware, and it is implemented efficiently
in a particular programming language. We call this language an internal language of the system. It is
desired to be fast, which comes not without a price. However, the users of the system would like to
program. Even more, since the users want to express mathematics in their programs, they would be
happy to find matrices, polynomials, symbolic integration etc. predefined. By ‘predefined’ we mean
here either in a standard library or as a primitive. It is not important for us, which one. For these reas-
ons, a second, external or interface language is introduced. e internal language should be safe and
fast, we imply it has a good compiler and a static type system. e external language should be able
to embrace all the mathematics the user may want to express. It seems desirable to choose a dynamic
language. It will be embedded into the ‘actual’ CAS implementation.

e external language needs to express the whole spectre of mathematical structures and their
relations. e drawbacks include:

• Some low-level features, e.g., file access, might be missing in the external language.

• e external (interpreted, dynamic) language might be orders of magnitude slower than the
internal (compiled, statically typed) one.

• Two possibilities exist for the implementation of the external language.

– It is implemented in the internal language. In this case we need to implement support for
all the features of the interface language in the efficient, but low-level internal one. ink
of implementing LISP in C as a by-project! Our aim is not to write a compiler or an inter-
preter.

– eother option is to take an off-the-shelf embeddable language, like Groovy [Barclay and
Savage,] or any other small dynamically typed language, like Python [van Rossum,
] or Ruby [omas et al., , Flanagan and Matsumoto,].

In fact, Python is used as glue between the programs in SAGE [Stein and Joyner, , Stein et al.,].
For both approaches towards the implementation of an external language, we need to provide access
to the core functionality, implemented in the internal language, to the external language programmers,
cf. R [Ihaka and Gentleman, , R Development Core Team,], where the internal language is C
and the external one is a Scheme-like language. is is less of an issue. But it makes impossible for
the user to ‘look into’ and to modify some core functionality: at some point the correct answer on
the question ‘how is that defined?’ becomes ‘it is a hook to a function in a bundled internal language
library.’ e requirements to both languages are briefly sketched in Table ..

Fortunately, there is a solution. An interesting approach was done by the developers of GiNaC
[Bauer et al.,]. is system is written in C++ and has C++ as its interface language.

is is exactly the approach we aim to implement. is way, not a computer algebra system, but
rather a computer algebra library emerges. In otherwords, we do not create a new systemwith required
features, both programming-language-wise and computer-algebra-wise, but rather extend a given pro-
gramming language by computer algebra features. In this work we focus on algorithms. Hence, we

.. Dependent Typing 11

Language C Python Haskell

Efficient ✓ ✓
Compiled ✓ ? ✓

Interpreted ✓ ✓
High-level ✓ ✓

ADT ✓ ? ✓
HOF ? ? ✓

Statically typed ✓ ✓
Type inference ✓

Table .: Features of CAS languages in the mainstream.

would include in our library some types and functions for expressing certain computer algebra al-
gorithms. We consider the types only as far as needed for the algorithm implementation. To give an
example, we would implement a type for a univariate polynomial over another, given type. But we
would not implement a type for an arbitrary skew field.

Getting back to GiNaC, its implementers had to overcome a rather large problem. e C++ lan-
guage is a compiled one. But a typical CAS interaction is not only a batch job for some finely written
code execution! It is also a long interactive session for finding the particular fine code for a given prob-
lem. Can GiNaC be used for that? e answer is yes. Although a C++ interpreter exists, the library
implementers chose another way: GiNaC provides its own interactive interface. It is not complete, but
it is usable. Are we back at external language design, despite all our efforts? No!

e conclusion we draw from the GiNaC case is: the desired implementation language should
possess both a compiler for efficient execution of batch jobs and an interpreter for interactive pro-
gramming sessions. Having these and adding the CAS-as-a-library idea, we obtain the language unity
concept, elaborated in [Lobachev and Loogen,]. is paper pushes the idea further: this com-
mon language for both implementation and interaction of the CAS library should be a statically typed
functional language, cf. Table .. e latter compares C [ISO/IEC :], Python [van Rossum,
] and Haskell [Peyton-Jones,]. e question mark in the table means that some approach
exists, but it is not a mainstream implementation. Further, ADT stands for algebraic data types, and
HOF stands for higher-order functions. We consider such features essential for a CAS development.
Let us discuss the table in more detail. Results on efficiency of various languages’ implementations
and on programmer’s productivity are available in, e.g., [Hudak and Jones, , Fulgham and Gouy,
]. We are not aware of a full Python compiler which would produce machine code. All approaches
known to us focus on just-in-time compilation. A mature interpreter for Haskell is GHCi, further
implementations exist. ere are some approaches to higher-order functions in Python, but they are
not the main focus of the language. Similarly, it is possible to use functional pointers in C to repres-
ent higher-order functions, but we would refrain from such dangerous constructs. is is a common
industry practise [Hatton,]. C is statically typed, but it has no type inference.

Another benefit of a CAS library is the availability of language constructs for the user: name bind-
ing in the interface language provides the symbol manipulation for free. We will see in following,
how we can implement the symbolic computation, i.e., an abstraction from the representation of base
elements.

. Dependent Typing

ere is a known problem with expressing algebra in a typed functional language. If we define a separ-
ate type for each kind of algebraical structure, then we promptly find out that the type of some further
algebraical structure depends on its properties. Or, in programming language terms: the type depends
on the properties of the value of this very type.

12 Chapter . Programming Languages And Symbolic Computation

Example .. Suppose we have some n ∈ N and build a residue ring Z/n. e notation is n = ⟨n⟩ = nZ
for an ideal n, generated by n. We cannot state if the ring is a field or not, without examining the fact
whether n is prime.

However, in a Haskell definition of residue rings:

residueRing :: Ring → Ideal → Ring
residueField :: Ring → Ideal → Field

the second definition is wrong. As not every residue ring is a field, thematter whether it is one, depends
on the properties of a specific value of Ideal.

Such problems were described in the works of Serge Mechveliani [Mechveliani, , a,b].
One possible solution is dependent typing. But as we focus on algorithms and their parallelisation, this
problem is not acute for us. We do not actually want to represent the hierarchy of algebra constructs,
but to implement some algorithms!

A full-grown implementation should rather use a dependently typed parallel functional language.
However, in our prototype we resort to a Hindley–Milner typed (parallel) functional language. (Aer
J. Roger Hindley, * and Robin Milner (Arthur John Robin Gorell Milner), *.., †...)
See [Hindley, , Milner, , Damas and Milner,] for the Hindley–Milner type inference
algorithm. e only approach to a parallel dependently typed language known to us is parallel Aldor
[Gautier and Mannhart, , Maza et al.,].

. An Example: Laziness

Why is laziness important in a programming language for symbolic computation? A lazy, non-eager
evaluating programming language can be used to represent mathematical objects in a more natural
manner, see [Karczmarczuk, , Hinze,]. We will see in the course of this work how lazy
semantics can be used to express both computer algebra algorithms and parallelisation in a more easy
manner. For an example of the latter see Chapter .

In this section we will present a very elegant ‘toy’ example for lazy evaluation in a mathematical
context. Further cases will be presented in the course of this work.

Power series. Closely following [McIlroy, ,], we present some operations on power series
encoded in Haskell. We define power series as an infinite list of coefficients. e required basics are in
Figure .. It defines the Num and Fractional instances for (infinite) lists. We reiterate, we assume the
reader knows Haskell.

Having these basics we can easily write Haskell code for some basic calculus operations, like deriv-
ation and integration.

deriv :: (Num a) ⇒ [a] → [a]
deriv (f:fs) = helper (∗) fs 1
deriv _ = []
integral :: (Fractional a) ⇒ [a] → [a]
integral fs = 0 : (helper (/) fs 1)

helper :: Num a ⇒ (t → a → b) → [t] → a → [b]
helper op (g:gs) n = g‘op‘n : (helper op gs (n+1))
helper _ _ _ = []

Note, helper is a higher-order function. As soon as we have integration, we can define the series
expansion of the exponential function.

-- exponential function
expx :: [Rational]
expx = 1 + (integral expx)

.. An Example: Laziness 13

default (Integer, Rational, Double)
infixl 7 .∗
(.∗) :: (Num a) ⇒ a → [a] → [a]
x .∗ (y:ys) = x∗y : x.∗ys
_ .∗ _ = []

instance Num a ⇒ Num [a] where
(+) = zipWith (+) -- all lists are infinite
(-) = zipWith (-)
(x:xs) ∗ g@(y:ys) = x∗y : (x.∗ys + xs∗g)
_ ∗ _ = []
fromInteger x = (fromIntegral x) : repeat 0

instance Fractional a ⇒ Fractional [a] where
(0:xs) / (0:ys) = xs/ys
(x:xs) / (y:ys) = let q = x/y

in q : (xs - q.∗ys)/(y:ys)
_ / _ = []

Figure .: Some initial code for encoding power series in Haskell. We base our presentation on [McIlroy,
,].

We can also easily define some recursive number sequences, like Catalan numbers. Note the arbitrary
precision integers.

catalan :: [Integer]
catalan = 1 : catalan^2

Mutually recursive definitions are also not a problem: we define sine and cosine expansions in a very
concise manner.

sinx, cosx :: [Rational]
sinx = integral cosx
cosx = 1 - (integral sinx)

Of course, we cannot compute the complete series in a finite time, but these potentially infinite,
mutually recursive and complex definitions result in the correct output—without a failure. We merely
need to request some, but not all coefficients of the power series. Note, that the same definition of
power series was used both for integers and rational numbers. is is the ad-hoc polymorphism. We
will discuss it later, in Chapter .

We can verify the correctness of McIlroy’s approach with the QuickCheck library. e definition
of the test for the definition of cosine with the well-known identity sin2 x + cos2 x = 1 is below.

test :: Int → Bool
test n = let cs = take n $ sqrt $ 1 - sinx^2

in cs == take n cosx

Powering roots of unity. Another example of laziness in our main codebase is the generation of
the powers of roots of unity in Chapter . Let us not bother now, what exactly is a primitive root of
unity. Let us assume, it is already defined as w somewhere in our program. en we can generate
all powers of it with ws = map (w ^) [0..]. is corresponds well with the mathematical notation
ω = [ω0, . . . ,ωn] for some n ∈ N. In the contrast to the latter, we denote all powers of ω. But indeed
only the values really required in the subsequent computation will be generated. So, if we need only
n/2 powers of ω, we will generate exactly that many. No action is required to save work.

14 Chapter . Programming Languages And Symbolic Computation

Conclusions. We can model some advanced mathematical structures in Haskell with ease and grace.
We do not use power series in the further text, but the second example is a clear part of our work. We
rate laziness as one of the most important Haskell’s features. Lobachev and Loogen [] presented
further examples and compared the speed of Haskell and C++ in one of the case studies.

. Conclusions and Outlook

Haskell is very suitable for implementing computer algebra algorithms. Our ‘language unity’ approach
tells us we should use Haskell as both implementation and interface language of a computer algebra
system. We conclude that build-in arbitrary precision integers and lazy evaluation can be very useful
for implementations of symbolic algorithms. We have seen how easy it is to define differentiation
and integration in terms of infinite power series in Haskell. One more feature we will use in the next
chapters for the implementation of computer algebra algorithms is the ad-hoc polymorphism. Has-
kell is a very expressive language, so we can use the abstraction techniques for a generic programming
approach. One of themost important features of Haskell are higher-order functions. e functions are
first class citizens in Haskell. We will use higher-order functions to represent algorithmic skeletons. In
multiple aspects Haskell is a very ‘mathematical’ language. As mentioned above, list comprehension
syntax inHaskell has an almost one-to-one correspondence with the set notation inmathematics. is
is of a benefit for our implementation. We will consider the parallel lazy functional language Eden in
the next chapter.

C

PARALLEL PROGRAMMING WITH EDEN

e tale is old as the Eden Tree—
as new as the new-cut tooth.

Rudyard Kipling, e Conundrum of
the Workshops

A
 we have seen in the previous chapter, we need to use a statically typed functional program-
ming language. We aim for a parallel computer algebra implementation, so we also need
a support for parallelism. Section . has shown that laziness is of benefit to express math-
ematics in a programming language. Wewill see in this thesis that laziness is also of benefit

to represent parallelisation concisely. In the following, we use a parallel lazy functional language with
explicit process creation. Such a language, based on Haskell, is under development in Marburg and
Madrid and is called Eden [Loogen et al.,]. With it we can focus on the development of the al-
gorithmic skeletons for computer algebra algorithms, which is the actual subject of this thesis. Our
choice of Eden is influenced by the following features:

• Eden is a language with explicit parallelisation. us we will always have exact control of what
is exactly executed in parallel [Loogen et al.,].

• Eden has a large skeleton library with sophisticated skeletons, implemented in Eden itself [Loo-
gen et al., , Eden Skeletons,].

• ere is a possibility of dynamic communication in Eden [Breitinger and Loogen, , Berthold
and Loogen, , Dieterle et al., b].

• Eden features futures [Dieterle et al., b] andprocess network construction tools [Horstmeyer
and Loogen,].

• Eden performs well both on distributed memory machines and on shared memory multicores,
see e.g., [Berthold et al., a].

• It is easy to express high-level parallelism in Eden [Loogen et al., , Berthold and Loogen,
, Berthold et al., b].

ere are multiple approaches to a parallel Haskell. We chose Eden as it gives us the most control
of the parallelisation, but without bothering us with unneeded, low-level details, in contrast to Has-
kell+MPI. We will present alternative approaches to parallel Haskell in Section ...

Structure of this chapter. In Section ., we describe Eden and determine its position in terms of
classifications, which we will present below. enwe review existing approaches to parallel computing
in the context of Haskell programming language in Section ... We describe the process model of
Eden and an important extension of the language in Sections ..–... In Section .. we review
the drawbacks and benefits of lazy evaluation in a parallel setting. Section . presents a survey of
existing algorithmic skeletons implemented in Eden. Some helper functions for list manipulation are
also defined there. Further, Section . introduces the Eden TraceViewer and the whole concept of
tracing, whereas Section . discusses hardware, conventions and approaches we use to measure the
parallel execution time of our programs. Section . concludes the chapter.

We present two taxonomies of parallel processing next, Flynn’s and Foster’s approaches. We will
apply them to Eden and other parallel Haskells next.

16 Chapter . Parallel Programming With Eden

Instruction
single multiple

Data single SISD MISD
multiple SIMD MIMD

Table .: e Flynn taxonomy.

Flynn taxonomy. eclassic taxonomyof parallel computing by Flynndefines thematrix of single/multiple
‘instructions’ on separate nodes and of single/multiple data streams [Flynn,]. ese are abbre-
viated, e.g., ‘single instruction, multiple data’ becomes ‘SIMD’. e Flynn taxonomy results in four
possible combinations, as shown in Table . [Grama et al.,]. e classic sequential computing is
SISD. e ‘vector’ machines realised the SIMD principle. Independent computers working on differ-
ent data with various methods obey the MIMD scheme.

e extension of the taxonomy considers not the particular hardware instructions, but rather the
complete program codes. An example would be SPMD.

PCAM Methodology. Foster [] defines four different stages of the development of an efficient
parallel algorithm. ese stages are noted aer their first letters as PCAM: partitioning, communica-
tion, agglomeration and mapping.

e partitioning stage consists of domain decomposition and functional decomposition and des-
ignates separate tasks for the parallel processing. ere are some recommendations on the number of
tasks (e.g., at least an order of magnitude more than processing elements), granularity of tasks, scalab-
ility of the partition. In the communication stage locality and structure of the communication are
considered. For instance, we might consider reordering the data so that one-to-one communications
happen more oen between neighbour processing elements (PEs). Furthermore, it is important that
one-to-many (many-to-one) schemes do not exceed the bottleneck of the single sender (receiver). An-
other point of consideration is dynamic communication. Here the communication channels are not
established beforehand, but are created while the computation is already in progress. Finally, asyn-
chronous communication is possible. Foster [] underlines the importance of it in a distributed
memory setting. Agglomeration stands for merging small tasks from the partitioning stage to larger
tasks. An important aspect of agglomeration is to merge interdependent tasks together and to reduce
the need in communication. en, mapping designates where each task has to be executed. In this
phase the tasks are assigned to processing elements, it is so called ‘process placement’. e optimalmap-
ping problem is NP-complete [Bokhari,], but there are some specialised heuristics and strategies
for particular cases. One of the approaches to mapping are various methods of load balancing, see,
e.g., [Tantawi and Towsley, , Foster, , Kwok and Ahmad, a,b]. e load balancing meth-
ods include both some partitioning approaches, like graph partitioning and round-robin balancing,
and task scheduling approaches, like various master-worker schemes, including more sophisticated
hierarchical and distributed master-worker implementations [Hamdi and Lee, , Shao et al., ,
Shao, , Aida et al., , Grama et al.,]. Eden-based master-worker schemes include [Peña
and Rubio, , Loogen et al., , Priebe, , Berthold et al., , Dieterle et al., a].

Language classification. We distinguish between the work done by the compiler or by the runtime
system and the work done by the programmer. In Table . we show classification of parallel languages
based on PCAM. We show a dash (–) if a stage is completed by a compiler or a runtime system (RTS).
We show the letter if an appropriate stage has to be done manually.

. Eden as Haskell Extension

Commonly developed at Philipps-Universität Marburg and Universidad Complutense de Madrid, the
lazy parallel functional language Eden [Loogen et al.,] is a programming language with an explicit

.. Eden as Haskell Extension 17

Language Implicit Semi-explicit ‘Control’ Explicit

Approach Data Parallel Annotations Process control Full
Stages P PCA PCAM

Table .: Classification of parallel languages.

process instantiation but implicit communication.
e classification of Eden aer the extended Flynn taxonomy is SPMD. In the PCAMclassification,

Eden is PCA. Basing on these classifications, we consider Eden to be a ‘control’ parallel language. As
we shall see in following sections, we have explicit process control and an option for explicit commu-
nication. In contrast, GpH [Trinder et al.,] is an annotation-based language. We discuss details
and further approaches in the next section. We assume the knowledge of Haskell. Still, we will detail
on usage of library functions and important utilisations of laziness in the following.

Eden has been implemented as an extension of the Haskell compiler GHC. e extensions include
minor modifications of the parser for dynamic channels (see below), a few additional ‘ways’ of com-
pilation and a special parallel runtime. e parallelism is organised as follows. e runtime provides
special parallel primitives [Berthold and Loogen, a], mostly implemented as function calls to an
underlying parallel middleware. Currently MPI [Snir et al., , MPI,] and PVM [Sunderam,
, PVM,] are used. An option to use direct memory copy is in work [Pickenbrock,]. e
mentioned primitives form a basis for higher-level language constructs [Berthold,]. We aim to
use some low-level skeletons in the higher-level ones, cf. ‘implementation skeletons’ [Klusik et al.,].
As we regard Eden from the application programmer’s point of view, it suffices to give denotational
overview of higher-level Eden constructs.

Various aspects of the Eden semantics have been studied in, e.g., [Breitinger et al., , Hidalgo-
Herrero and Ortega-Mallén, , , Sánchez-Gil et al.,].

.. Flavours of Parallel Haskells

Pure functional languages are seen as quite a tempting base for a parallel language. e reason for
this lies in the fact that the order of reductions is irrelevant in a pure functional language. For ex-
ample, given two functions f and g, if a function f neither consumes output of the function g nor
vice versa, then the applications of these two functions can be evaluated—reduced to head normal
form—simultaneously. As Haskell is a mature pure functional language, quite a few attempts have
been made for a parallel Haskell. An overview is in [Trinder et al.,]. A seemingly abandoned
pioneer is H [Aditya et al., , Nikhil and Arvind,]. At roughly the same time Haskell+MPI
was researched [Breitinger et al., ,]. A recent development is [Astapov et al.,]. e desire
to explicitly control the process creation resulted in Eden, one of the first publications was [Breitinger
and Loogen,], the standard reference is [Loogen et al.,]. Eden has been designed as a distrib-
uted memory language; however a threaded simulation is available [Breitinger et al.,]. Even more,
we found that the standard, distributed memory implementation of Eden performs surprisingly well
on the multicores [Berthold et al., a]. A version using directly communicating OS processes on
multicores is being developed [Pickenbrock,]. Eden is implemented basing on GHC, the Glasgow
Haskell compiler.

Quite a different approach to parallelism is the implicit process control. It falls under the P
 category of the PCAM classification. In Haskell this approach is implemented in GpH language
[Trinder et al.,]. It carries out parallelism with evaluation strategies and annotation combinators
[Trinder et al., a]. Twodifferent implementations exist for the languageGpH.GpHGUM[Trinder
et al., b, b,] is a virtual shared heap implementation for the distributedmemorymachines,
it is a fork of GHC. Multicore Haskell [Marlow et al.,] is implemented as an SMP language on
top of GHC. Both Multicore Haskell and Eden threaded simulation [Breitinger et al.,] utilise
for their implementation the same concurrency primitives of GHC—the Concurrent Haskell [Peyton-
Jones et al.,]. At the same time, Eden and GpHGUM share a part of their code base in the

18 Chapter . Parallel Programming With Eden

implementation of a parallel runtime system [Berthold,]. However, the explicit process control of
Eden shows its benefits in comparison with both implementations of GpH [Loidl et al., , Berthold
et al., a].

Recent developments include the Par monad for deterministic parallelism [Marlow et al.,]
and Cloud Haskell [Epstein et al.,]. e latter is quite similar to Erlang [Armstrong,]. We
discussed Par briefly in Chapter .

A completely different approach is Data Parallel Haskell [Chakravarty et al.,]. It implements
support for distributed arrays and utilises a special transformation layer to flatten nested data parallel
loops. It this sense it is similar to NESL [Blelloch and Greiner, , Blelloch,].

.. Eden Processes

e parallelism model in Eden is implemented with processes. e latter are executed on remote ma-
chines, thus carrying out parallelism. Before a process can be executed, it needs to be defined. For the
sake of this the following mechanism is introduced. e process abstraction in Eden is similar to the
lambda abstraction from the lambda calculus [Church, , Barendregt,]. We can define a pro-
cess abstraction and subsequently instantiate it with some parameters on another processing element
(PE). Process abstraction is a mould from which multiple ‘actual’ processes can be obtained.

We define a process abstractionwith a constructor function process of type (a → b) → Process
a b. Given a function f :: a → b the call of process f results in a special type Process of kind
∗ → ∗. us, f from above, captured in a process abstraction, has the type Process a b. Let us call
this particular processes definition p.

When needed to instantiate—create—a predefined process with some input data, we use the ‘hash
operator’ #. Having a process abstraction p of type Process a b and input data x of type a, we do
the following: p # x. is expression creates a new process, which computes the result of application
of f :: a → b (see above) to the input data x, producing the same result as f x would produce. For
x :: a holds that p # x is of type b. e input is communicated to the computing process and the
output is communicated back to the parent implicitly. edata is evaluated to the reduced normal form
prior to communication. See Section .. for a discussion of evaluation strategies. e application
programmer does not have to do anything for this communication to happen. One could say that # is
the $! operator with a side effect of a parallel application. Because of the evaluation of data to be sent,
is a strict operator.

Example . (Parallel binomial coefficients). We compute the binomial coefficients

(n
k
) = n!

k!(n − k)!
, where n! =

n
∏
i=1

i .

We spark three processes for subsequent computations of the factorial. is is not the most efficient way
to compute binomial coefficients, but we aim to demonstrate Eden constructs. e sequential implement-
ation is easy.

fac :: Integer → Integer
fac n = product [1..n]

binomSeq :: Integer → Integer → Integer
binomSeq n k = (fac n) ‘div‘ ((fac k) ∗ (fac (n-k)))

For the parallelisation, we define the process abstraction

facProc :: Process Integer Integer
facProc = process fac

Using it, we can rewrite binomSeq in a parallel manner. We create particular instances of the process
abstraction—the processes.

binomPar :: Integer → Integer → Integer
binomPar n k = (facProc # n) ‘div‘ ((facProc # k) ∗ (facProc # (n-k)))

.. Eden as Haskell Extension 19

Note that we have instantiated the single facProc process abstraction with three input values, result-
ing in three processes created. e input and output communication is transparent.

In the current implementation the # operator is implemented with the function instantiateAt. It
has the type Int → Process a b → a → IO b. e additional integer argument provides a possib-
ility to specify the placing of a process—the number of the PE the process should be created on. e
default placing is local round-robin: move to next PE every time; if it is not possible, go to the first one.
A wrapper instantiate is defined with the default placing.

Example .. Imagine we have PEs. We have processes to create. We are already running on the
first PE in a ‘master’ process. In a round-robin manner the new processes will be created on the following
PEs: , , , , , , , .

Further, the result of the instantiation will be an expression of type IO b, because process creation
is a side effect captured in the IO monad. e current implementation makes at the end just b out of it
with a simple and crude unsafePerformIO call.

.. Explicit Communication

e above approach enables us to create process trees, but not arbitrary process graphs. Two child pro-
cesses cannot communicate directly, they are forced to talk via their common predecessor. However,
such ‘relaying’ is not nice. We have an increased communication overhead leading to a major slow-
down. A good example is a naive map-transpose-map, cf. Section ... Eden has multiple solutions
to this problem. All of them are based on creating a direct communication line between two child
processes. Hence, we effectively make a process tree to a process graph. ese approaches differ in
usability and implementation level. e following newer approach towards explicit communication is
implemented using an older one, so we need to introduce it first.

In order to connect two processes, we need to create a communication channel between them. is
is a quite common approach in distributed computing. e child processes are already connected via
implicit channels with their parents, such channels are already open when a child begins working. But
it would be too costly to create in advance further channels for an all-to-all communication, especially
if not all of them are required and if we have many processes. So, the programmer tells the system,
she needs a channel between two particular processes and this channel will be created dynamically.
Breitinger and Loogen [] have introduced dynamic communication channels to Eden. e static
communication channels are essentially the same channels created automatically by the system at the
time of process creation.

e channels in Eden are typed, essentially they have a type ‘channel for type a’. We can create
a channel to communicate channels for type a. Arbitrary nesting of such ‘higher-order channels’ is
allowed. Channels are valid only for one-to-one communication. While using channels, a convention
is important that restricts a channel to be used only once. With multiple communications over one
channel the referential transparency would be broken immediately! An exception to this rule is an
optimisation for list communication: a list is sent in a stream, where the same channel is reused for
all list elements. However, this is an under-the-hood optimisation: at the receiving end the list is
reconstructed incrementally. We elaborate on streams on page . Using dynamic channels directly is
quite challenging.

Still, let us regard the direct communication channels inmore detail. We follow [Loogen et al., ,
Berthold,]. e aforementioned type for ‘channel of type a’ is ChanName a. e two functions

new :: Trans a ⇒ (ChanName a → a → b) → b
parfill :: Trans a ⇒ ChanName a → a → b → b

are used in the context of dynamic channels. With new (λchanName chanValue → res) a channel
handle chanName is created, “via which the values chanValue will eventually be received in the future”
[Loogen et al.,]. e chanName is the channel handle, we also call it ‘channel name’. e pro forma

20 Chapter . Parallel Programming With Eden

result of the whole computation is res. Next, parfill chanName res1 res2 results in following. Be-
fore res2 is evaluated, res1 is concurrently received via chanName and evaluated to reduced normal
form. e formal final result is res2. As an optimisation, we define a list version of parfill.

multifill :: Trans x ⇒ [ChanName x] → [x] → b → b
multifill [] _ b = b
multifill _ [] b = b
multifill (c:cs) (x:xs) b = parfill c x (multifill cs xs b)

e communication is established for each channel name in the cs list. is function is used in
Chapter .

.. Making Communication Implicit: Remote Data

One of the known approaches to communicating data between the processes is the concept of futures.
A handle is used, it is a placeholder for an object to be computed, which is introduced in the receiver
process. e latter can operate with it as with a normal object as long as the receiver does not need to
look inside. As soon as the sender process computes the actual value for the object, the handle can be
replaced with the actual object without any significant difference for the receiver [Halstead Jr.,].

In the context of the Eden supporting library, we can use a channel for transmitting channels as
a future. We call it remote data. When we need the content of the handle, we use the remote data to
request a new channel. is channel will transmit the desired value as soon as it will be computed. e
details are presented in [Dieterle et al., b]. A similar approach was developed independently by
Alt and Gorlatch in [Alt and Gorlatch, , , Alt,].

e important goal of the remote data is skeleton composition [Dieterle et al., b]. If we use only
remote data based input and output values, we can leave the data distributed across the PEs. is way
the next skeleton will be able to pick the data off from where is now lies. us, we can simply use the
usual composition combinator ○ to connect skeletons. e data will be passed around automatically.

From the application programmer’s view, remote data is a type RD a with two mutually inverse
functions fetch and release. e function fetch of type RD a → a is used to obtain the data from
the handle. However, from the denotational view it just corresponds to stripping the constructor. We
create a handle to existing data, ‘releasing’ it into the remote data world with release. is function
has the type a → RD a. From the denotational view it is just ‘packing’ the data into a constructor,
but in fact a channel for transmitting channels for data of a given type a is created. In other words,
it holds fetch ○ release = id of type RD a → RD a and release ○ fetch = id :: a → a. e
functions fetchAll and releaseAll are optimised analogues of fetch and release for the lists of
remote data objects. We will use remote data in Chapters and .

Example .. e function liftRD converts a given function f to remote data.

liftRD :: (Trans a, Trans b) ⇒ (a → b) → RD a → RD b
liftRD f = release ○ f ○ fetch

e input is firstly fetched from the remote data, then the parameter function f is applied. e result
becomes remote data with the release function.

.. Demand and Evaluation Control

So, wouldn’t a Haskell robot just sit
there and be lazy?

A sceptic on functional reactive
programming quoted in

http://www.haskell.org/frob/

Haskell is defined as a lazy programming language, expressions are evaluated only if required. An
optimisation step of any mature compiler of a lazy language is the so-called strictness analysis, when

http://www.haskell.org/frob/

.. Eden as Haskell Extension 21

subexpressions that might be required to be evaluated in the program run are identified. e compiler
can then discard everything which is surely not evaluated. e actual GHC implementation imposes
Haskell as a demand-driven language: expressions are evaluated at themoment when a demand on the
result of the evaluation is present. A demand on an expression, depending on some other expression,
will issue a demand on both expressions. To give a specific example: the output of the expression on
the display forces a demand on the expression.

e need of a demand is seen as an obstacle for parallelism. If no expressions are evaluated be-
fore they are needed, then no parallelism will emerge. Hence, most parallel extensions for functional
languages with demand-driven evaluation create artificial demand in expressions dealing with parallel-
ism. GpH [Trinder et al., a, b,], for instance, utilises demand- and precedence controlling
combinators. e sequential precedence controlling combinator pseq is also used in Eden and other,
even non-parallel Haskell implementations. We describe them below.

Demand control in GpH. e GpH uses so-called evaluation strategies, the annotations of the depth
and precedence of evaluation [Trinder et al., a]. e actual interfaces are subject of research, see,
e.g., [Marlow et al.,]. GpH uses the evaluation strategies and two precedence combinators pseq
and par to describe both sequential precedence of evaluation and parallel evaluation.

• x ‘pseq‘ y will execute x and return y.

• x ‘par‘ y will do the same in parallel.

e actual evaluation strategies are:

• r0 is a strategy for no evaluation.

• rwhnf is a strategy for reduction to weak-head normal form. We evaluate ‘one level’ of depth.

• ‘spine’ is a traverse strategy for evaluating all constructors, but none of the constructor paramet-
ers. It is oen used for lists. In this case it evaluates all the Cons constructors, but none of the
list elements.

• rdeepseq is a strategy for reduced normal form. It leads to the complete evaluation. Such beha-
viour was known as rnf strategy, the actual relation between the two is:

rdeepseq a = rnf a ‘pseq‘ a

Common examples are:

• rnf x ‘pseq‘ x, forcing the evaluation of x and returning it.

• putStrLn ”working” ‘pseq‘ largeWork.

As we see, we can use the precedence combinator pseq and evaluation strategies for controlling
program execution also in absence of parallelism. Exactly these features belong to the regular Haskell
programmer’s repertoire and are used for demand control in Eden.

e need for demand control in Eden skeletons is motivated by the wish to enforce evaluation of a
particular subexpression before it is evaluated in the case of default demand control. Such fine-tuning
yields better performance, but is a rather non-trivial task. For example, in a skeleton computing and
then communicating some results, it might not be wise to create communication channels on demand
when the results are already computed. Instead, early preparation steps for the communication will
ensure immediate transmission of the results as soon as they are computed.

22 Chapter . Parallel Programming With Eden

-- a stream processing implementation
unshuffle :: Int → [a] → [[a]]
unshuffle p xs = [takeEach p (drop i xs) ∣ i ∈ [0..p-1]]

takeEach :: Int → [a] → [a]
takeEach n [] = []
takeEach n (x:xs) = x : takeEach n (drop (n-1) xs)

shuffle :: [[a]] → [a]
shuffle = concat ○ transpose

Figure .: Source code for shuffle and unshuffle.

. Skeletons Survey

eEden application library hasmultiple algorithmic skeletons [Cole,] defined. e skeletons are
implemented in Eden as higher-order functions, viz. [Galán et al., , Michaelson et al., , Peña
and Rubio, , Klusik et al., , Loogen et al.,]. Only selected skeletons are shortly presented
here, we elaborate on them as needed. We can classify these into a few categories. Map-like skeletons
are presented in Section .. on page , divide and conquer skeletons can be found in Section ..
on page , and iteration skeletons are in Section .. on page . We base our presentation on the
current state of the Eden skeleton library [Eden Skeletons,]; however, we have modified some
definitions for the sake of better presentation. We need to regard commonly used helper functions
first.

.. Helper Functions

Here we define some functions we will use throughout the whole thesis. In general, we use func-
tions from Prelude and other standard GHC libraries like Data.List with little additional descrip-
tion. However, we annotate the type of each library function used. By simply saying ‘foo is a library
function’ we refer to the standard library Prelude.

Example .. e library function map of type (a → b) → [a] → [b] applies a given function to each
element of a given list.

For functions defined as a part of Eden’s standard library, including skeletons, we choose a different
approach. We list here the definitions we will need at several points in the thesis.

List distribution. A very common task is to distribute a list (of length n) equally among p PEs in a
round-robin manner, with n ≫ p. We use two complementary functions shuffle and unshuffle for
this purpose. e implementation is in Figure .. e function drop k xs of type Int → [a] → [a
] omits the first k elements of the list xs and returns the result. As the name says, the library function
transpose of type [[a]] → [[a]], available from the Data.List library, transposes the nested list:
the i elements of inner lists of the input become the i inner list of the output. Figure . gives an
intuition. e function concat of type [[a]] → [a] flattens a nested list to an ordinary one.

Combined, the function unshuffle takes an integer and a list, and produces a list of lists in a
round-robin manner. e outer list has as many entries as the integer parameter states, let it be n. e
usual value of n is the number of processing elements. e inner lists consist of elements of the input
list. e first element of the input list is the first element of the first inner list, the second element of
the input list is the first element of the second inner list, and so on. Finally, the n element of the
input list is the first element of the n inner list and the n + 1 element of the input list is the second
element of the first inner list. To give an example: unshuffle 2 [1..6] is [[1,3,5],[2,4,6]] and

.. Skeletons Survey 23

.............

Figure .: A scheme for transpose.

....... …......

…

.

…

. ….

…

.

1 PE

. 2ⁿ PE.

3 PE

Figure .: A scheme for unshuffle for PEs.

unshuffle 3 [1..7] returns [[1,4,7],[2,5],[3,6]]. is behaviour is sketched in Figure .. e
function shuffle does the converse and builds the original list from the list of lists.

Streams. e implementation in Figure . is a bit different as one may deduce from its description.
Normally one works with finite, completely existing lists. However, this is not the case here. As the
transformation in unshuffle is used to distribute tasks to PEs (more on it in Section ..), we need to
create new tasks as soon as first elements of the inner lists are available. ismeans also that unshuffle
begins producing the output before the end of the input list is available. Such functions also work for
infinite lists. We call functions fulfilling the above property stream processing functions, cf. [Wray and
Fairbairn,]. Not all functions have this property. An example of a non-streamprocessing function
is length from the standard library. e latter function has the type [a] → Int.

All the transmissible types in Eden, i.e., types which can be communicated to othermachines, must
be instances of the Trans type class. e latter and its standard instance are shown in Figure .. As
Eden semantics forces the evaluation of data before sending, the Trans type class can be derived only
for instances of NFData, i.e., the types which can be evaluated to the reduced head normal form.

e more in-depth background of using stream processing functions is that Eden communicates
lists as streams. Before the list arrives completely, it is not clear how long it is and whether it is finite.
However, a stream processing function can already begin working on the already received elements
instead of waiting for the list end. e streaming behaviour for lists is defined in the Trans instance for
lists, viz. the same Figure .. It is possible to define a similar transfer strategy for arbitrary datatypes
by stating a custom Trans instance for them.

e unshuffle function is oen used to distribute tasks to PEs, thus it is important to implement it
as a streamprocessing function. is is the reason for the implementation of unshuffle as in Figure ..

Liing and chunking. In some circumstances the communication of lists as streams is not desired.
emajor reason not to want list streaming is when the lists are very large. As each list element is trans-
mitted separately, the communication overhead is very large in this case. ere are two approaches to
disable streaming at the application level.

e first one disables streaming completely. e default configuration is to send only lists as
streams. A constructor of some arbitrary type with no custom Trans instance is sent as one message.
So, the essence of liing is to put the actual data into such a type.

data L a = L { fromL :: a }

We wrap the data into the type L before sending. When the data is received, we strip the constructor L
with the access function fromL.

24 Chapter . Parallel Programming With Eden

-- the Trans type class and its default implementation
class NFData a ⇒ Trans a where

write :: a → IO ()
write x = rdeepseq x ‘pseq‘ sendData Data x

createComm :: IO (ChanName a, a)
createComm = do (cx,x) ← createC

return (Comm (sendVia cx), x)

-- the instance for lists
instance (Trans a) ⇒ Trans [a] where

write l@[] = sendData Data l
write (x:xs) = (write’ x) » write xs

where write’ x = rdeepseq x ‘pseq‘ sendData Stream x

Figure .: e Trans type class, its default instance and its instance for lists. is is the Eden system
code not intended to be modified by an application programmer.

chunk :: Int -- ^ length of a single chunk
→ [a] -- ^ list to be split
→ [[a]] -- ^ list of chunks

chunk _ [] = []
chunk n xs = ys : chunk n zs

where (ys, zs) = splitAt n xs

unchunk :: [[a]] -- ^ list of chunks
→ [a] -- ^ restored list

unchunk = concat

-- it holds: unchunk ○ chunk n = id

Figure .: Functions chunk and unchunk.

However, it might not be a good thing to disable streaming completely. Regard the previous use
case of a very long list. In this case, we still want the receiver side to start processing before the whole
list arrives. We merely do not want to send the list element-wise. us, we need to reduce the amount
of streaming, but not to disable it completely. is is what our second approach does. It relies on the
fact that only outer lists are streamed in the default Eden configuration. So, if we want to stream not
single elements, but portions of a list, we merely need to pack them into the transmission of the outer
list as lists. is is called list chunking. e fine-tuning is achieved by specifying the chunking size—the
maximal length of the inner list. Best such length is determined experimentally. For the code of chunk
and its inverse function unchunk see Figure ..

Notably, for a particular class of functions on lists, it is possible to define the higher-order func-
tion applyChunk, displayed in Figure .. is function receives an integer for the chunking length,
a function on lists, and an input list. e input list is chunked into pieces of given length, forming a
list of lists. e function from the second parameter is applied to each piece. Aerwards unchunk is
applied to the list of lists, forming a list. We aim to describe all f such that for all positive n and any
lists xs the call of applyChunk n f xs is equivalent to f xs. All such functions f in question can be
expressed with concat ○ map g for some g :: a → b. Note that, e.g., functions based on the reduce
combinator cannot be expressed in the above manner. For such functions applyChunk cannot be used
without modifications. A similar approach is the macro function from [Klusik et al.,], which led
to an elegant formulation of the farm skeleton. See the next section for the latter.

.. Skeletons Survey 25

applyChunk :: Int → ([a] → [b]) → [a] → [b]
applyChunk n f xs = unchunk $ map f $ chunk n xs

Figure .: e function applyChunk.

spawn :: (Trans a, Trans b)
⇒ [a → b] -- ^ list of worker functions
→ [a] -- ^ task list
→ [b] -- ^ result list

spawn fs xs = unsafePerformIO $ zipWithM instantiate (map process fs) xs

type Map a b = (a → b) -- ^ worker function
→ [a] -- ^ task list
→ [b] -- ^ result list

parMap :: (Trans a, Trans b) ⇒ Map a b
parMap f xs = spawn (repeat f) xs

Figure .: Implementation of parMap.

.. Map and Friends

Several of our skeletons have a type signature similar to that of a map. e most simple one is a parMap.
It has exactly the map signature—up to the Trans context. So, let, as in Example .,

type Map a b = (a → b) → [a] → [b]

then we can write both map :: Map a b and parMap :: Trans a b ⇒ Map a b. In the latter imple-
mentation, for the each element of the input list a process is created. is approach is not efficient in
cases with a large quotient of list length to number of PEs. We will use the map-like skeletons through-
out this thesis.

Let us regard parMap in more detail. We define the parallel map with the helper function spawn. It
instantiates a list of functions over the list of input values. is function is defined in Figure .. e
definition includes a monadic version of zipWith, the function zipWithM,

zipWithM :: Monad m ⇒ (a → b → m c) → [a] → [b] → m [c]

from the Control.Monad library. In this case the monad is the IOmonad. en the monad is removed
with the function unsafePerformIO from the System.IO.Unsafe library. e type of this function
is IO a → a. e Eden primitives process :: (a → b) → Process a b and instantiate of type
Process a b → a → IO b are defined in Section .. on page . e current definition of spawn
starts the next process without waiting for the previous process to be instantiated completely. Leaving
this technical issue aside, we can write spawn = zipWith (#).

ere is a version spawnAt (not shown), taking an additional placement list as the first parameter.
e latter list is a list of integers, mapping the consecutive processes onto machine numbers. To give
an example, spawnAt [1, 2, 2, 3] [f, g, h, h] [x, y, z, t] will place processes to compute
f x on the PE , g y and h z on the PE , and h t on the PE .

Now, the parMap accepts two arguments, the function f of type a → b and a task list xs of type a.
parMap supplies spawnwith an infinite list repeat f and the task list. Because of the laziness of Haskell
and because spawn ‘zips’ the two input lists producing the result list with the length of the smaller input
list, the infinite list of worker functions is not evaluated completely. e result of parMap is the list of
the results. e semantic equivalent of parMap f is zipWith (#) (repeat f). We see that—just as
mentioned above—a process is created for each element of the input list. is approach is not efficient
for long lists and few PEs. e next skeleton relaxes this drawback.

26 Chapter . Parallel Programming With Eden

farmBase :: (Trans a, Trans b)
⇒ ([a] → [[a]]) -- ^ input distribution function
→ ([[b]] → [b]) -- ^ result combination function
→ Map a b -- ^ map type signature

farmBase distr comb f tasks = comb $ parMap (map f) $ distr tasks

farm’ :: (Trans a, Trans b)
⇒ Int -- ^ number of child processes
→ Map a b -- ^ map type signature

farm’ n = farmBase (unshuffle n) shuffle

farm :: (Trans a, Trans b) ⇒ Map a b -- compatible to map
farm = farm’ (max 1 (noPe-1))

Figure .: e implementation of farm.

Task farm. A classical approach from parallel computing is a farm [Hey, , Klusik et al., ,
Peña and Rubio,]. We can implement it with a statically task-balanced parallel map: the input
list is divided into sublists, as many as the number of PEs. en the sequential map f for the worker
function f is applied to these sublists locally. is approachworks best if the processing time of separate
elements is the same. For the implementation, a more generic farmBase skeleton is defined. It has the
distribution and the combination functions as parameters. e type of farmBase is more generic than
that of map. Please refer to Figure . for definitions of farmBase and farm. e latter is a drop-in
replacement for the sequential map.

Let us discuss the code in Figure . in more detail. e function farmBase receives two special
functions for input distribution (distr) and result combination (comb). e result of distr is a list
of lists. e outer list is processed in parallel with parMap, which applies map f to the inner list. e
result is combined with comb to a flat list, which is the result of the whole function. Now we instantiate
the farmBase skeleton with the previously introduced functions unshuffle and shuffle. We need to
partially apply unshuffle to the number of child processes n, yielding the type [a] → [[a]]. e
function shuffle has the type [[a]] → [a]. e result is the definition of farm’. Yet the single ad-
ditional integer parameter—the number of processes—can be figured out automatically, this happens
in the definition of farm. As the constant noPe contains the number of PE for the current execution,
we designate one PE as a processor for the master process and take care to have at least one worker
by writing max 1 (noPe-1). We have arrived at the definition of farm, which has the same type as
map—up to the Trans context, namely farm :: Trans a b ⇒ Map a b.

Direct mapping. An interesting consequence of Eden’s remote evaluation semantics is the ‘direct
mapping’ trick. e data in Eden is to be evaluated to reduced normal form before transmission.
However, the process function, i.e., the argument of process is not evaluated, but sent to the remote
side ‘as it is’. is allows to send unevaluated data to the remote process in the process abstraction.
Assuming we want to send some value, let it be x, unevaluated. We define a process process (const
x), in this case const :: a → () → a, and instantiate it with (). In this case x will be evaluated

remotely and sent back to the main process in its reduced normal form. e evaluation will happen as
a part of the ‘usual’ communication of data back to the main process.

Of course, the most frequent usage of the ‘direct mapping’ method is to supply a working function
(let it be wf) with data, without evaluating the data first. Assume, wf :: a → b → c and let bigData
of type a be the input of wfwhich we do not want to evaluate on the sender side. en we define a new
function

wf’ :: () → b → c
wf’ () y = wf bigData y

.. Skeletons Survey 27

ssfBase :: forall a b. (Trans a, Trans b)
⇒ ([a] → [[a]]) -- ^ input distribution function
→ ([[b]] → [b]) -- ^ result combination function
→ Map a b -- ^ map signature

ssfBase distribute combine f xs
= combine (spawn [pf (tasks i) ∣ i ∈ [0..n-1]] (replicate n ()))

where tasks i = taskss!!i
taskss = distribute xs
n = length taskss
pf :: (Trans a, Trans b) ⇒ [a] → (() → [b])
pf x = (λ_ → map f x)

ssf :: (Trans a, Trans b) ⇒ Map a b -- pure map signature
ssf = ssfBase (unshuffle noPe) shuffle -- partial application

-- a version, which does not co-locate a task with master
ssf’ :: (Trans a, Trans b) ⇒ Map a b -- pure map signature
ssf’ = ssfBase (unshuffle (max 1 (noPe-1))) shuffle -- partial application

Figure .: e implementation of the self service farm.

..

workpool

.

distributed

.

master-worker

.

flat

.

distr./coll.

.

hierarchical

.

w. pushing

.

w. fishing

.

w. stealing

Figure .: A classification of workpools.

If we nowdefine a processwith function wf’, the value of bigDatawill not be evaluated before transmis-
sion. It is crucial that bigData is not already evaluated, as in this case not the instruction for generating
bigData—its unevaluated form, but the evaluated form of bigData is transmitted.

Using thismethod, we can build a farm versionwhere theworker processes extract their tasks from
unevaluated total task pool. We call it a ‘self service’ farm or ssf. An implementation of ssf has been
sketched in [Klusik et al., , Loogen et al.,]. e list of tasks is sent unevaluated to each worker.
It is usually more efficient for large amount of input data. We show our variant in Figure .. We place
one worker task also at the first, ‘master’ machine: the number of workers is noPe, which differs from
the farm implementation above. We have defined ssf’ to mimic the default task placement of the
farm skeleton.

Further, note the forall annotation in the type of ssfBase. It allows us to write the type of the pf
helper function, whilst pf is not a top level function. Formally, it is an existential quantification of type
variables a and b. e ∀ quantifier is implied by the type system. By putting a further ∀ in front of the
type, we reverse the quantification, so the ∃ quantifier ensues. us, the types a and b are unique in
the type of ssfBase and all underlying type annotations, i.e., in the type of pf.

e self service farm emulates data input from a network drive shared by all the processing ele-
ments. If evaluating the data is not costly, but transmitting is, the ssf is an approximation to the
behaviour of the system with initially distributed input.

Workpool scheme, an overview. e dynamically task-balanced parallel map is an example of the
master-worker computation scheme, the more generic name is workpool. e cost of processing the
separate elements may be different. Hence it is better to do the task balancing at the execution time

28 Chapter . Parallel Programming With Eden

in this case [Foster, , Grama et al.,]. Approaches to an implementation of a workpool either
designate a master process which distributes and collects tasks or use a distributed scheme.

Let us regard the first approach first, it is called a master-worker scheme. Grama et al. [] call
it ‘centralised’. Further names are ‘master-slave’ and ‘manager-worker’. If we have a single master and
all other processes are workers, it is called a flat master-worker scheme. Such scheme is the simplest
master-worker implementation, cf. Figure . for a classification. More complicated versions include
hierarchical master-worker schemes and a splitting of a master in a ‘distributor’ and ‘receiver’. e first
approach uses a hierarchy of masters instead of a single master. An Eden implementation is presented
in [Priebe, , Berthold et al.,]. e second approach uses a single master process for distrib-
uting the tasks, but another process for collecting the results. Hence, it is called a distributor/collector
workpool. Such an approach has been directly implemented in [Dieterle,]; however, it can be
also straightforwardly implemented using the remote data concept [Dieterle et al., b]. Another
orthogonal classification of master-worker schemes is the scheduling type [Grama et al.,]. If a
worker asks the master for a single task, such behaviour is called ‘self-scheduling’. If a worker reports
a shortage on tasks and obtains a bunch of tasks from the master, it is called ‘chunk scheduling’. List
chunking from Section .. can be used to implement chunk scheduling. An option similar to the
scheduling issues is the prefetch. It is the amount of tasks initially distributed to the workers. So for
prefetch value of k each worker needs to process k tasks before it launches its first task request.

As for the distributed workpools, such schemes do not have a designatedmaster. Because the work-
ers process their tasks at different pace, one worker might have more tasks le than another. Hence,
in the distributed workpool setting the problem of load balancing ensues. Various approaches to solve
this problem include work pushing, work fishing, and work stealing. e common idea of all these
methods is to distribute the remaining tasks to the workers more equally. A knowledge about the
availability of the tasks at the neighbour worker processes is required for all these approaches. Let us
call a worker ‘idle’ when it has few tasks or none le. We call a worker ‘busy’ if it is working on a task
and has enough tasks le. Work pushing is a strategy when a busy worker pushes a few not yet pro-
cessed tasks to another worker that seems to have fewer tasks, i.e., is idle. Work fishing is when an idle
worker chooses randomly a busy worker to give the former its largest non-processed task, cf. [Janjic
and Hammond,]. Work stealing is when an idle worker steals not yet processed tasks from a busy
worker [Blumofe and Leiserson,]. Because of the dynamic load balancing, workpool is not de-
terministic per se. e reason is that the precedence in which the tasks are processed is determined
at the runtime, a minor change in the execution time of a single task can affect the distribution of all
further tasks. Eden implementation of a distributed workpool has been presented in [Dieterle, ,
Dieterle et al., a].

A further landmark in the workpool classification is the possibility of dynamic task creation. A
problem arises for a working function not of the type a → b, but of the type a → (b, [a]). In other
words, the working function might produce new tasks, but not necessarily does so in each run. is
issue is tackled by workpools with dynamic task creation. Some further questions arise for the latter,
e.g., how the task pool is transformed, given the old task pool and freshly created tasks. Possible
strategies include appending new tasks to the beginning or the the end of the list of old tasks. Dynamic
task creation is possible for both master-worker-based (for Eden implementations see [Priebe, ,
, Brown and Hammond,]) and distributed workpools (viz. [Dieterle et al., a]). In the
latter setting, the problem of distributing tasks to workers becomes even more sharp in the context of
dynamic task creation.

Simple workpool implementations. Below we will regard three implementations of a simple master-
worker workpool, with flat hierarchy and no dynamic task creation. e difference between the first
two versions lies in the way they deal with non-determinism, while the third one ignores this problem.
We show the first skeleton, workpoolSorted, and a core implementation of a workpool, workpoolAux,
in Figure .. e second skeleton, called workpoolSortedNonBlock, is in Figure .. e third
option: workpool’ is in Figure .. e same figure aliases the default workpool implementation to
the workpoolSorted skeleton. We use it when we generally need a deterministic workpool, without a

.. Skeletons Survey 29

workpoolAux :: (Trans t, Trans r)
⇒ Int -- ^ number of child processes (workers)
→ Int -- ^ prefetch of tasks (for workers)
→ (t → r) -- ^ worker function
→ [t] -- ^ inputs
→ IO ([Int], [[Int]], [[r]]) -- ^ non-combined output

-- result format: (input distribution, task positions, results)
-- input distribution format: input i is in i-th position in the list,
-- task positions format: element i of result-sub-list j is
-- in the input list at (poss!!j)!!i
workpoolAux np prefetch worker tasks
= return (reqs, poss, fromWorkers)
where fromWorkers = parMap (map worker) taskss

(taskss, poss) = distributeWithPos np reqs tasks
-- generate only as many reqs as there are tasks
reqs = map snd $ zip tasks $

initialReqs ++ newReqs
initialReqs = concat (replicate prefetch [0..np-1])
newReqs = merge $ mkPids fromWorkers

-- the sorting, blocking variant
workpoolSorted :: (Trans a, Trans b)

⇒ Int -- ^ number of workers
→ Int -- ^ prefetch of tasks (for workers)
→ Map a b

workpoolSorted np prefetch f tasks = res
where (_, poss, ress) = unsafePerformIO $ workpoolAux np prefetch f tasks

res = map snd $ mergeByPos ress’
ress’ = map (uncurry zip) (zip poss ress)

Figure .: A simple, sorting, blocking workpool, based on workpoolAux.

workpoolSortedNonBlock :: (Trans a, Trans b)
⇒ Int -- ^ number of child processes (workers)
→ Int -- ^ prefetch of tasks (for workers)
→ Map a b

workpoolSortedNonBlock np prefetch f tasks = orderBy fromWorkers reqs
where (reqs, _ ,fromWorkers) = unsafePerformIO $ workpoolAux np prefetch f tasks

Figure .: e base, non-sorting workpoolAux implementation and a simple, sorting, non-blocking
workpool. Helper functions are in Figure ..

-- this is the default workpool
workpool :: (Trans a, Trans b) ⇒ Int → Int → Map a b
workpool = workpoolSorted

-- this is the non-sorting workpool with usual interface
workpool’ :: (Trans a, Trans b) ⇒ Int → Int → Map a b
workpool’ = concat $ (λ(_, _, x) → x) $ unsafePerformIO $ workpoolAux

Figure .: e top-level interfaces for the workpools.

30 Chapter . Parallel Programming With Eden

-- helper functions for workpoolAux
-- task distribution according to worker requests
distributeWithPos :: Int -- ^number of workers

→ [Int] -- ^ request stream (IDs from 0 to n-1)
→ [t] -- ^ task list
→ ([[t]], [[Int]]) -- ^ result

-- result format: (task positions in original list, task distribution),
-- each inner list for one worker.
distributeWithPos np reqs tasks
= unzip [unzip (taskList reqs tasks [0..] n) ∣ n ∈ [0..np-1]]
where taskList (r:rs) (t:ts) (tag:tags) pe

∣ pe == r = (t,tag):(taskList rs ts tags pe)
∣ otherwise = taskList rs ts tags pe

taskList _ _ _ _ = []

-- replace each element of the inner list with the id of its inner list.
mkPids :: [[r]] -- ^ workpool output lists

→ [[Int]] -- ^ IDs
mkPids rss = [[i ∣ j ∈ rs] ∣ (i,rs) ∈ zip [0..] rss]

-- helper functions for workpoolSorted
-- join sorted lists into one sorted list, using a binary scheme
mergeByPos :: [[(Int, r)]] → [(Int, r)]
mergeByPos [] = []
mergeByPos [wOut] = wOut
mergeByPos [w1, w2] = merge2ByTag w1 w2
mergeByPos wOuts = merge2ByTag (mergeHalf wOuts) (mergeHalf (tail wOuts))

where mergeHalf = mergeByPos ○ (takeEach 2)

merge2ByTag :: (Ord i) ⇒ [(i, r)] → [(i, r)] → [(i, r)]
merge2ByTag [] w2 = w2
merge2ByTag w1 [] = w1
merge2ByTag w1@(r1@(i,_):w1s) w2@(r2@(j,_):w2s)

∣ i < j = r1: merge2ByTag w1s w2
∣ i > j = r2: merge2ByTag w1 w2s
∣ otherwise = error ”found tags i == j”

-- helper function for workpoolSortedNonBlock
-- order a nested list by a given distribution
orderBy :: Integral idx

⇒ [[r]] -- ^ nested input list
→ [idx] -- ^ distribution
→ [r] -- ^ ordered result list

orderBy rss (r:reqs)
= let (rss1, (rs2:rss2)) = splitAt (fromIntegral r) rss

in (head rs2): orderBy (rss1 ++ ((tail rs2):rss2)) reqs
orderBy _ _ = []

Figure .: Helper functions for the workpool implementations.

.. Skeletons Survey 31

farm ssf workpool
parMap spawn

Eden

Figure .: e map-like skeletons in Eden.

preference in the implementation of sorting. Finally, Figure . shows the helper functions for all of
the above skeletons.

e technical reason for the non-determinism in this workpool implementation lies in the way the
result streams from workers are combined into the final result stream, see the value fromWorkers in
the function workpoolAux. e typical implementation puts an element into the result stream as soon
as it arrives, using the function merge, thus completely destroying the order of elements of the input
list. It is non-deterministic in the order of its results, which is signalled by the IO monadic type of the
skeleton workpoolAux in Figure .. It forms the core of a non-sorting workpool. However, it is quite
easy to make it deterministic. e simplest approach is to ‘tag’ the input data with natural numbers
and then to sort the results by their tags. It will be still non-deterministic in the order in which the
results are computed from the input data, however, the order of resulting elements in the output list
will always correspond to the input elements. us, a ‘sorting workpool’ is a deterministic interface to
the dynamic task balancing. We choose a slightly more complicated approach.

e implementation of workpoolAux relies on functions distributeWithPos and mkPids from
Figure .. e skeleton workpoolAux saves the task positions on the workers. Surely, it is possible
to implement a sorting workpool, which blocks on its output, see workpoolSorted in Figure .. e
helper function mergeByPos is defined in Figure .. e task positions carry enough information
to restore the correct order of the output list. Further, these positions are available locally and do not
need to be communicated. Note that the base implementation of workpoolAux is shared by all three
implementations.

We present two further workpool modifications. Both utilise the workpoolAux core. e first,
workpoolSortedNonBlock, uses the precedence of the tasks to sort the results. e benefit of this ver-
sion versus the simple tagging idea is that the tags do not need to be communicated in both directions.
With this implementation we can access a particular element in the result (provided, it is already com-
puted), even though all other elements are not yet computed. Using this information and a helper
function orderBy (see Figure .), the correct order of the inputs can be recovered. is is the non-
blocking, sorting workpool implementation (workpoolSortedNonBlock), that we show in Figure ..
Note that the efficiency of a non-blockingworkpool is damaged by a not quite effective implementation
of the orderBy function.

e last skeleton, called workpool’, performs an unsafePerformIO call, takes the unsorted nested
list of results from workpoolAux, flattens it, and returns the resulting unsorted list. e sorting is to be
done in the application code. us, this is the non-sorting, non-deterministic workpool. Its user needs
to ensure that the order of the tasks does not matter in the remaining program. We show this ‘adaptor’
skeleton in Figure ..

A hierarchy of the map-like skeletons is shown in Figure .. is figure can be interpreted as
‘building blocks’: the foundation, i.e., Eden primitives, is in the bottom and the map-like skeletons with
task-balancing features are on the top.

.. Divide and Conquer

e divide and conquer scheme can be implemented as an algorithmic skeleton. e generic type of a
divide and conquer skeleton, working from task of type a to result of type b, is

type DC a b = (a → Bool) -- ^ is trivial?
→ (a → b) -- ^ solve
→ (a → [a]) -- ^ divide

32 Chapter . Parallel Programming With Eden

divConSeq_c :: DC a b
divConSeq_c isTrivial solve divide combine x
∣ isTrivial x = solve x
∣ otherwise = combine x $ map self $ divide x
where self = divConSeq_c isTrivial solve divide combine

Figure .: Sequential divide and conquer skeleton.

restriction input
with without

independent subproblems dcA
bounded depth of call tree dcB
fixed tree arity dcC
multiple block recursion dcD
elementwise operations dcE
correspondent communications dcF

Table .: Classification of divide and conquer by [Herrmann,].

class with input without input

dcA quicksort
dcB naive n queens
dcC Karatsuba multiplication schoolbook multiplication
dcD triangular matrix inversion
dcE matrix-vector multiplication

dcF
fast Fourier transform
matrix multiplication

Table .: Examples for the particular divide and conquer classes. We still follow Herrmann [].

→ (a → [b] → b) -- ^ combine
→ a → b -- ^ input and result

e sequential case is quite easy, see Figure .. We will introduce new divide and conquer skeletons
in Chapter .

Classification. A classification of divide and conquer skeletons has been presented in [Herrmann,
]. For example, notice the type DC a b to have the input a in the type of the combine function a
→ [b] → b. It is possible to implement some divide and conquer algorithms without using the

input in the combine function, but a more generic variant requires such a parameter. e classification
follows.

Herrmann [] classifies divide and conquer into six types, from dcA to dcF. Each of them is a
subset of the previous one, e.g., dcD ⊂ dcC holds [Herrmann, , Chapter]. e classification of
divide and conquer schemes and the relations of the introduced divide and conquer classes is presented
in Table .. eir relation is emphasised in Figure .. e classes dcA to dcE are defined for the divide
and conquer with the combine function which requires the original problem. is is designated with
‘with input’ in the table. e ‘with input’ variants aremore powerful than the ‘without input’ case, as the
latter can be simulated with the former. But the class dcF is defined for problems in the ‘without input’
category. In Table . we show examples for divide and conquer classes. e algorithms discussed in
this thesis aremarked bold. e schoolbookmultiplication is notmarked bold, aswe donot implement
it as a divide and conquer instance.

.. Skeletons Survey 33

..dcA. dcB. dcC. dcD. dcE. dcF.

ba
lan

ce
d
ca
ll t

re
e

.

fix
ed

de
gr
ee

of
pr
ob

lem
di
vis

io
n

.

fix
ed

de
gr
ee

of
da

ta
di
vis

io
n

.

ele
m
en

tw
ise

op
er
ati

on
s

.

co
rre

sp
on

de
nt

co
m
m
un

ica
tio

ns

Figure .: Relation of the dcX classes following [Herrmann,].

divConPar :: (Trans a, Trans b)
⇒ Int → DC a b

divConPar d isTrivial divide solve combine x
∣ d ≤ 0 = divConSeq_c isTrivial divide solve combine x
∣ isTrivial x = solve x
∣ otherwise = combine x $ parMap self $ divide x
where self = divConPar (d-1) isTrivial divide solve combine x

Figure .: An adaptation of divide and conquer skeleton with depth control from [Loogen et al.,].

Implementations. For a simple parallel divide and conquer implementation, replace in the sequen-
tial implementation (Figure .) the map with parMap. Such divide and conquer skeleton has been
implemented in [Loogen et al.,]. e source code is presented in Figure .. is variant of the
divide and conquer is not regular, i.e., no fix number of children in each step is assumed. However,
such an approach is not optimal.

We have developed special divide and conquer skeletons for dcC class. Such skeletons are presen-
ted in Chapter . In the same chapter we present alternative approaches for specific dcF applications,
namely the fast Fourier transform and Strassen matrix multiplication.

.. Iteration Skeleton

A further important pattern in the theory of computing, especially in scientific computation, is itera-
tion. For example, a for or awhile loop are extremely frequent patterns in the imperative programming
languages. e purely functional counterpart of this pattern is oen expressed with recursive calls or
with a contraction function, e.g., iterate.

A classical imperative for loop can be implemented in parallel under the following conditions.
Assume the loop is executed n times. If for some positive integer p the loop body can be partitioned
into ⌈n/p⌉ blocks, and in each of these blocks single loop iterations are not depending on each other,
then the loop can be implemented in parallel on p processors. e scheme is very simple and is known
as speculative parallelisation. e first p loop iterations are executed in parallel, then the second p loop
iterations follow, until the ⌈n/p⌉ block of at most p loop iterations concludes. In Chapter we will
consider the case when the computation can be aborted before the loop is over and when the blocks do
not depend of each other—the parallel functional counterpart of a special for loop with a conditional
break.

Consider a more generic case of dynamic task creation. So, not only do we want to abort the loop
at some as-of-now unclear point, but also we would like to introduce further iterations while the loop
is already being executed. is also means a present dependency between the blocks. A sequential im-
perative counterpart is a do–while loop. Let us inspect the requirements in more detail. We would like
to start a few speculative tasks in parallel. As we need to produce more tasks during the computation,

34 Chapter . Parallel Programming With Eden

parWhile :: (Trans local, Trans task, Trans subResult)
⇒ localM → [local] → dataIn → (dataIn → [task])
→ (local → task → (subResult, local))
→ (localM → [subResult] → Either result ([task], localM))
→ result

parWhile lm ls d divide fworker comb = result where
tasks = divide d
outss = parMap (p fworker) (zip ls taskss)
outssComb = zipWith comb lms (transpose’ outss)
(more, ~[end]) = span isRight outssComb
result = fromLeft end
moreTaskssLms = map fromRight more
(moreTaskss, morelms) = unzip moreTaskssLms
taskss = transpose’ (tasks : moreTaskss)
lms = lm : morelms

p :: (local → task → (subResult, local)) → (local, [task]) → [subResult]
p f (local, tasks) = subResults

where results = zipWith f (local : moreLocals) tasks
(subResults, moreLocals) = unzip results

Figure .: e parWhile skeleton from [Loogen et al.,] with minor modifications. e helper
functions are in Figure ..

it is better to have a special function to produce the tasks from a single ‘big task’. We call it divide. A
working function wf to process the tasks is a straightforward requirement. Further we designate the
comb function. It unites the check for termination and the generation of further tasks, possibly using
the divide function for the latter purpose. Combined, the parWhile skeleton emerges, viz. Figure .
with helper functions in Figure .. It has been stated as iterUntil in [Loogen et al.,]. Our
version includes some minor modifications. We define an alternative approach in Chapter .

Let us discuss Figure . in more detail. e skeleton shown there uses the Either type. It is
available in Haskell library Data.Either. It is the sum type of two arbitrary types a and b, holding
either a value of type a or a value of type b.

Example .. Consider a sum type of a string and an integer.

stringOrInt :: Either String Int
stringOrInt ∣ inOneCase = Left ”failure”
stringOrInt ∣ otherwise = Right 42

e value of stringOrInt is either ‘failure’ or ‘’, depending on the value of the boolean expression
inOneCase. It has a different type than intOrString, being, for example, Left 42.

Some helper functions are also available from Data.Either.Unwarp library, we state some of them
in Figure .. Note that in our implementation the ‘getter’ functions are partial: fromRight (Right
42) = 42, but fromRight (Left ”failure”) = �. A further helper function is transpose’. Se-

mantically it is the same list transposition function transpose of type [[a]] → [[a]], as available
from Data.List, but transpose’ is more lazy. Further, the library function span is used.

span :: (a → Bool) → [a] → ([a], [a])

Called with a predicate and a list, it returns a pair of lists. While the predicate holds, the first output
list is filled. If the predicate is once violated, the second list obtains all the remaining elements of the
input list.

.. Eden Tracing 35

transpose’ :: [[a]] → [[a]] -- lazy transpose
transpose’ (xs:xss) = mzipWith (:) xs (transpose’ xss)
transpose’ _ = repeat []

-- lazy zipWith
mzipWith f (x:xs) ~(y:ys) = f x y : mzipWith f xs ys
mzipWith f _ _ = []

isRight :: Either a b → Bool
isRight (Left _) = False
isRight (Right _) = True

fromLeft :: Either a b → a
fromLeft (Left a) = a

fromRight :: Either a b → b
fromRight (Right b) = b

Figure .: Helper functions for Figure ..

. Eden Tracing

For the purpose of evaluation of parallel behaviour, a deep insight in program execution is required.
We would like to know how large the communication overhead is, whether some unneeded blocking
arises, whether all PE are supplied with work, etc. For these purposes, the Eden executables can be
instrumented with specific message output. e latter is called a trace or an activity profile. Aer
program termination, these messages are collected and evaluated. For this, a special program, Eden
TraceViewer, also called EdenTV, has been written. More details are provided in [Berthold and Loogen,
b]. Similar tools for other platforms include [Geimer et al.,] and [Wheeler and ain,].
Here we address the issue of interpreting the resulting diagram.

We call such diagrams trace visualisations. A more insightful term would be ‘visual representation
of a parallel post-mortem activity profile’. e x axis of a trace visualisation represents time. e
y-axis shows PE numbers. e horizontal bars represent Eden processes, multiple processes can be
placed on one PE, but normally only one of them will be executed at once. e colour of the bar
corresponds to the traffic lights. Red stands for blocked—the process is waiting for input or is deferred
from running by other means. Yellow is runnable, a process in this state could be running, but is
not. Typical causes for this include communication in progress and garbage collection. Finally, green
means running. Optionally, communication might be indicated with black arrows from one process
to another. We state such matter explicitly when we include it in our traces. A typical trace picture is
in Figure ..

Let us interpret it! We have here a program execution in . seconds, running on PEs, one
process pro PE. We see that the processes wait quite long for their input. is is due to PE , which
presumably is computing the tasks to distribute. Further, PE has two phases of activity, while PEs –
each have only one. Let the PE be the ‘master’ and all other PEs be ‘workers’. We see here three issues:

• Input data preparation takes too much time. It should be optimised or at least delegated to the
‘worker’ PEs, e.g., with the direct mapping technique.

• e worker tasks do not start concurrently: PEs and exhibit a delay compared with PE and
PE . An input distribution issue might be a reason for this.

• Load balancing is by far not perfect. PE has two activity phases, while other workers have one.
We interpret this as two tasks running on PE . We should either reduce the number of tasks

36 Chapter . Parallel Programming With Eden

Figure .: Example of a trace.

by one, or create a second process on PE . As the master process is idling while it waits for the
workers to be done, a further worker process can be co-located on the PE .

Without tracing, obtaining the above insight would be not trivial.

. Measurement Methodology

Before Philosophy can teach by
Experience, the Philosophy has to be
in readiness, the Experience must be
gathered and intelligibly recorded.

omas Carlyle, On History

We perform a multitude of runtime experiments in this work. ey serve not only the purpose of
verifying that our approach actually works. e actual goal of such experiments is twofold.

• It enables us with a possibility to compare different skeletons, both sharing a similar approach
and based on completely different ideas.

An example of the latter are two different divide and conquer implementations, one based on
direct task placement, and other creatingmany small tasks computed in parallel. An example for
the first goal are two different underlying map-like skeletons for computing the aforementioned
small tasks, say, farm and workpool.

• We can both visualise the program run with EdenTV [Berthold and Loogen, b] and com-
pute speedup and somenumerical qualitymeasures (e.g., serial fraction) of our parallel program,
and hence we can detect and enquire into bottlenecks of our implementation. us we acquire
precious information for the development of better skeletons.

Hardware. Before we go into the details of the measurement methodology, we need to discuss the
hardware platforms our implementations are executed on. We use both SMP and distributed memory
hardware on both bit and bit x architectures. We denote different hardware with shortcuts we
will use in further text when we refer to it.

• e sakania is an SMP Intel Xeon machine with cores running at . GHz of the Faculty of
Mathematics and Computer Science at Philipps-Universität Marburg. e cores are aligned in
two quadcore chips. e system has Gb RAM and runs bit Linux OS. A PE of this ma-
chine is a single core, hence we use sakania as a PE parallel machine. e multicore machine
has almost negligible communication cost. Moving the data from one core to another in this

.. Conclusions 37

setting is merely copying the data in memory. We still need to copy the data because Eden is a
distributed memory language.

Originally our skeletons were designed for distributed memory systems. However, they were
proved to work quite well also for SMP systems. So, in this case we simulate the communication
within a shared memory system, without utilising the fact of having the shared memory. An ad-
vantage is mostly negligible communication time, which was the reason for the poor behaviour
of many distributed memory systems. e benefit of having separate heaps is in natively distrib-
uted garbage collection, which is otherwise a larger issue in a parallel system, see [Berthold et al.,
a, Marlow et al.,].

• e ‘local workstations’ means the workstation cluster of the Faculty of Mathematics and Com-
puter Science at Philipps-UniversitätMarburg. esemachines are dual-coreworkstations, with
 Gb RAM each, interconnected with MBit/s Ethernet. is is a genuinely distributed
memory setting. We have two additional special cases for using these machines which we will
always state separately. One is using double as much PEs as we have machines. In this case we
use both cores as separate PEs. It will be seen on the traces for skeletons of a master-worker
setting that a particular PE has much smaller communication overhead. is will be the second
core of the master machine. e other case is when we deliberately add further slower and faster
machines to the network. is is to mimic different load of the PEs and serves mainly to test the
dynamic load balancing of specific skeletons.

• e ‘Beowulf cluster’ is a Beowulf cluster atHeriot-Watt-University in Edinburgh, UK. It consists
of Intel Pentium SMP processors running at GHz with Mb RAM and a Fast Ethernet
interconnection. e operating system is bit Linux OS.

Methodology. One of the foundations of our performance analysis is execution time measurement.
Unless otherwise stated, we measure the complete execution time of a given program with wall clock.
We perform the measurement five times and use the mean of the obtained values as the actual execu-
tion time in a given setting. If we use some further runtime arguments, e.g., for tuning the memory
allocation, we state it explicitly. We do not elaborate on the usage of the option -qpp for executing
the program on p PEs. Furthermore, we sometimes do not elaborate on the option -qQm for setting
the message buffer to m bytes. We consider this option as rather technical and hence uninteresting in
most cases.

e ‘interesting’ options include -Hk and -Al for setting the initial heap size to k bytes and for
instructing the runtime system to allocate further space in l byte pieces respectively. e correct usage
of these options reduces the execution time of the programs slightly, as less time is spent on garbage
collection (GC). However, abuse of too large values of k leads to increased execution time due to
allocation of in fact unneeded memory. Further, the -Hk option mostly reduces the number of GCs
drastically, but does not really control the time of GCs. In most cases the correct usage of this option
results in few moderately large GCs versus the abundant small GCs in the standard, untuned case.
Depending on memory usage in the program, abuse of the -Hk option may result in a handful of large
GCs. However, these few large GCs typically occupy even more time than numerous small GCs. As
we can see, it is a trade-off in both directions, hence we always annotate the usage of memory-tuning
options in the runtime system. It is possible to use the -t option to let the RTS output the number and
the total duration of garbage collections.

. Conclusions

We presented Eden [Loogen et al.,] and existing algorithmic skeletons [Breitinger et al., ,
Loogen et al., , , Eden Skeletons,]. We included in our presentation a new language
feature [Dieterle et al., b], the map-like skeletons, a simple skeleton for divide and conquer, and
an approach to iterative computation. e classification of divide and conquer skeletons presented aer
Herrmann [] will be used in Chapter . We also presented the EdenTV tracing visualisation tool

38 Chapter . Parallel Programming With Eden

[Berthold and Loogen, b] that would help us analyse our parallel programs. Finally, we devised
the measurement methodology we will adhere to in the following.

C

E ST IMAT ING PARALLEL PERFORMANCE

Je vous reprochais tout à l’heure
d’estimer la perfection des choses par
votre capacité ; et je pourrais vous
accuser ici d’en mesurer la durée sur
celle de vos jours.*

Denis Diderot, Lettre sur les aveugles

M
 for the quality of parallelisation are essential for the systematic evaluation of the
design and implementation of parallel soware. e most simple and wide-used is the
speedup, a measure for how much faster the program runs on p parallel processors com-
pared to the sequential case. However, there are various reasons for good and bad speedup

values. Finding out the possible causes for bad speedups would allow the programmer to detect the
code sequences causing loss in performance. is is the first step towards optimisation. e measure-
ment is repeated with the new parallel version, and the whole approach is iterated until a satisfying
result emerges.

In the context of this thesis, a technique for prediction and generalisation of parallel execution
times is especially useful. We can test our programs only on a limited number of hardware architec-
tures. However, we aim for parallelisation methods which are usable in a broader setting. We want to
find good parallelisation approaches which might be useful on other architectures. We want to detect
bad parallelisations and, possibly, to obtain a hint how to improve them.

We suggest a model for a coarse division of the parallel runtime into ‘good’ and ‘bad’ parts. Con-
trary to the popular display of parallel runtime being the sequential one ‘sped up’ to some factor less
than the number of processing elements, we envision parallel runtime as the sequential ‘work’ distrib-
uted over a number of (uniform) processing elements—the ‘good’ part—plus an additional penalty
term—the ‘bad’ part. is partition is our original concept. e notion of total parallel overhead is
related, but different from our approach. See below for discussion of it.

e first goal of this chapter is accurate prediction of parallel runtimes for new input sizes and
for non-available numbers of processors. Our approach is to measure the sequential work and to
obtain the parallel overhead for a set of sample input sizes or sample numbers of processors. Statistical
techniques are then used to extrapolate and to estimate the values for further input sizes or other
numbers of processors. As the parallel execution time is expressed in terms of the sequential work and
of the parallel overhead, this approach enables the forecast of parallel runtime. Secondly, the estimated
parallel overhead is a measure for the scalability of a given parallel program. It provides insight into
the performance properties of a parallel program. If the ‘bad’ part is increasing, bottlenecks or similar
problems in the code are likely. Hot-spot analysis is not the objective of this chapter.

In this chapter we show the practicality of our approach with two examples: a simple example
program in Eden, and a large-scale C+MPI [ISO/IEC :, MPI,] program. roughout
the thesis further examples in Eden are discussed. e latter programs are parallelised using a skeleton
library. Although our Eden system is used for most of the experiments, our approach is completely
language-independent, as an example in this chapter shows. Our technique is applicable to any parallel
system, ranging from a multicore machine to a supercomputer. e skeletons are also not a must
for program implementation, they merely describe a particular pattern of parallel computation in the
analysed program. is chapter is based on our collaborative work with Rita Loogen [Lobachev and
Loogen, c]. An extended version of this paper is [Lobachev et al.,].

*I reproached you just now with estimating the perfection of things by your own capacity; and I might accuse you here
of measuring its duration by the length of your own days.

40 Chapter . Estimating Parallel Performance

In the following text we firstly consider existing measures for parallel performance in Section .,
most prominent examples are efficiency and serial fraction. Secondly, we present our own model for
a parallel computation in Section .. From it, a further quality measure is later derived. On the basis
of the measurement data from previous program executions, we can estimate the execution time for
larger input sizes or larger amount of parallel processing elements (PEs). Section . explains how
it is done. An example is in Section .. We present another example, this time from a large-scale
simulation, in Section .. We discuss similarities and differences between our approach and the serial
fraction in Section .. Related work for the estimation of parallel runtime is discussed in Section ..
We conclude in Section .. e relevant estimations of further parallel programs are presented in the
corresponding chapters.

. Related Work for Parallel Performance

Speedup and Co. A comprehensive summary of existing approaches is presented in [Kumar and
Gupta, , Grama et al.,], for a more recent overview see [El-Rewini and Abd-El-Barr,].
As mentioned above, the most popular measure for the quality of parallelisation is the speedup. Re-
capitulate, the speedup s(n, p) for task size n on p PE is defined as T(n)/T(n, p). Here T(n) is the
best sequential runtime, and T(n, p) is the parallel execution time on p PE. Ideally, s(n, p) ≥ p holds.
Notice that T(n, p) = T(n)/s(n, p) holds. Efficiency e(n, p) is tightly connected to the notion of
speedup. It is defined as e(n, p) = s(n, p)/p. However, some factors impact the reliability of speedup
[Grama et al.,].

Firstly, superlinear speedup may occur. It is most of the time seen as a non plus ultra result in
parallel computing. Superlinear speedupmight be caused by positive effects of the parallel setting, e.g.,
better cache usage. But, speedup values are not reliable if the sequential program performs badly. is
is the reason for demanding the best sequential implementation in the speedup definition. Naturally,
bad sequential times can cause a superlinear speedup. So, the latter is definitely a reason to rise an
eyebrow. is issue cannot be detected by inspecting the speedup alone, but can be figured out with
the serial fraction defined by Karp and Flatt []. We will discuss it in more detail later, on page .

Secondly, the canonical speedup definition demands the same input size for the sequential and
for the parallel version. However, this is not practicable for large-scale computations. ere are oen
cases when somany data are generated that they barely fit into thememory distributed over numerous
PEs. A sequential execution is plainly not possible in this case. Other supporting issues are, on the one
hand the long execution time of the sequential program if the task size is too large. A constant but pro-
portionally large overhead for too small task size in the parallel case is also a reason for problems with
conventional speedup computation, on the other hand. A method called scaled speedup [Gustafson
et al.,] can be used in such cases. Execution time measured on a sequential machine for smaller
inputs is compared with parallel time for larger inputs. Isoefficiency [Grama et al.,], as the name
suggests, aims to keep the efficiency the same by choosing the appropriate number of PE and size of
input.

Amdahl’s law. e limits of parallelisation are a very old question. How far can one push the parallel
program? Will it scale for a very large number of PE? e theoretic answer to this problem is given by
the Amdahl’s law [Amdahl, , Hill and Marty,]. It states the limits for the execution time of a
parallel program in generic. Amdahl’s law divides such program in two parts: the perfectly parallelis-
able part π < 1, which can be scaled to as many PE as desired, and the serial part 1 − π, which cannot
be divided onto multiple PE. So, the claim of Amdahl’s law is that for p PEs the maximal speedup is

1
1 − π + π/p

.

If we now aim for infinitely many PEs, the maximal speedup tends to be 1/(1− π). In other words: the
size of the serial part 1 − π restrains the overall speedup. Again, an extension of this law similar to the
case with speedup exists. Amdahl’s law fixes the input size for all considered cases. Gustafson []

.. Our View on Parallel Computation 41

relaxes the consequences of the Amdahl’s law if the parallel program operates on arbitrarily large task
sizes, which scale with number of PE.

. Our View on Parallel Computation

We suggest another subdivision of the work in a parallel program. To do so, we need to agree, what
suchwork is. For input size n, letW(n) be the total work of the (sequential) program. Since it is hard to
identify it, we assume that the sequential program does nothing unnecessary. Writing W(n) = T(n),
we identify the sequential work with the sequential execution time.

e common notation for execution time of a program with input size n on p PEs is T(n, p).
We denote this work done with p PEs by W(n, p) and assume that W(n, p) = pT(n, p). In a parallel
execution, the sequential work is distributed over pPEs. Now in a parallel program, running inT(n, p)
time on p processors, more work than W(n) is done. In a parallel execution, the sequential work
is distributed over p PEs. But W(n, p) ≥ W(n)! e distribution causes a total parallel overhead,
denoted here with A(n, p) (cf. [Grama et al.,]). en

W(n, p) =W(n) + A(n, p).

But the total parallel overhead is also distributed over the parallel PEs. Let B(n, p) = A(n, p)/p, we
define the distributed parallel overhead by splitting the total overhead equally onto PEs. is has not
been introduced before. As we prefer to deal with time and not with amount of work, we can divide
the formula for W(n, p) by p, yielding

T(n, p) = T(n)/p + B(n, p). (.)

e point of view on parallel computation, provided by (.), is our contribution. It differs from the
speedup perspective. e latter envisions parallel time as sequential time divided by speedup, which
is typically smaller than number of PE. Our approach defines the parallel time as the sequential time
equally distributed onto full number of PE plus an addition term B(n, p). We call this term a parallel
penalty or a parallel overhead.

Now we have an expression where all values with the exception of the parallel overhead are known
or can be measured. A trivial transformation provides us a formula for the parallel penalty:

B(n, p) = T(n, p) − T(p)/p. (.)

As B(n, p) depends on two parameters, we will investigate the behaviour of B(n, p) depending on one
of its parameters while the other one is fixed.

e distinction between sequential time T(n) and ‘parallel’ time on a single PE, denoted T(n, 1),
is essential for distinguishing between the absolute speedup T(n)/T(n, p) and the relative speedup
T(n, 1)/T(n, p), the latter usually being higher than the former because of the overhead of the par-
allel system on a single PE. Analogously we distinguish between an absolute reference point for our
estimations, using sequential time T(n) and a relative reference point, when T(n, 1) is used. In the lat-
ter case we consider the overhead for the transition from T(n, 1) to T(n, p). Our approach bears—as
everything on this topic—a certain grade of similarity to Amdahl’s law []. Exactly as Amdahl did,
we assume a perfect parallelisation of the computation onto p PE, but consider also the unavoidable
overhead. In a contrast to [Amdahl,], we divide the parallel computation not into Amdahl’s per-
fectly parallel and strictly sequential fractions, but into fractions of the actual parallel computation
and of the parallel overhead. Our next contributions are threefold.

• Estimation of run time. Instead of estimating the execution time of a parallel program directly,
i.e., using several values of T(n, p) for the prediction, we separately find good approximations
to T(n) and B(n, p). Aer the estimation we combine both values per (.) to obtain T(n, p).
We elaborate on this in Section ..

42 Chapter . Estimating Parallel Performance

• Quality measure. We discuss how usable B(n, p) is as a measure of a parallelisation quality of
a given program. We find some similarities to an approach, discussed briefly in Section .. We
consider this side of B(n, p) in full detail in Section ..

• e difference between the real, measured parallel time and a naive, zero-cost assumption of
the perfect distribution of the total work is the parallel overhead. It is a measure of how bad the
load balancing and other issues, like communication overhead, impact the ideal, ‘Amdahlish’
distribution of the total work across p PE. In the following, at few occasions we will deduce the
optimal and non-optimal task balancing configurations theoretically. ese will show a beha-
viour, strikingly corresponding to that of the parallel penalty.

. Estimation

We estimate T(n) and B(n, p). Our aim is to find separate approximations for these two terms,
as T(n) and B(n, p) are of a different nature. In order to do so, we measure several values of T(n)
and B(n, p), then we use statistical techniques on the resulting data sets. We can compute B(n, p)
from T(n, p) per (.). In other words, the parallel overhead per PE follows from the total parallel
runtime for p PEs minus the sequential runtime divided by p. e latter values can be measured or
estimated. Note however, that B(n, p) depends on p.

Statistical methods. We use different methods to predict values of T(n) and B(n, p) for non-meas-
ured input sizes. We could have used straightforward polynomial interpolation, but for better results
we sample more points and use one of the following methods. One approach is the cubic spline in-
terpolation [Birkhoff and de Boor, , Forsythe et al.,]. Splines curves are piecewise polyno-
mials, seamlessly connected. Another method is local polynomial regression fitting, see [Chambers
and Hastie, , Chapter] and [Cleveland, , Cleveland and Devlin,]. We refer to these ap-
proaches using the R function names spline and loess [R Development Core Team,]. Also we use
linear model fitting with orthogonal polynomials constructed from the actual input [Chambers and
Hastie, , Chapter]. We denote this approach with lm(poly). A simple linearmodel fitting is just lm.
Finally mean is not a real method, but the mean of the two best methods w.r.t. the relative error.

e spline method interpolates the measured data points exactly, while the other methods utilise
regression fitting. e latter means that we do not attempt to fit all the input data points, but rather to
capture the ‘trend’. emethod lm tries to fit a straight line, hence it is less appropriate for our purposes.
Its generalisation lm(poly) uses orthogonal polynomials to weaken this drawback. e loess method
is a modern statistical approach to polynomial regression. It is local, so distant data points have little
influence on the shape of the fitted curve. e loess method is similar to spline with respect to this
property.

Method choice. e decision on the best method could be done automatically. Given an ε > 0 and
some existing runtime measurements, we predict a known(!) value with other ones using various
methods.

• First, discard methods producing nonsense results, e.g., time estimation < 0.

• If some of the remainingmethods produces a relative error < ε, wewill pick onewith the smallest
relative error.

• If none of the methods produces a relative error < ε, but the relative error of the mean of the two
nearest methods w.r.t. the actual value is < ε, we will pick the mean.

If the real value is unknown (‘real life’ estimation) and we have to resort to the mean of two
methods, two strategies exist on choosing the best two methods. Both require some ‘training’:
we need to predict a few known values first. en, for predicting an unknown value, we use the
information from the training. Either we pick the mean of the two methods, which produced

.. Example I: Hamming Numbers 43

best results in the training. Or we decide in the training phase on three bestmethods. In the ‘real
life’ estimation we discard the more distant value and compute the mean of the two remaining
values.

• If none of the methods yields a satisfying result, reconsider ε. Make further measurements.
Otherwise fail.

Procedure of estimation. Asmentioned before, both T(n) and B(n, p) are estimated separately. For
each of them, a few values are measured. e values for T(n) can be measured directly. e values for
B(n, p) are computed per (.). For T(n) the aforementioned statistical methods are directly applied
to the data. e result is an estimation T̂(n) for some not measured n. e values of T(n) describe
the total amount of work in the program, depending on n only.

e shape of B(n, p) is the key to rating the parallel performance quality. As this penalty term
depends on both the problem size n and the number p of PEs, it is important that it does not increase for
growing p. Otherwise, the implementation does not scale well. We have two possibilities to estimate
B(n, p). We can look at it with the regard to n with fix p and vice versa. e values of B(n, p) w.r.t. n
represent the overhead of increasing the task size on the same p PE.e shape of B(n, p)w.r.t. p shows
the overhead for scalability of the program for increasing p. Analogously, we write B̂ for an estimation
of B. We always state, estimation w.r.t. which parameter of B we consider.

e estimates T̂(n) and B̂(n, p) w.r.t. n for some not measured n can be combined using (.)
to an estimation T̂(n, p) of the parallel execution time for some not measured input size on known
number of PEs p. We show an example of such estimation in Section .. e estimate B̂(n, p)w.r.t. p
and the measured value T(n) for some known n and not measured p can be combined, again with
(.), to an estimation of parallel run time for some known input size on not measured number of PEs.
Section . shows an example of such estimation.

. Example I: Hamming Numbers

In this example we perform an estimation of parallel run time w.r.t. the task size n. e Hamming
numbers, also known as 5-smooth numbers, form an infinite set of numbers, which divide powers
of 60. In other words these numbers have only 2, 3 and 5 as prime factors. e problem of comput-
ing such numbers is attributed to to Richard Hamming,*.., †... It was popularised by
Dijkstra (Edsger Wybe Dijkstra, *.., †..). Smooth numbers can be elegantly defined in
a functional style, see, e.g., [Dijkstra,]. e infinite list of 5-smooth numbers H is defined with
three rules. Firstly, 1 ∈ H. Secondly, for all elements h ∈ H holds 2h, 3h, 5h are elements of H. irdly,
each element of H occurs only once.

We see that in a lazy programming language it suffices tomultiply existing entries inH by , and ,
resulting in lists 2H, 3H and 5H, and then tomerge these three lists toH. is is exactly what the Eden
source code in Figure . does. It originates from Eden’s test suite. ree multp processes carry out the
multiplication. We introduce an extra merging process sMerge. Summarising, this program creates
process additionally to the master process. is means, that never more than PE are required.

We want to detect suboptimal behaviour using our methods. is will happen in Section .. We
have executed the program in question five times and computed the average of execution times, exactly
as our methodology Section . tells us to. e program was run on sakania. We used no memory
tuning, e.g., we do not tweak initial heap size for our binary.

Prediction. We use the formula (.). We measure the sequential execution times (with absolute
reference point) and parallel execution times on five PE (i.e., T(n, 5)) of the aforementioned program
computing Hamming numbers. We vary the task size n from to Hamming numbers,
starting from the first one. We subsequently compute the values for B(n, p) w.r.t. n. See Table . for
the figures. To be able to reason about our prediction, we use the values with input sizes from to
 as input for our estimation methods. We want to estimate the values at .

44 Chapter . Estimating Parallel Performance

hamming :: [Int]
hamming = 1:

sm (sMerge # ((multp 2) # hamming,
(multp 3) # hamming))

((multp 5) # hamming)

multp :: Int → Process [Int] [Int]
multp n = process (map (∗n))

sMerge:: Process ([Int], [Int]) [Int]
sMerge = process (uncurry sm)

sm :: [Int] → [Int] → [Int]
sm [] ys = ys
sm xs [] = xs
sm (x:xs) (y:ys)

∣ x < y = x : sm xs (y:ys)
∣ x == y = x : sm xs ys
∣ otherwise = y : sm (x:xs) ys

Figure .: Computing Hamming numbers.

n × 1000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T(n) 0.19 0.42 0.59 0.86 1.11 1.38 1.57 1.85 2.00 2.29 2.50 2.79 3.10 3.33 3.64
T(n, 5) 0.13 0.28 0.41 0.59 0.73 0.90 1.09 1.29 1.39 1.58 1.93 2.05 2.35 2.56 2.81

B(n, 5) 0.091 0.19 0.29 0.42 0.51 0.63 0.77 0.92 0.99 1.13 1.43 1.49 1.73 1.89 2.08

Table .: Execution times of Hamming numbers program. Bold values will be estimated.

We use all six available estimation methods for both components of (.), an overview is in Fig-
ure .. e best method for T̂(15000) is loess with 0.13% relative error. Also lm(poly) of degree is
very close, scoring −0.39% relative error. Linear model fitting (lm) is not quite successful, and spline
is the worst method with −7.48% relative error. As for B̂(15000, 5), spline misses completely with
−20.11% relative error. e reason is the curvature between and , which make spline be-
lieve, the values would decrease for increasing n. As for remaining methods, second worst is lm with
−7.61% relative error. Two best methods are again lm(poly) of degree and loess, with 0.57% and 1.48%
relative error. e degrees and of lm(poly) result in 2.31% and 0.91% relative error. If we combine
the both best estimations per (.), we obtain 2.82 seconds as an estimation for T̂(15000, 5). is is
correct up to 0.45% relative error.

. Example II: Lattice-Boltzmann Method

Now we perform an estimation of parallel runtime w.r.t. the number of PE p. We use skeletons here
as an abstract parallelisation paradigm description. e program to be analysed is not required to be
implemented using skeletons, although all our following Eden programs are. To show that ourmethod
is applicable at a supercomputer scale, we discuss the following example.

We consider the lattice-Boltzmann method from fluid flow and mass transport simulation. e
time measurement data in Table . originate from [Khirevich,]. e measurements used here
are conducted from a physical simulation on a supercomputer.

In this case the Jülich BlueGene/Pmachinewas used. It is built using a system-on-a-chip approach

.. Example II: Lattice-Boltzmann Method 45

2000 4000 6000 8000 10000 12000 14000

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

purely sequential time
Input size

T(
n)

observed values
spline
loess
lm(poly) deg.2
lm(poly) deg.3
lm(poly) deg.4
lm

2000 4000 6000 8000 10000 12000 14000

0.
5

1.
0

1.
5

2.
0

absolute reference point
Input size

B
(n
,p
)

observed values
spline
loess
lm(poly) deg.2
lm(poly) deg.3
lm(poly) deg.4
lm

Method spline loess
lm(poly) of degree

lm2 3 4

Rel. err, % T(15 000) −7.479 0.1315 −1.612 −0.3884 1.567 −3.429
B(15 000,5) −20.11 1.475 0.5653 2.307 0.908 −7.608

Figure .: Predicting both components for Hamming numbers. Top: sequential time, middle: parallel
overhead, bottom: relative errors.

46 Chapter . Estimating Parallel Performance

LBM

PE, p 32 768 65 536 98 304 131 072 196 608 262 144 294 912

T(n, p) 16.285 9.99 6.82 6.80 5.284 5.273 3.675

Table .: LBM on a supercomputer, courtesy of [Khirevich,]. e task size n is fixed. e boxed
values will be estimated.

50000 100000 150000 200000 250000 300000

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

PEs

S
pe

ed
up

 *
 3

27
68

observed speedup
linear speedup

Figure .: e speedup plot for LBM.

with quadcore PowerPC chips with GB of RAM as the base. Each core is a bit processor, running
at MHz. So, a single node is a traditional multicore processor. e nodes are assembled into racks
with nodes in each. Up to cores were used for the experiment. e peak performance
of this supercomputer reaches PetaFLOP/s. Jülich Blue Gene/P was the third fastest supercomputer
in the world, when it was ranked in its current configuration for the first time in June . As of
Summer , this supercomputer is ranked [Meuer et al.,].

Overview. e aim of [Khirevich et al., a,b, Khirevich and Daneyko,] was to simulate the
transport processes in porous media, e.g., in the chromatographic separations. Pumped into a long
thin pipe, filled with somematter, what paths does an injected solution follow? e matter is modelled
with spheres. e pumped solution is simulated in two steps: first fluid flow is simulated, subsequently
the actual movement of the injected solution is studied. e simulation consists of several phases:

. Random close-sphere packing and its spatial discretisation. We do not consider this phase.

. Simulation of the fluid flow with lattice-Boltzmann method (LBM). is is the phase we focus
on.

. Simulation of the advective-diffusive mass transport. It is performed with the random-walk
particle tracking method. We also do not discuss this phase here.

e latter two phases clearly dominate the computational complexity [Khirevich and Daneyko,
]. We chose to focus on the LBM phase. Due to the dimensions of the chosen lattice—632×632×
294 912—a one-dimensional decomposition is possible. Basically, the pipe is cut in length and each
‘slice’ is assigned to a PE. e amount of spheres in each slice varies, the maximal difference is 27%.
Hence, we have a data parallel implementation. We identify slices with tasks in a farm.

.. Example II: Lattice-Boltzmann Method 47

PEs, p 32768 65536 98304 131072 196608 262144

B(n, p) 0 1.85 1.39 2.73 2.57 3.24

50000 100000 150000 200000 250000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Input size

B
(n
,p
)

measured values
lm(poly)

Figure .: Computing B(n, p) for LBM. Top: computed values for B. e boxed value will be estimated
on the bottom.

e LBM phase generates the data, used later in the RWPT phase. Basically, the flow of the fluid
around the sphere packing is computed, it is done with sophisticated variants of cellular automata,
cf. [Chen and Doolen,]. We show the speedup curve LBM in Figure ..

e time measurement data for LBM on the Jülich Blue Gene/P supercomputer is presented in
Table .. ese have been taken from [Khirevich,]. e time required for iterations is given.
We assume T(n) in our computations to be T(n, 32 786) ⋅ 32 768. In other words: a perfect speedup
for up to PEs is assumed. is is rather a convenience convention than an assumption: we
could as well ‘downscale’ the PE numbers by dividing them by . It is impossible to obtain the
real sequential time, as the data to be processed does not fit into the memory of a single machine. is
means, we use relative reference point.

Estimation. e task size is fixed, but we can estimate the scalability w.r.t. the PE number p. Note
that we have neither the source code nor a binary version of the program we investigate. All we know
is the scheme used for parallelisation and the time measurements in Table ..

We present the values for B(n, p) w.r.t. p in the top part of Figure .. e lm(poly) method with
polynomials of degree produces the value 3.16 seconds for B(n, 262 144). We present it graphically
in the bottom part of Figure .. Using it and approximating T(n) with 16.285 ⋅ 32 768, we obtain
the estimation for the execution time T̂(n, 262 144) = 5.196 seconds. is estimation is exact up to
the relative error −1.47%. Notably, a direct runtime estimation—an attempt to predict the parallel
time directly from the number of PEs, using the same data, but without using equation (.)—fails.
e all-best relative error for direct estimation is −31%. is shows that our approach is applicable to
large-scale production applications.

48 Chapter . Estimating Parallel Performance

50000 100000 150000 200000 250000 300000

0.
0

1.
5

3.
0

B
(n
,p
)

parallel penalty

50000 100000 150000 200000 250000 3000000e
+0
0

4e
-0
6

PEs

f(n
,p
)

serial fraction

Figure .: Comparing parallel penalty (top), and serial fraction (bottom) for LBM.

PEs, p 32 768 65 536 98 304 131 072 196 608 262 144 294 912

PEs, normed 1 2 3 4 6 8 9
full rounds 9 4 3 2 1 1 1

remaining part 0 1 0 1 3 1 0

total rounds 9 5 3 3 2 2 1
idle in last round 0 1 0 3 3 7 0

slack-off, % 0 50 0 75 50 87.5 0

Table .: Analysing the task distribution in LBM.

. Comparing Serial Fraction and Parallel Penalty

In their work Measuring Parallel Processor Performance Karp and Flatt [] introduced the notion
of serial fraction. Given the parallel time T(n, p) on p PEs and the sequential time T(n), the absolute
speedup is T(n)/T(n, p). e serial fraction is

f (n, p) = T(n, p)/T(n) − 1/p
1 − 1/p

.

Contrary to Karp and Flatt [] we used absolute reference point in the above formula. e serial
fraction should be constant: if it increases, we have a parallelisation resulting in poor speedups. If the
serial fraction decreases, this shows problems with the sequential implementation.

LBM. We compare the complete plots for parallel penalty w.r.t. p and for serial fraction. As our first
case study we use the LBM supercomputer example from above. Figure . visualises both functions.
We see in both cases a decrease at , and PE. Both functions have a maximum at
 PE. As the relative reference point is used, both functions are zero at PE.

To be able to reason on the meaning of the said plots, let us consider the following. We know that
in total tasks are issued. We show the theoretic task distribution over PE in Table .. We
assume here that all tasks need equal time to complete. e first row (‘PEs’) shows the total number
of processing elements. e second row shows the number of PEs, divided by . e third and
fourth rows show appropriately how many times each and every PE becomes a task (‘full rounds’) and
howmany of PEs have further tasks remaining for the last, incomplete round (‘remaining part’). ese
two values originate from the division with remainder of the number of tasks by the number of PEs.
e remaining part is normed by . e total amount of rounds is in the fih row. It includes now
the incomplete last round. e sixth row is the number of free PEs in the incomplete round, normed
by . e last, ‘slack-off ’ row displays the relation of the sixth row to the second row. It shows
the percentage of idle PEs in the last task distribution round. A large figure in this row means poor
task distribution in the last, incomplete round. To give an example, we plot in Figure . the task

.. Comparing Serial Fraction and Parallel Penalty 49

...........

rounds

.

PE
s

Figure .: An example for task distribution. Imagine PEs, running tasks in full rounds. e last
round will have % slack-off.

1 2 3 4 5

1.
0

1.
1

1.
2

1.
3

PEs

S
pe
ed
up

observed speedup
linear speedup

1 2 3 4 5

0.
2

0.
8

B
(n
,p
)

parallel penalty

1 2 3 4 5

0.
65

0.
75

PEs

f(n
,p
) serial fraction

Figure .: Computing the first ten thousand Hamming numbers: the speedup (le), parallel penalty (top
right) and serial fraction (bottom right).

distribution for the normed case: PEs, two full rounds, one remaining part. is means that
slack-off is % in this case.

e theoretical considerations above correspond to Figure .. e twopeaks at and
fit the high percentages of slack-off. e two minima at and correspond to zero slack-
off. e practical values in Figure . at same two points are not zero because of some task imbalance
and communication overhead, which we ignored in our considerations in Table ..

Note that despite the different scala both plots in Figure . look strikingly similar. However it is
not always like this, as the next example shows. e zero slack-off at is also the reason, why we
did not consider this number of PE in our estimation. It has a different nature as PE version.

Hamming numbers. Coming back to the Hamming numbers example of Section ., we want to
compute first ten thousand of them. We use the same program for computing the first n Hamming
numbers as before. It was run on sakania, the usual measurementmethod applies. Absolute reference
point is used. We see in Figure ., le, that the speedup of the program is quite poor. Now for
the actual goal of the example: we consider parallel penalty and serial fraction of the naive program
computing Hamming numbers. e parallel penalty is presented in Figure ., top right. e serial
fraction is depicted in Figure ., bottom right. We see that both plots are increasing in their le parts,
indicating non-perfect parallelisation for smaller number of PEs p. However, the behaviour of the
parallel penalty and of the serial fraction is different between three and five PE. e parallel penalty
function is increasing from to PE and almost constant from to PE. Contrary to that, the serial
fraction is almost constant between and PE, but is decreasing between and PE.

We want to stress that both plots of the parallel penalty and of serial fraction, although bearing
similar meaning, are completely different in their looks. us we cannot think about parallel penalty as

50 Chapter . Estimating Parallel Performance

just of serial fraction, multiplied with some other factor. e parallel penalty describes nicely the task
balancing issues, like ones described in Table .. We will see further examples in the next chapters.

. Related Work on Performance Estimation

Related publications on performance forecasting include the book chapter on skeletons in Eden [Loo-
gen et al.,] and the formal cost model of NESL [Blelloch,]. However, our approach is dif-
ferent. We derive the time and work from time measurements for the runs on different numbers of
PEs, while the skeleton analysis in [Loogen et al.,] is based on latency and message-passing costs.
e NESL complexity model [Blelloch,] takes a ‘bottom-up’ approach, trying to assign cost to
single semantic operations. We look in a ‘top-down’ manner on the total runtime and divide it into
very coarse blocks: the work and the parallel penalty.

An example of the sequential estimation of runtime is [Saavedra and Smith,]. Ipek et al.
[] use neuronal networks to (directly) predict execution times of a multigrid solver. e paper
by Akioka and Muraoka [] focuses on the network load and uses Markov model-based meta-
predictor. In a contrast, we used our decomposition of the parallel execution time in equation (.)
and statistical methods. Kapadia et al. [] found locally weighted polynomial regression definitely
superior than other instance-based learning methods (e.g., nearest neighbour) for the estimation of
parallel execution time of real programs. However, Kapadia et al. [] did not use any decomposition
of the execution time. Further, the number of programexecutions for themachine learning approaches
is quite high: in [Kapadia et al.,], in [Ipek et al.,]. Our approach provided good
results on orders of magnitude less data points: our Eden case study featured data points, each of
them constituted of an average of program runs. e C+MPI case study used even less data points
and still provided successful estimations. Our further estimations, presented in the next chapters also
feature similarly many data points. us, our method can more easily be used in an adaptive runtime
environment, which is future work.

As already mentioned in the previous chapters, skeletal approach to parallelism was introduced in
[Cole,]. Approaches on skeleton-based performance evaluation include [Cole and Hayashi, ,
Benoit et al.,]. Cole and Hayashi [] consider a BSP-like cost model, assigning costs to basic
elements of a parallel program. A similar approach to ours, but more fine-grain and still focusing on
BSP is [Zavanella,]. Beside BSP [Valiant,], models like LogP [Culler et al.,] andmessage
passing models exist. See [Roda et al.,] for a runtime prediction approach for the latter. A rather
theoretical well-investigated performance model is the PRAM model [Fortune and Wyllie,] and
its variants. e classic PRAM model does not consider communication costs.

We do not relate the approach of this chapter to computer algebra algorithms, because it is applic-
able to an arbitrary parallel program.

. Conclusions

We have presented a novel approach for parallel run time estimations. With it we can predict the
execution times of parallel programs in an elegant and concise manner. Our method is different from
previously known approaches. It does not depend on source code analysis or on special semantic
rules. Instead, our method is empowered by computational statistics. We separate estimations for
parallel computation and parallel overhead, hence different forecasting models can be used for each.
is makes sense, given the different nature of these processes, and enables better estimations. We
observed correlations of the parallel penalty with the theoretical values for task balancing.

We will use our technique to predict and evaluate execution times of the example instantiations
of algorithmic skeleton abstractions, developed in this thesis. us we can ensure wider applicability
of our results. In the following we will focus on evaluation of Eden programs. Still, on par with an
Eden example, we included in this chapter an example computed on a peta-scale supercomputer, using
C+MPI. Notably, in all presented cases we managed with relatively few measurement points.

C

PR IMAL IT Y TE ST ING REPEATED COMPUTAT ION

Numero deus impari gaudet.*

Virgil, Eclogues VIII

S
 implementation of parallel repeated computation and the implementation of
probabilistic primality tests is the focus of this chapter. We will see that these two goals
are connected. An imperative way of thinking about the repeated computation is that of
a particular parallel loop. We devise a classification of new and existing skeletons in Sec-

tion .. We develop there amore special approach, which fits exactly to our needs. e desired parallel
behaviour has a well-known functional counterpart: a map-reduce with a possibility of premature ter-
mination. e premature abort part is new. We find some features of the Eden language useful in this
context, as the premature termination is granted for free in our setting. We discuss it in Section ..

Considering the second goal of this chapter, Section . discusses some common issues in the
implementation of the two primality tests. In Sections . and . we implement two sophisticated
algorithms for the primality testing using our approach. Combined, this chapter provides

• A skeleton for parallel repeated computation.

• A toolchain for parallel probabilistic primality testing.

We combine the two tests mentioned above into a single framework. At the end of each implementa-
tion section we provide some measurements and express the performance of this chapter’s approach
quantitatively. Section . concludes.

. Repeated Computation Skeletons

e goal of this section is to survey parallel repeated computation and its features. Further, we will
show a specialised version of our new approach.

Overview. e repeated computation is a quite typical task in computational mathematics. Given
some data x1, x2, . . . , we apply some function f to it, resulting in f (x1), f (x2), . . . , until a predic-
ate p is not satisfied for some f (xn). As we will see below, this behaviour corresponds to a particular
while-loop.

e parallel case is more complicated. We consider the speculative parallelism, where multiple
tasks are processed simultaneously. In some cases, aer a few tasks are processed, more tasks need be
created. Different tasks may need different time to complete, we need a way to balance them. If a com-
putationmay be aborted, this also needs to be implemented. Combined, we examine the combinations
of three distinct features of the parallel repeated computation skeletons: task creation, task balancing
and premature abort of the computation. An overview is available in Figure . on the following page.

We consider task creation first. One possible approach is the dynamic internal task creation. In
this case we have the possibility to create new tasks while the computation progresses from within the
skeleton. Essential for the internal task creation is the possibility to use intermediate results inside the
skeleton and to transform the task pool of the skeleton. In absence of these, the ability to create tasks
from the final results is available with a wrapper around standard map skeletons in a lazy functional
language. We call it dynamic external task creation. is approach is similar to the non-monadic I/O

*Uneven numbers are the god’s delight.

52 Chapter . Primality Testing — Repeated Computation

..............

can abort

.

cannot abort

.

internal task creation

. external/no task creation.

dynamic task balancing

.

static task balancing

.

no task balancing

.

parWhile

.

simple workpool

Figure .: Twelve possibilities for a combination of the three repeated computation skeleton features. e
marked specimen highlight our area of interest: all three types of task balancing with no internal task
creation and present premature abort feature.

in Haskell. We will elaborate on it later. If all tasks are known beforehand and no new tasks emerge,
no task creation takes place.

Task balancing is the way, how the tasks are balanced in the progress of computation in order to
maintain similar load on all PEs. e dynamic task balancing is the prime feature of workpools (see
also Chapter). It is named similar to load balancing, but only in case of dynamic task balancing
we indeed balance the actual load. Here the decisions are made at runtime. In a contrast, the farm
skeleton does task balancing, alas not while the computation progresses, but beforehand. We call this
static task balancing. Finally, a simple parallel map does not task balancing, but simultaneously creates
a process for each task.

e property of the premature abort will be discussed in detail later. Essentially, we want to be able
to cancel a computation in progress, basing on already available results.

Combined, twelve possibilities emerge. e no task creating skeletons can be easily upgraded to
dynamic external task creation with a wrapper. We perform this extension for a farm in Section ..
We consider only these six with premature abort property. e literature mainly studies the three in-
ternal task creation versions, as these are more generic—but also more complicated. We define and
use herein a generic scheme for three no task creation versions. To do so, we need to analyse our start-
ing point, the dynamic internal task creating, not task balancing skeleton parWhile with premature
abort (viz. Figure . on page). Basing on the pseudocode specification of this approach we will
deduce a simpler scheme. However, before we can do so, we need to define the pseudocode, we will
use below. We will use this language solely in the current section to discuss the different classes of
repeated computation in the imperative and functional context. is explains the limitations of our
pseudocode language.

Pseudocode. We define a small, imperative parallel language for our ramblings. We choose a C-
similar syntax [ISO/IEC :] with a few functional features. With such a choice it is easier to
see the exact moment of task creation. In the following we describe the details.

• e curly brackets combine statements to blocks, as in C. Also similarly, a semicolon (;) termin-
ates the statement.

• Variable declaration is as in C.

.. Repeated Computation Skeletons 53

int i = ;
repeat {
// update i
i++;

// compute the result
results[i] = f(tasks[i]);

}
until(not p(results[i]));

return results;

Figure .: A typical sequential repeated computation in pseudocode.

• A commentary is introduced with // and ends with line termination.

• repeat body until(condition); is a while-loop, where the body block is executed at least once, but
as oen as needed, until condition is true. It is similar to the construct of the same name in Pascal
[Wirth,]. It is also similar to C’s do–while, but the termination condition is inverse.

• for(init; condition; step) body is a for-loop, as in C.

• Collections can be defined, similar to arrays in C and lists in Haskell. We access a particular, i
element in a collection with collection[i]. e primitive size returns the size of the collection. We
need it to organise a for-loop.

• map(function, collection) is a primitive, which applies the function to each element of the collec-
tion. It is similar to map in Haskell, but we chose to make it a primitive here for the simplicity.

• par is an annotation, signalling that the following loop or primitive is executed in parallel. We
need only a parallel for and a parallelmap. e latter could be implemented as a special for loop,
but we chose to make it a language construct for the sake of simplicity.

• not negates a boolean expression.

• all is a reduction operation on collections of booleans, similar to Haskell’s all. It is true, if all
elements in the collection are true, and false otherwise.

• takeWhile(condition, collection) outputs collection elements as long as the condition is true. It is
similar to the function of the same name from the Haskell standard library.

• subset(collection, range) returns a collection, being a subset of the input collection with indices
in a given range.

• return expression designates the final result of the code snippet, namely expression. It should
occur exactly once.

• Our pseudocode language is strict.

Now, aer defining some foundations of the pseudocode language, let us discuss the details of
the specification. Recall: given a collection tasks, we want to apply a function f to each element of it,
yielding the collection results, but only as long as the predicate p holds for each of the results. is is
the setting of Figure .. But we transform this loop, changing its shape.

To specify our parallel repeated computation loop more exactly, we need some further functions.
e function prepare creates a collection of tasks from an initial input, the function combine builds the
collection of the results to a monolithic final result. Now we can partition the collection into several

54 Chapter . Primality Testing — Repeated Computation

repeat {
tasks = prepare(input, results);

// deöne subsets of tasks, the functions
// startRange() and isInCurrentRange()
// control the choice of i to cover all tasks
par for(int i=startRange();

isInCurrentRange(i); i++) {
result[i] = f(task[i]);

}
}
// the function getPrevRange() returns
// the just processed range of indices
until(not(all(map(p,

subset(results, getPrevRange())))));

return combine(results);

tasks = prepare(input); // notice the change

repeat {
// as in previous ögure, functions
// startRange() and isInCurrentRange()
// control the choice of i to cover all tasks
par for(int i=startRange();

isInCurrentRange(i); i++) {
result[i] = f(task[i]);

}
}
// the function getPrevRange() returns
// the just processed range of indices
until(not(all(map(p,

subset(results, getPrevRange())))));

return combine(results);

Figure .: Parallel repeated computation
with dynamic internal task creation.

Figure .: Parallel repeated computation
with no task creation, imperative view.

ranges. All the elements in a single range will be processed independently and in parallel. We call
this an inner loop. e outer loop handles the range preparation and the termination control. We
can no longer check, whether a predicate is fulfilled for each element of the collection. Instead, we
check the new results in the currently processed range. If any value is false, we need to terminate the
whole computation. is corresponds to Figure .. In our terminology this is a parallel repeated
computation with internal task creation and premature termination. e par for loop does no task
balancing. Summarising, this is the semantics of the parWhile skeleton.

Now we observe, that we create a bunch of tasks before each round of parallel computation, i.e.,
before each par for loop. Notice, that in this case new tasks can depend on already processed ones.
However, it is possible to designate a class of applications, where all tasks can be created beforehand.
For such applicationswe canmodify the above schema in a natural way. All tasks are created in advance,
before both the outer loop—the termination control—and the inner loop—the speculative parallel
computation—start. Finally, the results are combined to a final output. Obviously, new tasks do not
depend on old tasks’ results anymore. is is the content of Figure .. Note that now we have no task
creation—all tasks are available before the parallel computation starts. Additionally, the partitioning
of data in the outer repeat–until loop and the inner par for loop can constitute a fitting form of task
balancing, e.g., a farm in the Eden implementation.

Lazy setting. We can write the code in Figure . differently. Imagine another pseudocode language
with same syntax, but lazy semantics. In this case, similar to the GHC implementation of Haskell,
nothing is evaluated until the result is required. We do not demand this property in the other examples!
In a contrast, the speculative loops in Figures . and . do parallel iterations with par for even if some
of them are not required, as may be found out later in until clause.

In Figure . no (parallel) computation happens, if it is not demanded. Hence, the premature abort
is merely a missing demand on the remaining repeated computations. A function takeWhile, doing
exactly this, can be seen as an outer loop. e inner loop corresponds to a parallel map, which we
express with par map in Figure .. Note that the code in the latter figure works only in a lazy language,
contrarily to Figure .. We can use some reduce function instead of takeWhile and combine, as will
be detailed in Section .. As we need to drop the demand on the remaining elements of the results
collection, we need to use some particular reduce functions, doing exactly this. We show below, which
exactly reduces qualify.

.. Map+Reduce 55

// lazy
tasks = prepare(input);

// in a lazy settingmap can be aborted
results = takeWhile(p, par map(f, tasks));

return combine(results);

Figure .: Parallel repeated computation with no task creation, lazy functional view.

farm+reduce :: Trans a ⇒ (a → Bool) → [a] → Bool
farm+reduce f xs = and $ farm f xs

Figure .: A simple repeated computation skeleton without task creation.

(&&) :: Bool → Bool → Bool -- see Haskell Prelude

and :: [Bool] → Bool
and = foldr (&&) True

Figure .: e and function from standard Haskell Prelude.

Implementation. We have just seen, that in case of using a functional lazy programming language
and opting for no task creation, we can sketch a much simpler version of the parWhile skeleton. Our
Eden implementation, called here farm+reduce, is shown in Figure .. Note that strict Haskell syntax
disallows such a function name, so we use farmPlusReduce in the actual implementation. is Eden
skeleton is quite similar to the pseudocode in Figure .. We emphasise, that this version does have
task management and can abort the computation early, but it disallows internal task creation. e
version shown is very simple and assumes worker functions of type a → Bool. It is straightforward
to extend it to a more generic a → Maybe b. A worker function returning a False causes a collapse
of the skeleton. is happens because of some properties of the and function [Peyton-Jones,].
Namely, and [True, False, �] = False holds: the and function stops traversing the list, once a
False occurs. See also Figure .. A call to the function farm of type Map a b does the actual parallel
evaluation. A further generalisation happens in the next section. is generic scheme is our original
research.

. Map+Reduce

In this section we generalise our current approach. We discuss the concepts, related to map, reduce
and their combination next. Aerwards we consider the farm+reduce skeleton and generalise it to
the map+reduce scheme. en we discuss the laziness of reduce and the implementation of the map-
reduce scheme with map+reduce.

.. Related Work

e two popular higher-order functions for parallel processing are map and reduce. e function map
with type (a → b) → [a] → [b] applies a worker function to each element of a list. We discussed
parallel maps in Chapter . e function reducewith type, e.g., (b → b → b) → [b] → b, reduces
the list to a single element with the given operation¹. Note that reduce is a different name for a fold.

¹e type shown here corresponds to the functions foldl1 and foldr1 from the Haskell’s standard library. In a contrast
to foldl and foldr from the same library, they require the input list to be not empty, thus eliminating the need in the

56 Chapter . Primality Testing — Repeated Computation

........

Figure .: A standard reduce.

........

Figure .: A tree-shaped reduce.

See, e.g., [Hutton,] for an introduction. e reduce function has a few very interesting theoretic
properties. For example, for a classic parallel implementation, the reduce parameter function should
be commutative, i.e., the result should not depend on the order of single reductions. is enables us
not only to compute reduce ‘from the le’ and ‘from the right’, as Haskell’s foldl and foldr do. We
discuss next i) a tree-shaped reduce, ii) local reduces, followed by a global reduce.

e classical reduce builds a degraded tree, cf. Figure ., be it completely le or right. But in the
case the reduce is commutative, we can obtain a better shape of this tree. Figure . depicts a tree-
shaped reduce, we might imagine the tree of a larger depth, however only two elements at once are
reduced. In these figures the data flow is bottom-up.

Because of the same commutativity property of the reduce it is possible to ‘stage’ reduce calls.
Imagine some kind of a parallel map, where each worker produces a list as the result. We can apply
reduce locally at the workers, in parallel. en we need to communicate just single values, not lists.
e resulting list of the pre-reduced values, one value per worker, can be reduced again in the master
process, resulting in the desired single value. e same Figure . can be interpreted as a distributed
reduce, provided we have only four initial elements and reduce in two stages. Here the two layers of
circles represent inputs for the global and for the local reduces. We discuss it next.

A popular pattern in parallel computing is map-reduce. It is based on the parallel processing of
data with a parallel (and probably: load-balancing) mapwith a following reduction. e latter happens
in a distributed manner. Multiple results on each PE are reduced locally, aerwards a global reduce
takes place. In other words, the data locality plays an important role in an efficient implementation of
map-reduce. In the following, when we refer to map-reduce, we mean such an implementation. Eden
implementations of map-reduce were presented in the works of Fernando Rubio, e.g., [Loogen et al.,
]. It was also discussed in [Berthold et al., d]. Figure . presents a graphical visualisation
of the map-reduce pattern. e data flow is from le to right, boxes represent processing elements,
nodes represent data, edges represent function applications. Keeping the data distributed is crucial for
the efficient implementation of map-reduce.

e map-reduce pattern became much publicity because of Google MapReduce [Dean and Ghem-
awat, , ,]. However, Google’s approach differs from the functional map-reduce pattern,
see [Lämmel,]. An Eden implementation of Google MapReduce is in [Berthold et al., d].

Another approach to parallel functional repeated computation is to use an advanced workpool
with dynamic internal task creation. As the name says, dynamic load balancing is already granted in
this setting. Internal task creation is also well studied in the context of a workpool. Two possibilities

separately supplied neutral element. Note that foldl1 and foldr1 demand a commutative operation as their first parameter.

.. Map+Reduce 57

..........

map

........

reduce

Figure .: e map-reduce scheme. e nodes symbolise data, the lines symbolise function applications,
the boxes stand for processes. Here we have two ‘mapper’ processes, which also perform local reduce steps,
and one global reducer. e dashed lines symbolise the data locality: there is no process boundary between
map and local reduce phases.

Task creation
internal external/no

Task balancing
dynamic

Priebe []
workpool+reduceDieterle []

Brown and Hammond []
static Brown and Hammond [] farm+reduce

no parWhile parMap+reduce

Task balancing abstracted not known to us map+reduce

Table .: Classification of parallel repeated computation skeletons.

for premature termination exit. One is to extend the skeleton with a state management. However, if a
global task pool transformation is available, a variant without a state exists. Such transformations are
oen used as a generalisation for the placement of new tasks. It suffices to introduce a new, special task.
e worker function, willing to terminate the whole computation, would create such a new task. e
task pool transformation function would just empty the task pool upon seeing it. We stress however
that the examples in this chapter will not need any dynamic task creation. So, we do not elaborate on
this issue.

Note that the parWhile skeleton (Figure . on page) has no taskmanagement, but implements
dynamic internal task creation and premature termination. We can implement the required subset of
its functionality in a completely different and much simpler way: using a farm or a workpool skeleton
and a fitting reduce.

We build up a classification of existing repeated computation skeletons in Eden in Table .. We
differentiate by the method of task creation and by the type of task balancing. e skeletons, shown
here, are referenced by their names. e skeletons, known from the literature, are referenced by the
appropriate citation. We see, the internal task creation skeletons with dynamic task balancing are quite
well studied, as they form an extension to the well-known workpool scheme. e skeletons parMap+
reduce and workpool+reduce are analogues of the farm+reduce scheme from Figure . with an
obvious change. We will generalise these skeletons under a unified approach called map+reduce.

Popular skeleton libraries include various parallel map-like skeletons as well as distributed reduce
implementations, see, e.g., [Bacci et al., b,Matsuzaki et al., , Ciechanowicz andKuchen,].
An approach to skeleton composition is [Alt and Gorlatch, , Dieterle et al., b]. Google’s
MapReduce is available for various platforms [Hadoop, , Zaharia et al.,], including GPUs
[He et al.,] and Cell BE processors [de Kruijf and Sankaralingam,]. e Eden implementa-
tion is discussed in [Berthold et al., d].

58 Chapter . Primality Testing — Repeated Computation

......... ☇

Figure .: A standard reduce with shortcutting. e data flow is bottom-up. e red node contributes
all needed information, which is propagated to the root of the tree. e computation at ☇ has no demand.

e poison concept of Hoare’s CSP [Welch, , Brown and Welch, , Brown,] is related
to the our premature abort notion.

.. Discussion

Given the higher-order function farm+reduce from Figure ., we aim to generalise it. is specific
implementation of a parallel for-loop turns out to be nothing else than a naive map and reduce com-
bination. We will see in Sections . and . that using it is not a limitation for our target problems.
Still we can generalise more, as we will see below. In Figure . we perform the reduce sequentially,
as it is a simple and. We stress that the actual work is to be performed in the map phase. However,
we have further requirements for the reduce function. ey are fulfilled by and, but not by an arbit-
rary reduce. (Figure . shows the definition of and in standard Haskell library.) We call our map and
reduce combination with a special reduce a map+reduce skeleton scheme.

e key feature of our Eden implementation should also be granted in a generic map+reduce case:
if our reduce function returns the result before evaluating the whole input list, e.g., and [True,
False, �] = False, then the parallel map instance, still computing the further list entries, should be
terminated. In the following we seek for a formalisation of this issue and develop a generic skeleton
scheme, using the gained knowledge.

e required property of the reduce is shortcutting. If some particular input element contributes
all the information required for the final result, then no further input elements need to be evaluated.
Figure . displays such a special input element and the information propagation in red. Note that it
is impossible to encode shortcutting in Haskell’s type system. It can be compared to the inability to
encode laziness in the type system of Haskell.

We stress again that map+reduce, which we describe here, is not quite the map-reduce scheme.
e latter assumes distributed reduce, as we already know. Also, the data flow in map-reduce leaves
the data distributed between map and reduce phases. is is one of the main reasons for the success
of the map-reduce scheme. However, in our case a special reduce is needed. We use sequential imple-
mentations of the reduce here and do not consider a distributed reduce with shortcutting. As we use
reduce to control the termination, it is acceptable to use a sequential implementation. Still, we will
see below that is it possible to implement map-reduce using our approach and an additional concept.

Aer seeing the farm+reduce example in Figure . on page , we aim to implement a more
generic map+reduce skeleton scheme. We basically need to abstract the reduce function. It is done
by adding a further parameter. e implementation is surprisingly simple, see Figure ., but there is
no way to ensure the shortcutting property in the Haskell implementation. e skeleton farm+reduce
from Figure . can be implemented using this generic skeleton scheme, as seen in Figure .. Note,
the map+reduce scheme is building on further skeletons.

A different view on the map+reduce functionality is that of the streams, viz. page . To recapitulate,
the intuition of a stream is that of a (potentially infinite) lazy list. A stream processing function can
handle streams efficiently. e premature termination feature of the map+reduce scheme functions
only if both of its components are stream processing functions.

.. Map+Reduce 59

-- the reduce parameter should fulfil the shortcutting property
map+reduce :: (Trans a, Trans b, Trans c)

⇒ (Map a b) -- ^ map
→ ((b → c → c) → c → [b] → c) -- ^ reduce
→ (a → b) -- ^ map worker
→ (b → c → c) -- ^ reduce worker
→ c -- ^ reduce zero
→ [a] → c -- ^ input and output

map+reduce amap areduce f g z xs = areduce g z $ amap f xs

-- a version with applied worker functions
-- again, the desired property of the reduce--the shortcutting--cannot
-- be encoded in the type system.
map+reduce’ :: (Trans a, Trans b, Trans c)

⇒ ([a] → [b]) -- ^ partially applied map
→ ([b] → c) -- ^ partially applied reduce
→ [a] → c -- ^ input and output

map+reduce’ amap areduce = areduce ○ amap

Figure .: A generic map+reduce skeleton scheme

farm+reduce’ :: Trans a ⇒ (a → Bool) → [a] → Bool
farm+reduce’ f = map+reduce’ (farm f) and

Figure .: Implementing farm+reduce using the generic scheme.

Laziness. Our map+reduce schemeworks, because of some special properties of the reduce function.
We consider these in a more detail. We define commutative semirings² in Figure .. ese suffice in
our case. It is easy to encode commutative monoids in Haskell’s type system.

We define reduce, or, to be more exact: a le fold for a multiplicative operation, but keep in mind
the possibility of a zero occurrence. Our shortcutting property is nothing else than such occurrence
of zero in a product-based fold.

myLeftFold :: (Semiring a, Eq a) ⇒ [a] → a
myLeftFold xs = myLeftFold’ xs unity

myLeftFold’ :: (Semiring a, Eq a) ⇒ [a] → a → a
myLeftFold’ (x:xs) acc ∣ x==zero = zero -- sic!

∣ otherwise = myLeftFold’ xs (mult acc x)
myLeftFold’ _ acc = acc

Assuming

• e commutativity of mult

• e laziness of mult, i.e., the fact mult zero � = zero

we can write the equivalent right fold.

myRightFold :: Semiring a ⇒ [a] → a
myRightFold (x:xs) = mult x (myRightFold xs)
myRightFold [] = unity

²A commutative semiring (R,+, ⋅) is a commutative monoid w.r. t. + and a commutative monoid w.r. t. ⋅. Additionally,
a distributive law should hold. In commutative semirings zero annihilates any element, i. e., for all x ∈ R holds 0 ⋅ x = 0.

60 Chapter . Primality Testing — Repeated Computation

-- slightly simplified
class AddMonoid a where

zero :: a
add :: a → a → a

class MultMonoid a where
unity :: a
mult :: a → a → a

class (AddMonoid a, MultMonoid a) ⇒ Semiring a
-- distributive law holds: for all x, y, z:
-- x ‘mult‘ (y ‘add‘ z) == (x ‘mult‘ y) ‘add‘ (x ‘mult‘ z)
-- zero annihilates everything: for all x: zero ‘mult‘ x == zero

instance AddMonoid Int where
zero = 0
madd = (+)

instance MultMonoid Int where
unity = 1
mult = (∗)

instance Semiring Int

instance AddMonoid Bool where
zero = False
add = (∣ ∣)

instance MultMonoid Bool where
unity = True
mult = (&&)

instance Semiring Bool

Figure .: Commutative rings in Haskell. We show instances for Int and Bool.

We have no special comparison with zero in the above code, however it relies now on mult to preserve
zero and not to evaluate the recursive call if a zero occurs in the first parameter. We conclude that the
premature termination in our map+reduce setting will function with myRightFold as a reduce, if its
parameter is a zero-preserving lazy mult function.

Implementing map-reduce with map+reduce. We have seen above, how a sequential reduce with
the premature abort property looks like. Under the assumption of commutativity, it is possible to
construct a distributed reduce with the same properties. We do not focus on this construction and
show how it is possible to implement map-reduce with our scheme, assuming distributed reduce as
given.

We stress that the map-reduce skeleton is not merely a concatenation of map and reduce. e key
issue is to keep the data distributed across the PEs aer the map phase, such that reduce could operate
on already distributed data. is is represented graphically in Figure . on page .

It is possible to keep the data distributed, even aer the computation has ended. Using remote data
[Dieterle et al., b] we can accomplish this task and thus compose the skeletons elegantly. We imple-
ment the function map-reduce1 in Figure ., top, with fitting parallel implementations of the parallel
map (here: parMap) and of the distributed reduce (distReduce, not elaborated here). e data locality

.. Case Studies 61

distReduce :: (c → d → d) → d → [c] → d

map-reduce1, map-reduce2 :: (a → [b])
→ (b → c → c)
→ (c → d → d)
→ c
→ d
→ [a]
→ d

map-reduce1 f r1 r2 z1 z2
= map+reduce’ (parMap ((foldr r1 z1) ○ f)) (distReduce r2 z2)

map-reduce2 f r1 r2 z1 z2
= map+reduce’ (parMap (release ○ (foldr r1 z1) ○ f))

((distReduce r2 z2) ○ fetchAll)

Figure .: Two implementations of map-reduce with map+reduce and remote data.

is maintained for the first reduce call in this skeleton. However, we need to optimise the data flow in
the transaction from the distributed reduce to the global reduce. Hence, we use remote data in func-
tion map-reduce2.We utilise the functions fetchAll :: [RD a] → [a] and release :: a → RD a,
see Section ... is results in Figure ., bottom. We can implement the classic map-reduce skel-
eton with map+reduce and remote data. As we need an additional feature to implement map-reduce
efficiently, map+reduce is a less powerful concept than map-reduce.

. Case Studies

Belowwe present a parallel implementation of two probabilistic primality tests as large examples of our
approach to repeated computation. ese tests check if their input is prime in a probabilistic, random
number based manner. Recapitulate the following definition.

Definition (Prime). A natural number > 1 is a prime number if its only divisors are unity and the said
number.

For example, 5 is prime, because 2 ∤ 5, 3 ∤ 5, 4 ∤ 5. e first and the oldest method to obtain
prime numbers is the sieve of Eratosthenes. Details on Haskell implementation are in [O’Neill,].
However, the contemporary mathematics embarks on a different way, and not without a reason. e
problemwith the sieve is: we need to precompute all the preceding primes. is is surely both time and
space inefficient. But there is no closed formula for prime numbers! ere is some work on expressing
primes as non-negative values of large multivariate polynomials, cf. [Matiyasevich, , , Jones
et al.,]. However it leads it pretty much astray: to Diophantine equations and Hilbert’s Tenth
Problem. So, the modern number theory moves from prime number generation to prime number
detection. With this approach, if we need a prime in a certain range, e.g., a really large prime number,
we test random integers for primality, until we succeed. is method does not involve enumerating all
primes. Still, it has some other caveats.

Given a number, we need to decide whether it is prime. For another unfortunate condition, the
most straightforward way to decide this for sure and for all cases is to perform a trial division from
two to the square root of the prime candidate. is is again unacceptable. ere exist deterministic
polynomial-time primality tests [Agrawal et al.,], but their practical complexity is quite bad, thus
we refrain from implementing them. ere are more practical methods, but they provide less guar-
anties. e probabilistic tests provide a very high probability of a prime candidate being indeed a
prime number. Some are even capable to decide whether the input is prime for almost all inputs, only
an explicit failure is possible in this case, but not a false positive. So, we focus here on the state of the

62 Chapter . Primality Testing — Repeated Computation

Input prime not prime

Success ‘yes’ ‘no’
Failure ‘yes’ ‘yes’

Table .: e result matrix of Rabin–Miller test. e question is ‘is input prime?’

art: the probabilistic primality tests. We consider here twomethods: Rabin–Miller test and Jacobi sum
test. In case of the Rabin–Miller primality test, the negative outcome of the test means the input was
not a prime. e positive outcome means not extraordinary much: the input could be a prime. We call
such numbers ‘strong pseudo-primes’, exactly these are subjects of the further testing. e next test,
the Jacobi sum test, also called APRCL, which stands for Adleman, Pomerance, and Rumely [],
Cohen and Lenstra []. is test gives us a proof of primality. So it either guarantees the input
is prime, or guarantees the opposite, or fails. e uncertainty lies in the inability to detect all prime
numbers with the test: if a number is accepted by the test, it is a prime. If it is deemed as not a prime,
it is not a prime. Still, an input number might be rejected, although with an extremely little probabil-
ity. We present these two algorithms following [Cohen,]. e Rabin–Miller test is presented in
Section ., whereas Section . presents the Jacobi sum test.

. Rabin–Miller Test

Here we describe the Rabin–Miller primality test. is result is due to Miller [] and Rabin [],
we present it based on a book by Cohen []. e test is probabilistic, it is a Monte Carlo algorithm.
If the test answers ‘not a prime’, then the input is indeed not prime. However, if the test answers ‘is
a prime’, this does not mean anything. Inputs exist, for which the test fails to detect that they are not
prime. In other words, false positives are possible, but not false negatives. All four possible cases are
depicted in Table ..

eory. e test relies on an old and fundamental result in number theory called Fermat’s Little
eorem. e name of the Fermat’s Little eorem is opposed to the Fermat’s Last eorem. e
theorem in question was discovered in by Pierre de Fermat, * or , †...

eorem . (Fermat’s Little). Let N , p ∈ N with p a prime. en N p ≡ N (mod p).

It is a special case of Euler’s Totienteorem, viz. [Hardy andWright, ,eorem], which extends
the case of prime p toN � p, i.e., gcd(N , p) = 1. is theorem is named aer LeonhardEuler, *..,
†... Euler proved his theorem in , while Leibniz produced his proof before , but never
published it.

e classic proof uses group theory. We prove the theorem using binomial coefficients, cf. [Hardy
and Wright, , von zur Gathen and Gerhard, , Ribenboim,]. e notion of Z/p with
prime p describes a finite field modulo p: the numbers {0, . . . , p− 1}with corresponding addition and
multiplication modulo p. e notion p denotes a principal ideal, generated by p. Recall, the value (nk)
is the binomial coefficient n!

k!(n−k!) , where n! = 1⋯n.

Lemma . (Binomial coefficients in finite fields). In Z/p with a prime p holds (a + b)p ≡ ap + bp
(mod p).

Proof. Generally, (a + b)p = ∑p
k=0 (

p
k)a

kbp−k holds. However, for all 0 < k < p with a prime p holds
(pk) ≡ 0 (mod p), as each (pk) has the factor p in its numerator.

Proof of Fermat’s Little eorem. We use induction on k ∈ N. Let p ∈ N be a prime. Trivially, 0p ≡ 0
(mod p). Now, assuming the theorem holds for some kp, consider (k + 1)p. en by the previous
lemma, (k+1)p ≡ kp+1 (mod p). But as kp ≡ k (mod p), we conclude (k+1)p ≡ k+1 (mod p).

.. Rabin–Miller Test 63

Algorithm Rabin–Miller test.
Require: odd integer N ≥ 3.

: function M R-M(N)
: Find such q and t that N − 1 = 2tq with odd q.
: Generate random numbers between 1 and N as a list as.
: Let bs ←map (λa → aq (mod N)) as. // Power random numbers modulo N .
: Let res ←map (λb → S R–M(N , t, 0, b)) bs. // Execute subtests.
: return true only if all elements in res are true. Else return false.
: end function
: function S R–M(N , t, e , b)
: if b = ±1 (mod N) then return true
: else if e ≤ t − 2 then return S R–M(N , t, e + 1, b2 (mod N))
: else return false
: end if
: end function
Ensure: Either false for ‘N is composite’ or true for ‘N is probably prime’.

It is essential for p to be a prime, because else some inner binomial coefficients in Lemma . could
be not zero modulo p. To give an example: (63) ≡ 2 (mod 6). So the aforementioned proof does not
work when p is not a prime. But in fact the whole theorem is broken in this case: 812 ≡ 4 (mod 12).
e premise of the Euler’s Totient eorem does not hold: gcd(8, 12) ≠ 1.

Definition .. Let N ∈ N a odd natural number and a ∈ Z. We can write N − 1 = 2tq with an odd q.
We call N a strong pseudo-prime in a base a if

• Either aq = 1 (mod N)

• Or there exists such e that 0 ≤ e ≤ t with a2
eq = −1 (mod N)

Naturally, all odd primes are strong pseudo-primes in arbitrary bases. However, for a composite
number, less than 1⁄4 of all possible bases evidence it as a strong pseudo-prime. For a proof of this state-
ment see e.g., [Koblitz, , Knuth, , Yan and Hellman,]. We can now devise Algorithm .
Its imperative version is stated in [Cohen, , Algorithm ..].

Implementation. We have a few implementation-specific remarks. Firstly, note that the test might
abort with ‘N is composite’ aer any ‘subtest’—an individual call of S R–M. Secondly,
it is not required to generate the randomnumbers while the test is in progress. It suffices to pregenerate
sufficiently many random numbers in a given range. Hence, we have a test case for our new skeletons.
Further, Rabin–Miller test is frequently used as a first stage ofmore complicated tests. Wewill elaborate
on this in Section ..

We consider the Rabin–Miller primality test in a more detail. It is is a probabilistic test. e
input of the test is a prime number candidate. It consists of runs of the same subtest with different
parameters. If one of the subtests fails, the whole test has failed. is case is always correct in its output:
the number is not prime. Each successful subtest increases the probability of the input being prime,
but we are never sure.

As we know, the probability for a single subtest to fail is less than 1⁄4 . When choosing the bases
randomly (cf. basis a from Definition .), the probability of a false negative for k tests is 4−k . We
sketch the parallel implementation of Algorithm in Figure .. It is a slightly simplified version.
We could have made use of farm+reduce higher-order function from Figure .. However, in the
presented implementation we instantiate the generic map+reduce skeleton scheme seen in Figure ..
e implementation is straightforward. e omitted function singleRabinMiller corresponds to
the procedure of the same name in Algorithm . We show it and a few more helper functions in the
Appendix, in Section B..

64 Chapter . Primality Testing — Repeated Computation

singleRabinMiller :: Integer -- ^ n is the prime candidate
→ Integer -- ^ t from n=2^t∗q
→ Integer -- ^ current e from a^((2^e)q)
→ Integer -- ^ b = a^q
→ Bool -- ^ result

singleRabinMiller = ... -- implementation omitted

separate :: (Integer, Integer) → (Integer, Integer)
separate ... = -- implementation omitted, finds q and t

listRabinMiller :: Int → Integer → [Integer] → Maybe Integer
listRabinMiller k n as = let worker :: (Integer, Integer) → Bool

worker (n, a) = singleRabinMiller n t 0 b
where (q, t) = separate (n-1, 0)

b = powermod a q n
tasks = take k [(n, a) ∣ a ∈ as]
reduce :: Integer → [Bool] → Maybe Integer
reduce n bs ∣ and bs = Just n

∣ otherwise = Nothing
in map+reduce’ (farm worker) (reduce n) tasks

randomBaseList :: Integer → IO [Integer]
randomBaseList = ... -- generate random bases for given n.

-- Implementation omitted

rabinMillerIO :: Integer -- ^ n is the prime candidate
→ IO (Maybe Integer) -- ^ Nothing or Just n

rabinMillerIO n = do
ls ← randomBaseList n
return $ listRabinMiller 20 n ls

Figure .: e main loop of Rabin–Miller test in parallel.

Parallelisations of the Rabin–Miller test were discussed in [Hahnel, , Cheung et al., ,
Schmidt et al.,]. eseworks focus on hardware design. In a contrast, wewill use our map+reduce
approach.

Discussion. We evaluate the parallel behaviour of our implementation of the Rabin–Miller test on
sakania. An earlier version of our implementation was used as a test program in [Lobachev and
Loogen, c]. We present a trace visualisation of a test run in Figure . on the facing page. We
have used up to cores in parallel, the input was 29689 − 1. Numbers of a form 2p − 1 for a prime p are
called Mersenne numbers, aer Father Marin Mersenne, *.., †... ey are oen prime.
e number 29689 − 1 is prime. Hence, the test makes all runs of the subtests. We can see it in
the trace diagram: the thin bars at the first PE—once at . seconds mark and once at . seconds
mark—delimit the rounds of subtest executions. We see also that we could have done the one more
subtest ‘for free’, as one PE is not used in the third round. We will discuss this issue in more detail
below.

e speedup is displayed in Figure ., le. It is . on PE with input size 29689 − 1. e best
speedup value is . for the input size 211213 − 1 on sakania. e efficiency on PE is . and .
appropriately. Please notice the linear speedup for up to PEs and a strange behaviour for – PEs.
e reason for such an effect is not the bad parallelism, but problems with task placement. Let us
discuss the latter in more detail.

.. Rabin–Miller Test 65

1.0 2.0 3.0 4.0 5.0 6.0 7.0

P7:1

P6:1

P5:1

P4:1

P3:1

P2:1

P1:2

P1:1

Figure .: Trace diagram of parallel Rabin–Miller test on PEs. e input size is 29689 − 1. Note the
task balancing issue.

1 2 3 4 5 6 7 8

1
2

3
4

5
6

absolute speedup, n=9689
PEs

S
pe
ed
up

observed speedup
linear speedup

1 2 3 4 5 6 7 8

0.
0

1.
0

B
(n

, p
) parallel penalty

1 2 3 4 5 6 7 8

0.
00

0.
03

absolute reference point, n=9689
PEs

f(n
, p

) serial fraction

Figure .: Speedup (le), parallel penalty (top right) and serial fraction (bottom right) for Rabin–Miller
test on sakania with absolute reference point. We use 29689 − 1 as input.

e parallel penalty function and serial fraction are depicted in Figure ., right. ese plots
are similar to the ones from [Lobachev and Loogen, c]. Both curves indicate a problem with the
task distribution. As of now we always request tasks. However, as we also see in Table ., not all
numbers of PEs are of a benefit for an equally-balanced parallel computation. Consider the latter table
in more detail. e first row (‘PEs’) shows the total number of processing elements. e second and
third rows appropriately show how many times the outer loop is fully saturated (‘full rounds’) and how
many tasks remain for the last, incomplete round (‘remaining tasks’). ese two values correspond to
the result of the division with remainder of the number of tasks () by the number of PEs. Revisiting
these data for the parallel repeated computation, we need to increase the number of rounds by one to
obtain the total amount of rounds in the fourth row. e fih row of the table shows the number of free
PEs in the incomplete round. e last row (‘slack-off ’), shows the relation of the fih row to the first
row. It describes howmany PEs are idle in the last round. ese figures are easily deduced from the full
rounds and the remaining tasks, e.g., the number of the free PEs is the total amount of PEs minus the
remaining tasks. Every time we see a large figure in the fih row, poor task balancing ensues in the last,
incomplete round of the Rabin–Miller test. ese theoretical considerations correspond nicely to the
picture we see in both parts of Figure .. Both plots of parallel penalty and of serial fraction describe
the ‘bad’ parts of a parallel program. e larger the values are, the worse does the parallel Rabin–Miller
test run on this number of PEs. We see a flat line at – and peaks at , and PEs, which is compatible
to Table .. Note a small decline in the speedup curve for PE. It corresponds to the entry in the last
row of Table . and to the peak at PE in Figure .. We chose PEs for Figure . as a compromise
between larger number of processes and smaller overhead in task balancing. Another proper decision
would be to adapt the number of tests, e.g., use for PEs. is would make a better (and stronger!)
Rabin–Miller test, but would render versions on different PEs incomparable.

66 Chapter . Primality Testing — Repeated Computation

PEs 1 2 3 4 5 6 7 8 9 10

Full rounds 20 10 6 5 4 3 2 2 2 2
Remaining tasks 0 0 2 0 0 2 6 4 2 0

Total rounds 20 10 7 5 4 4 3 3 3 2
Unused PEs 0 0 1 0 0 4 1 4 7 0
Slack-off, % 0 0 33.3 0 0 66.6 14.3 50 77.78 0

Table .: Overheads for process placement: tasks at to PEs.

2 4 6 8 10

2
4

6
8

10

n=9689
PE

S
pe
ed
up

observed speedup
linear speedup

Figure .: Speedups for Rabin–Miller test on local workstations. We use 29689 − 1 as input.

Note that 20⁄21 is 0.9523 . . . is corresponds well with the efficiency values at PE, e.g., . for
the input size 211213 − 1, as we had exactly one ‘slot’ free.

Summarising, we would assume the same program to perform significantly better on PEs, than
it does on . We cannot test this assumption on sakania, as it is a core machine. Still we performed
the test run in question on local workstations. We used Intel CoreDuo machines, running bit
Linux OS. e CPU frequencies of these machines differed, so some tasks were processed faster than
others. Still we obtained the speedup of 8.72 on PE. e speedup plot is shown in Figure .. Our
assumption was correct: on machines all tasks can be computed in two full rounds. is is the
reason for the ‘jump’ of the speedup curve in the right part of the plot.

As for the speedup in the range – PE in Figure ., the curve is worse than in Figure .. is
is because of not perfect load balancing. e machines in local workstations have similar, but not
identical performance, thus some tasks are computed faster on certain machines, causing a minor
speedup deficiency. We confirm this fact by examining a detail of the trace of Rabin–Miller test on the
local workstations in Figure .. We see different PEs terminate at different times, although the task
size is approximately the same for all workers—see Figure ..

Estimation of the execution time. To conclude the discussion of Rabin–Miller test, we examine
an estimation of the execution time for this test. We use the measurements, performed on sakania.

.. Jacobi Sum Test 67

2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7

P10:1

P9:1

P8:1

P7:1

P6:1

P5:1

P4:1

P3:1

P2:1

P1:2
P1:1

Figure .: e zoom into the trace on local workstations for Rabin–Miller test.

2000 4000 6000 8000 10000

0
10

20
30

40
50

60
70

Predicting Sequential Time

measured on sakania
Input size

Ti
m

e,
 s

ec
on

ds

observed values
spline
loess
lm(poly)

2000 4000 6000 8000 10000

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Predicting Parallel Overhead

absolute reference point
Input size

B
(n

, p
)

observed values
spline
loess
lm(poly)

Method spline loess lm(poly)

Rel. err, % −7.334 −5.632 −1.859

Method spline loess lm(poly)

Rel. err, % 17.21 0.4007 3.180

Figure .: Predicting the execution time of Rabin–Miller test. Le: sequential run time, right: parallel
penalty.

Mersenne primes are used as input, we denote the input sizes by the exponent n in 2n − 1. e estim-
ation is performed w.r.t. input size, we assume all execution times up to n ≤ 9689 as given and aim
to predict the execution time for n = 11213 at PE. Figure . shows the both components. We are
able to predict the sequential execution time of Rabin–Miller test with −1.86% relative error with the
lm(poly) method (viz. Figure ., le). e loess method results in the value 0.574 for the parallel pen-
alty B̂(11213, 7). e observed value is 0.572, cf. Figure ., right. Combined, these methods predict
the observed run time T(11213, 7) up to the relative error of −1.739%.

Overall, we see very good parallel performance of the instantiation of the map+reduce skeleton
scheme with farm and Rabin–Miller test. We consider a much more complex case in the next section.

. Jacobi Sum Test

e Jacobi Sum test, also called the APRCL test [Adleman et al., , Cohen and Lenstra,], is a
sophisticated primality test. Contrarily to Rabin–Miller test, this test issues a proof of primality. So, it
assures primality in cases it is successful. In a seldom case of failure, this test also does not provide a
wrong statement. For the detailed matrix of possible test results see Table .. Jacobi sum test is a Las
Vegas algorithm. We will require a deeper insight into the theory to understand how the Jacobi sum
test performs its task.

68 Chapter . Primality Testing — Repeated Computation

..

Figure .: A primitive root of unity of order eight: ζ8.

.. eoretical Background

We generally follow [Cohen, ,] and [Lang,] in this section. e key idea of the APRCL
test is to test for Fermat-like congruences in finely chosen cyclotomic fields. We seldom give proofs in
this section. Instead, we refer to the aforementioned books for all missing proofs and a more rigorous
treatment of the following matter.

Cyclotomic fields and cyclotomic polynomials. Let ζn ∈ C be a primitive root of unity of n order.
It means ζnn = 1 and no ζkn for any 0 < k < n is unity. We may understand ζn as an abstract symbol,
but one could envision ζn = e2iπ/n. Here, and everywhere else, when talking about complex numbers,
i denotes the imaginary unit,

√
−1. Naturally, the symbol π has its usual value, 3.141592653589793 . . .

We find primitive roots of unity also in the fast Fourier transform of Section ..
e roots of unity are points on the complex unity circle. ey are called primitive, if none of

the powers less than n of the n root of unity is the actual unity. Figure . shows an example of a
primitive root of unity of order eight. e shown root of unity is the primitive one of order eight, as
none of its powers less than eight equals unity.

For an arbitrary (commutative) ringRwith unitywe denote itsmultiplicative groupwithR∗. Given
a field F, a root a of a minimal polynomial p of degree k in F[x] with a ∉ F can be adjuncted to F. We
write F(a) for it. It holds F(a) ≅ F/⟨p⟩. Here ⟨p⟩ is an ideal, generated by p. Is an ideal principal, i.e.,
generated by a single p, then we also write p for it. So, F/⟨p⟩ is a factor ring. We call F(a) an algebraic
extension of F. A classic example is C = R(i). In this case i =

√
−1 and p(x) = x2 + 1. Further, on

page we will see how to represent F(a) efficiently.

Definition . (Cohen [], Definition ..). For a positive integer n, the n cyclotomic field is
Q(ζn) for ζn the n primitive root of unity.

Definition . (Cohen [], Definition ..). Define the cyclotomic polynomials Φn(x) as unique
rational functions with

∏
d∣n

Φd(x) = xn − 1.

ere is an alternative definition of cyclotomic polynomials [Lang,]: begin inductively with
Φ1(x) = x − 1 and apply

Φn(x) = (xn − 1)/ ∏
d∣n

1≤d<n

Φd(x).

It can be easily seen, that cyclotomic polynomials are well-defined. e first cyclotomic polynomials
are x − 1, x + 1, x2 + x + 1, x2 + 1, x4 + x3 + x2 + x + 1, x2 − x + 1. However, not always the coefficients

Input prime not prime

Success ‘yes’ ‘no’
Failure ‘failure’ ‘failure’

Table .: e result matrix for Jacobi sum test. e question is ‘is the input prime?’

.. Jacobi Sum Test 69

of cyclotomic polynomials are −1, 0 and 1, see also [Migotti, , Bungers, , Lehmer,]. e
author of the latter publication is Emma Lehmer, nèe Emma Markowna Trotskaja (Эмма Марковна
Троцкая), *.., †.., thewife ofDerrickHenry Lehmer of Lucas–Lehmer test andLehmer’s
GCD algorithm.

We write q for an ideal, generated by q ∈ Z.

Proposition . (Cohen [], Proposition ..). It holds that

. e polynomial Φn(x) is irreducible in Q[x]. It is the minimal polynomial of ζn in Q.

. e extension Q(ζn)/Q is a Galois extension, its Galois group is canonically isomorphic to the
group (Z/n)∗.

Why are cyclotomic fields so important? e following theorem answers this question. See [Cohen,
, eorem ..] for the proof.

eorem . (Kronecker–Weber). Any abelian extension of Q is a subfield of some cyclotomic field.

Group rings. We follow [Cohen,] also in notation. Cohen uses the notion of group rings to
express the further content. e following definition works for infinite groups if only a finite number
of maps are not zero.

Definition . (Cohen [], Definition ..). Let G be a finite group. e set of maps from G to Z
builds a group ring Z[G]. Let f and g be in Z[G]e addition in Z[G] is defined as (f + g)(σ) =
f (σ) + g(σ). e multiplication is more complicated:

f ⋅ g(σ) = ∑
τ∈G

f (τ)g(τ−1σ).

ese two operations give a ring structure to Z[G], which justifies the name. Formally we can
write

f = ∑
σ∈G

f (σ)[σ],

hence we establish direct connection of operations in Z[G] to Z-algebra laws. Further, we identify Z
as a subring in Z[G]: a n ∈ Z can be identified with n[1] ∈ Z[G]. Here [1] is a unity in Z[G].

e group action ● for a set X and a group G is defined as follows. It has the type ● ∶ G × X → X
and fulfils the properties

. 1 ● x = x for 1 the neutral element of G

. g ● (h ● x) = (gh) ● x for all g, h ∈ G

for all x ∈ X. In a special case G = Gal(K/Q), for an algebraic extension K of Q, the group G acts
on K. e latter action can be extended to Z[G] as a multiplicative extension. Let f ∈ Z[G] with

f = ∑
σ∈G

nσ[σ]

and x ∈ K. We write
x f =∏

σ∈G
σ(x)nσ .

Definition .. Let p be a prime number, let further be k ∈ Z and n = pk . Let K be n cyclotomic field.
Let G be its Galois group. It holds G = {σa ∶ a ∈ (Z/n)∗}. Let ζp = e2πi/p. In contrast to p = ⟨p⟩ ⊂ Z,
define

p̄ ∶= { f ∈ Z[G] ∶ ζ fp = 1}.

e following originates from [Cohen, , pp. –], see there for the detailed proof.

70 Chapter . Primality Testing — Repeated Computation

Lemma .. e above ideal p̄ is a prime ideal in Z[G].

Idea of the proof. Let
f = ∑

a∈(Z/n)∗
na[σa],

then f ∈ p̄ if and only if∑a naa ≡ 0 (mod p). e number of equivalence classes of Z[G]/p̄ is p. †

Characters and sums. We need to build up some more theory, cf. [Cohen, , Definition ..]
and [Cohen, , Section ..]. Recall: the groupC∗ is themultiplicative group of non-zero complex
numbers. Analogue, (Z/q)∗ is the multiplicative group of invertible residues modulo q. We denote
the residue equivalence class of a modulo q as ∣a∣q ∈ Z/q. For a groupG we denote its dual group with
Ĝ, it is a group of homomorphisms [Lang,].

Definition .. Let G be a finite abelian group.

. A generic character of G is a group homomorphism from G to C∗. All characters build a group
Ĝ, the dual group of G.

. e Dirichlet character modulo q is a map χ fromZ toC, such that a character ψ ∈ (̂Z/q)∗ exists
with

• χ(n) = 0 if gcd(q, n) > 1 and
• χ(n) = ψ(∣n∣q) otherwise.

In the further text we use only Dirichlet characters. So, we call them simply characters (mod-
ulo q).

e group (Z/q)∗ is (non-canonically) isomorphic to its dual group (̂Z/q)∗. Note that χmodulo q
is multiplicative and periodic in q, i.e., χ(n + q) = χ(n) for all n. e unit element of the group of
characters is denoted with χ0. e following proposition tells us a bit more about characters.

Proposition .. Let χ be a character and χ ≠ χ0. en

∑
x∈(Z/q)∗

χ(x) = 0.

is proposition is one direction of [Cohen, , Proposition ..]. Look there for the proof. For
the next two definitions see also [Cohen, , Definition ... and Definition ...].

Definition . (Gauß sum). Let χ be a character modulo q. e Gauß sum τ(χ) is

τ(χ) = ∑
x∈(Z/q)∗

χ(x)ζxq ,

with ζq the q root of unity.

Definition . (Jacobi sum). Let χ1 and χ2 be characters modulo q. e Jacobi sum of them, in sign
j(χ1, χ2), is

j(χ1, χ2) = ∑
x∈(Z/q)∗

χ1(x)χ2(1 − x).

It is possible to replace (Z/q)∗ with Z/q and to exclude x = 1. e following key property of the
Jacobi sums allows us the feasible implementation of the test. Crandall and Pomerance [] explain
the computational benefits of it. Computingwith aGauß sum τ(χp,q) inZ[ζp , ζq]would require doing
arithmetic with lists of length (p − 1)(q − 1), each list element is modulo N . e primes p might be of
order lnN . But the primes q are “as large as (lnN)c ln ln lnN” for some c > 0 [Crandall and Pomerance,
]. With Jacobi sums we can remain in Z[ζp]. See [Cohen, , Section ..] and specifically
[Cohen, , Proposition ...] for more details and a rigorous proof.

.. Jacobi Sum Test 71

Proposition .. Let χ be a character modulo q of order n. It holds n ∣ ϕ(q). Here is ϕ the Euler’s totient
function:

ϕ(k) = #{1 ≤ l ≤ k ∶ gcd(l , k) = 1}.

Further
τ(χ) ∈ Z[ζn , ζq],

but for two characters χ1, χ2 modulo q of orders m1 and m2 with m1,m2 ∣ n holds

j(χ1, χ2) ∈ Z[ζn].

For the above characters χ1, χ2 with additional property χ1χ2 ≠ χ0 also holds

j(χ1, χ2) =
τ(χ1)τ(χ2)
τ(χ1χ2)

.

Sketch of the proof. We follow [Cohen,] in the proof of the last statement. Let the indices in all
sums be over elements of (Z/q)∗. With x = ty follows

τ(χ1)τ(χ2) =∑
x
∑
y
χ1(x)χ2(y)ζx+yq =∑

t
∑
y
χ1(t)χ1χ2(y)ζ y(1+t)q .

e denotes complex conjugation. e sum ∑y χ(y)ζ
ay
q is for any χ ≠ χ0 either χ(a)τ(χ) or zero.

e latter is the case if a ≡ 0 (mod q). Now for χ1χ2 ≠ χ0 holds

τ(χ1χ2) ∑
t≠−1

χ1(t)χ1χ2(1 + t) = τ(χ1χ2)∑
u
χ1(u)χ2(1 − u) = τ(χ1χ2) j(χ1, χ2)

with a bijective mapping u = t/(1 + t) from (Z/q) ∖ {0,−1} to (Z/q) ∖ {0, 1}. †

Now Proposition . and eorem . on page provide the insight to the core of the Jacobi
sum test. But before we state them, we need to take care of some precomputations.

.. Helper Algorithms

Primitive roots modulo p. A corollary of Fermat’s Little eorem (eorem .) is that for any n ∈
Z/p with prime p a power e exists, such that ne ≡ 1 (mod p). is power is called the order of n
modulo p. Consider (Z/p)∗, the multiplicative group of Z/p for an odd prime p. Some element g
therein exists, with order of g equal ϕ(p) = p− 1. Such element g is called a primitive root modulo p or
a generator, see [Hardy and Wright,]. In some cases primitive roots modulo composite numbers
exist.

Primitive roots modulo p are not to be confused with (primitive) roots of unity. e first are
generators of finite groups, while the latter are points on the complex unity circle. However, as the
name suggests, they bear something in common. A primitive root of unity of order n is the generator
of a cyclic group of order n. e relation between the two is emphasised on page .

Hardy and Wright [] explain primitive roots in quite a detail. We follow Stein [] and state
an algorithm for computing a primitive root modulo a prime p as Algorithm . Cohen [] states a
similar algorithm. is algorithm terminates for all prime p, as in this case all (Z/p)∗ have primitive
roots [Hardy and Wright, , eorem]. Further, let d be a divisor of p − 1, such as dn = p − 1.
en for some a, which is not a generator of (Z/p)∗, a factor pi of p − 1 exists with pi ∣ n. Now
a(p−1)/p i ≡ (a(p−1)/n)n/p i ≡ 1 (mod p). A converse also holds. See [Cohen, , Stein,] for
details.

72 Chapter . Primality Testing — Repeated Computation

Algorithm Primitive roots modulo p.
Require: prime p

: function M P R(p)
: if p = 2 then return // we are done!
: end if
: Factor p − 1 to {p1, . . . , pk}.
: return H P R(p, 2, {p1, . . . , pk}, {p1, . . . , pk})
: end function
: function H P R(p, a, qs, rs)
: if qs list is empty then return a.
: end if
: Let q be the head of qs and qs′ be the tail of qs.
: if a(p−1)/q ≡ 1 (mod p) then return H P R(p, a + 1, rs, rs)
: else return H P R(p, a, qs′, rs).
: end if
: end function
Ensure: a is a primitive root modulo p.

Algorithm Precomputations for Jacobi sum test.
Require: upper bound B.

: Look up in Table . a such t, that e2(t) > B.
: for every prime q with q ≥ 3 and q ∣ e(t) do
: use Algorithm to compute the primitive root gq modulo q.
: Tabulate the discrete logarithm function f (x).
: for every prime p dividing q − 1 do
: let k ← vp(q − 1) and define the character χp,q with χp,q(gxq) = ζxpk .
: Compute the Jacobi sums J(p, q).
: end for
: end for

Ensure: precomputations for Algorithm .

Precomputation. e following helper algorithm (see Algorithm) performs precomputations, de-
pending only on the upper bound B for the test, but not on the future input N of the test [Cohen, ,
Algorithm ..]. e idea is that the stored precomputations for some B allow efficient processing
of an arbitrary N < B. e stored data include the precomputed Jacobi sums. e table of values for t,
which is used in Step of Algorithm , is given in Table . on the facing page. e stated value of t
is always given for all integers smaller than N . An improvement by Lenstra [] allows to replace
e2(t) > B with e3(t) > B in the precomputation. For details on the choice of t see [Cohen and Lenstra,
, Lenstra, , Cohen,]. e discrete logarithm f (x) to tabulate in Step is defined for
1 ≤ x ≤ q − 2 is defined by g f (x)q = 1 − gxq (mod q) with 1 ≤ f (x) ≤ q − 2. e value of gq is found
in Algorithm in Step . Further, ζp is the p primitive root of unity. e function νq(t) denotes the
multiplicity: t = qνq(t)s for some integer s with q ∤ s. Refer to Figure . on the next page for the
Haskell implementation.

e formulae for the Jacobi sums J(p, q) (Step) are defined as follows. If p ≥ 3 or both p = 2 and
k = νp(q − 1) = 2, then

J(p, q) = j(χp,q , χp,q) =
q−2
∑
x=1

ζx+ f (x)pk

.. Jacobi Sum Test 73

nu q t ∣ (r == 0) = 1 + nu k q
∣ otherwise = 0

where (k, r) = t ‘divMod‘ q

Figure .: Computing multiplicity in Haskell.

N t

4292870400 12
2101 180
2152 720
2204 1260
2268 2520
2344 5040
2525 27720
2774 98280
21035 166320
21566 720720
22082 1663200
23491 8648640

Table .: Values of t for Algorithm .

holds. e other cases are

J(3, q) = j3(χ2,q , χ2,q , χ2,q) = J(2, q)(χ22,q , χ2,q) = J(2, q)
q−2
∑
x=1

ζ2x+ f (x)2k ,

J(2, q) = j2(χ2
k−3

2,q , χ2
k−3

2,q) =
⎛
⎝

q−2
∑
x=1

ζ3x+ f (x)8
⎞
⎠

2

.

.. Main Algorithm

eory. e key idea of the algorithm is to check the following condition. It is [Cohen, , Pro-
position ..], see there for the detailed proof.

Proposition . (Generalised Fermat). Let β ∈ Z[G]. If N is prime, then there exists η(χ) ∈ ⟨ζn⟩ such
that

τ(χ)β(N−σN) ≡ η(χ)−βN (mod N) (.)

for σN ∈ G. We understand η(χ) as χ(N). e congruences modulo N are in fact modulo NZ[ζn , ζq].
We consider Z[G] acting not only on Q(ζn), but also on Q(ζn , ζq).

Idea of the Proof. With a generalisation of Lemma . holds (∑ ak)N ≡ ∑ aNk (mod N): all inner
coefficients are divisible by N . en we can write modulo N

τ(χ)N =∑
x
τ(x)N ζNx

q =∑
x
τ(N−1x)N ζxq = χ(N)−Nτ(χN). (.)

e required result follows from raising (.) to the power β. See also [Cohen and Lenstra,] for
details. †

74 Chapter . Primality Testing — Repeated Computation

Algorithms , , and test for (.) in various circumstances. eorem . states that with that re-
quirement and some further checkswe can ensure primality. Following [Cohen, , Definition ..]
we can define the lp set condition.

Definition . (lp set condition). We say that the lp set condition w.r.t. N is satisfied, if for all prime
divisors r of N and all integers a > 0 such integer lp(r, a) exists, that

rp−1 ≡ N(p−1)lp(r,a) (mod pa)

holds.

Note that for prime N the lp set condition holds trivially with lp(r, a) = 1.
We introduce a new notation: a ∥ b means that a ∣ b, but a ∤ (b/a). e symbol c � d means that

c and d have no common factors. In other words: gcd(c, d) = 1. Of course q − 1 ∣ t could be written
more strictly as (q−1) ∣ t. e following central theorem is derived from [Cohen, ,eorem ..
and Corollary ..]. Look there for the proof.

eorem .. Let t be an integer, let

e(t) = 2 ∏
q prime
q−1∣t

qvq(t)+1,

assume N � t ⋅ e(t). For every pair of primes (p, q) with q − 1 ∣ t and pk ∥ q − 1, let χp,q be a character
modulo q of order pk . Assuming that

. For all pairs (p, q) per above, the character χ ∶= χp,q fulfils (.) for some β ∉ p̄

. For all primes p ∣ t the lp set condition is satisfied

then for every divisor r of N there exists an integer j with 0 ≤ j ≤ t and

r ≡ N j (mod e(t)).

Further, let r j ∶= N j mod e(t) with 0 < r j < e(t) for all j. Such r j build all possible divisors of N . If
e(t) >

√
N and if for each j with 0 < j < t none r j divides N non-trivially, then N is prime.

A typical example of χ is χp,q(gaq) = ζaq if gq is a primitive root modulo q. is is the connection
between primitive roots modulo q and primitive roots of unity.

Example . (Trial division). Assume, N = 23. en t = 12, e(t) = 2 ⋅ 23 ⋅ 32 = 144. It holds N � t ⋅ e(t).
Assume further that both conditions and from the above theorem are satisfied. Possible divisors of N
are then 0 < r j < e(t) with r j ≡ N j (mod e(t)). e possible values are , , , , , and . Up to
 itself, all other r j have no common factors with N = 23. us 23 is indeed prime.

e value β ∈ Z[G] from condition in eorem . depends on p, as we will see below. A more
deep insight into the Jacobi sum test is provided by the following statements.

Proposition . (Cohen [], Proposition ..). Assuming, we find a character χ modulo q of
order pk for which (.) is satisfied with η(x) a primitive pk root of unity. en, given one of the
following conditions is true, the lp set condition is satisfied:

• If p ≥ 3

• If p = 2, k = 1 and N ≡ 1 (mod 4)

• If p = 2, k ≥ 2 and q(N−1)/2 ≡ −1 (mod N)

e next proposition also originates from [Cohen,]. Look there for the proof. e multiplic-
ation with σ−1x in the following statements signals that the computation happens in Z[G].

.. Jacobi Sum Test 75

Proposition . (Cohen [], Proposition ..). Let χ be a character modulo q of order pk and
let a and b be integer numbers with p ∤ ab(a + b). Let E be the set of all integers x, with 1 ≤ x < pk and
p ∤ x. Further, define

α =∑
x∈E
⌊Nx
pk
⌋ σ−1x

and

β = −∑
x∈E
(⌊xa

pk
⌋ + ⌊xb

pk
⌋ − ⌊x(a + b)

pk
⌋) σ−1x .

en
τ(χ)β(N−σN) = j(χa , χb)α .

With this proposition, we can replace powering the Gauß sum τ(χ) with powering the Jacobi
sum j(χa , χb). en we work in a much smaller ring Z[ζpk]. is result makes the test practical.
However, we have excluded the case p = 2 with the condition p ∤ ab(a + b). Cohen [] shows
in his statements ..–.. that there are ways to handle it. We see an almost direct application of
these results in Algorithms –.

Remark (Cohen [], Lemma ..). e above proposition is related to Lemma .:

β ∉ p̄⇐⇒ (a + b)p ≢ ap + bp (mod p2).

Let us focus on the case of Algorithm . e following result is [Cohen, , Proposition ..].
Look there for the proof. It is connected to the Wieferich congruence 2p ≠ 2 (mod p2) of the first case
of the Fermat’s Last eorem. e only known solutions for p < 4 ⋅ 1012 are the two excluded values
p = 1093 and p = 3511, viz. [Crandall et al.,].

Proposition .. For 3 ≤ p < 6 ⋅ 109, p ≠ 1093, 3511 we can take a = b = 1. In other words, (.) is
equivalent to

j(χ, χ)α ≡ η(χ)−cN (mod N)

with α as above,
β = ∑

pk/2<x<pk
p∤x

σ−1x

and

c = 22
(p−1)pk−1 − 1

pk
.

eorem . provides us with the the main part of Jacobi sum test. e preliminary part of the
test, independent from N , was stated in Section .. as Algorithm , see page . We state the main
part of the Jacobi sum test as Algorithm on page , with the checks of (p, q) pairs in Algorithms , ,
 and . e input number N should have passed the Rabin–Miller test, i.e., Algorithm of Section ..
We discuss the implementation details of the Jacobi sum test next. e parallelisation is discussed in
Section .. on page .

.. Implementation

Representation of residues. We need an implementation of a single-residue integer arithmetic, as
one seen in Chapter . However, the main focus here lies not in the possibilities for the parallelism,
but in the fast powering algorithm. e current implementation uses high-level Haskell code³, corres-
ponding to the right-le binary powering algorithm [Cohen, , Algorithm ..], see Figure ..
ere are more complicated powering algorithms, like the le-right base 2k algorithm [Cohen, ,
Algorithm ..]. ese should be faster.

³A Haskell binding to the low-level GNU MP code for residual powering algorithms has been suggested, but is not yet
incorporated in GHC, see http://hackage.haskell.org/trac/igtest/ticket/.

http://hackage.haskell.org/trac/igtest/ticket/3489

76 Chapter . Primality Testing — Repeated Computation

Algorithm Jacobi sum test. Case : check (.) for p ≥ 3.
Require: A pair (p, q), the power k of p, a pseudo-prime N , the value lp.

: Let E ← {n ∶ n ∈ {0, . . . , pk} with p ∤ n}.
: Let

Θ ←∑
x∈E

xσ−1x (∈ Z[G]).

Let r ← N (mod pk) and

α ←∑
x∈E
⌊ rx
pk
⌋ σ−1x (∈ Z[G])

: Compute s1 ← J(p, q)Θ (mod N), and s2 ← s⌊N/p
k⌋

1 (mod N).
: Let

S(p, q)← s2J(p, q)α (mod N).

: if no pk root of unity η exists such that S(p, q) ≡ η (mod N) then
: return ‘N is composite’ and terminate the main algorithm.
: else if η is a primitive pk root of unity then set lp ← 1
: end if
: return lp

Ensure: Either a signal for the termination of the main algorithm with ‘N is composite’ or a possibly
new value lp.

powermod :: Integer → Integer → Integer → Integer
powermod b e m -- produces b^e mod m
∣ (e==0) = 1
∣ (e ‘mod‘ 2 == 0) = (temp ∗ temp) ‘mod‘ m
∣ otherwise = b ∗ (powermod b (e-1) m) ‘mod‘ m
where temp = (powermod b (e ‘div‘ 2) m)

Figure .: e powering algorithm for residue classes.

type Poly a = [a]

unshuffle :: Integer → [a] → [[a]] -- see Chapter 3

easysimp :: Poly Integer -- ^ polynomial to simplify
→ Integer -- ^ the order of the root of unity
→ Poly Integer -- ^ simplified polynomial

easysimp l n = foldr (+) [] $ unshuffle n l

Figure .: Simplifying polynomials Φn, the easy way.

Optimisation. e profiling of the sequential version with GHC .. showed for the input 2607 − 1
that 99% of time is spent in the main loop of the algorithm (viz. Figure .). Further, pretty much
time was used by the implementations of the powering algorithm and of the polynomial arithmetic.
To be more specific: the execution time of five top cost centres was ticks. In order to reduce the
total program execution time, especially in thementioned above part, an implementation of univariate
polynomials was optimised. e key optimisation was to replace primitive recursions with the wider
usage of higher-order functions. As the result, the same functions require only ticks to compute.
We benefited from the optimised implementation of list processing functions functions in GHC, see,
e.g., [Coutts et al.,]. We conducted all our measurements with the optimised implementation.

.. Jacobi Sum Test 77

Algorithm Jacobi sum test. Case : check (.) for p = 2 and k ≥ 3
Require: A pair (p, q), the power k of p, a pseudo-prime N , the value lp.

: Let E ← {n ∶ n ∈ {0 . . . 2k} with n = 1 (mod 8) or n = 3 (mod 8)}.
: Let

Θ ←∑
x∈E

xσ−1x (∈ Z[G])

Let r ← N (mod 2k) and
α ←∑

x∈E
⌊ rx
2k
⌋ σ−1x (∈ Z[G])

: if r ∈ E then δN ← 0
: else δN ← 1.
: end if
: Compute s1 ← J3(p, q)Θ (mod N) and s2 ← s⌊N/p

k⌋
1 (mod N).

: Let
S(2, q)← s2J3(q)α J2(q)δN (mod N).

: if no 2k root of unity η exists such that S(2, q) ≡ η (mod N) then
: return ‘N is composite’ and terminate the main algorithm.
: else if η is a primitive pk root of unity and q(N−2)/2 = −1 (N) then l2 ← 1
: end if
: return l2
Ensure: Either a signal for the termination of the main algorithm with ‘N is composite’ or a possibly

new value lp.

Algorithm Jacobi sum test. Case : check (.) for p = 2 and k = 2
Require: A pair (p, q), the power k of p, a pseudo-prime N , the value lp.

: Let s1 ← J(2, q)2 ⋅ q (mod N) and s2 ← s⌊N/4⌋1 (mod N).
: if N = 1 (mod 4) then set S(2, q)← s2
: else if N = 3 (mod 4) then set S(2, q)← s2J(2, q)2
: end if
: if no fourth root of unity η exists with S(2, q) ≡ η (mod N) then
: return ‘N is composite’ and terminate the main algorithm.
: else if such η exists and q(N−1)/2 ≡ −1 (mod N) then set l2 ← 1.
: end if
: return l2

Ensure: Either a signal for the termination of the main algorithm with ‘N is composite’ or a possibly
new value lp.

Algorithm Jacobi sum test. Case : check (.) for p = 2 and k = 1.
Require: A pair (p, q), the power k of p, a pseudo-prime N , the value lp.

: Let S(2, q)← (−q)(N−1)/2 (mod N).
: if S(2, q) ≢ ±1 (mod N) then
: return ‘N is composite’ and terminate the main algorithm.
: end if
: if S(2, q) ≡ −1 (mod N) and N ≡ 1 (mod 4) then let l2 ← 1.
: end if
: return l2

Ensure: Either signal for the termination of the main algorithm with ‘N is composite’, or a possibly
new value lp.

78 Chapter . Primality Testing — Repeated Computation

Algorithm Jacobi sum test. Main algorithm.
Require: A strong pseudo-prime N . It holds N ≤ B.

: procedure C (p, q, k) // For these parameters holds pk ∥ (q − 1) ∣ t
: if p ≥ 3 then execute Algorithm , eventually updating the lp value.
: else if p = 2 and k ≥ 3 then execute Algorithm , eventually updating the lp value.
: else if p = 2 and k = 2 then execute Algorithm , eventually updating the lp value.
: else if p = 2 and k = 1 then execute Algorithm , eventually updating the lp value.
: end if
: return lp.
: end procedure
: procedure M (N , B)
: if gcd(t ⋅ e(t),N) > 1 then return ‘N is composite’.
: end if
: for every prime p ∣ t do
: if p ≥ 3 and N p−1 ≠ 1 (mod p2) then lp ← 1
: else lp ← 0
: end if
: end for
: for all pairs of primes (p, q) such that pk ∥ (q − 1) ∣ t do // Loop to parallelise
: lp ←C (p, q, k)
: end for // Either we have terminated via one of the helper algorithms with ‘N is composite’ or we

have a possibly updated list of lp values for all p.
: for all p ∣ t with lp = 0 do
: Choose a random prime q with q ≠ e(t), and q ≡ 1 (mod p), and q �N .
: lp ←C (p, q, k) //Wewill have to compute some new Jacobi sums, Algorithm

tells us how. In each step we obtain possibly updated list elements lp.
: if aer attempts some lp are still zero then return ‘failed’ // improbable!
: end if
: end for
: for i ∈ {1, . . . , t − 1} do
: compute by induction ri ← N i (mod e(t)).
: if ri ∣ N and ri ≠ 1 and ri ≠ N then return ‘N is composite’
: end if
: end for
: return ‘N is prime’
: end procedure
Ensure: Either ‘N is composite’ or ‘N is prime’ or ‘failed’.

Representation of cyclotomic fields. Further, we need to represent an n cyclotomic field on a com-
puter. e straightforward design decision was to representQ(ζn) symbolically asQ[x]/⟨Φn(x)⟩with
n cyclotomic polynomial Φn(x). We know the latter is the minimal polynomial in our case. e al-
gorithmic optimisations concerning this representation were to

• Normalise ζnn to 1 in each arithmetic operation.

• Reduce the result aerwards.

e current implementation represents (univariate) polynomials as dense lists. Experiments have
shown, that the usage of sparse lists does not produce substantial difference. A simple approach for
the simplification of the field extension polynomial is presented in Figure ., the more advanced
approach was also implemented, see Appendix.

.. Jacobi Sum Test 79

jacobiSumTestMainLoop :: [(Integer, Integer)]
-- ^ (p, q) list, pk ∣ ∣ q-1 ∣ t

→ Integer -- ^ n, the prime candidate
→ Integer -- ^ t from precomputation
→ [Integer] -- ^ list of primes with lp=0
→ Maybe [Integer]

-- ^ the result: Nothing: not a prime
-- Just _: possibly updated list of primes with lp=0

jacobiSumTestMainLoop [] n t lps = Just lps
jacobiSumTestMainLoop ((p, q):xs) n t lps
∣ (res == Nothing) = Nothing
∣ otherwise = jacobiSumTestMainLoop xs n t lps’

where k = nu (q-1) p -- multiplicity of p in (q-1)
res = jacobiSumTestSelector p k q n lps
lps’ = fromJust res -- strip the Just constructor

jacobiSumTestSelector :: Integer → Integer → Integer
-- ^ p, k and q from pk ∣ ∣ q-1

→ Integer -- ^ prime candidate n
→ [Integer] -- ^ list of primes with lp=0
→ Maybe [Integer]

-- ^ the result: Nothing: not a prime
-- Just _: possibly updated list
-- of primes with lp=0

jacobiSumTestSelector p k q n lps
∣ (p ≥ 3) = jacobiSumTestCase1 p k q n lps fps
∣ (k ≥ 3) = jacobiSumTestCase2 p k q n lps fps
∣ (k==2) = jacobiSumTestCase3 p k q n lps fps
∣ (k==1) = jacobiSumTestCase4 p k q n lps fps
∣ otherwise = error ”failed to select the right case”

where fps = fpairlist q

Figure .: Jacobi sum: Main loop. is is the sequential version of the Jacobi sum test. We show only
the central part of Algorithm (main loop in Step and decision for the choice of the helper algorithm).

Return value. emain loop of the test is in Figure .. e remaining parts of the test’s implement-
ation are not very interesting—with one exception. e simplest approach is to return a Bool value
for ‘is prime’ or ‘not a prime’, and a runtime error for the failure of the test. But it makes more sense
to return Maybe Integer. en the interface of the top-level function is

jacobi :: Integer → Maybe Integer

en we can use a monadic approach, detailed in Section ..

.. Parallelisation

Implementation. If we carefully inspect Algorithms –, we see an important fact.

eorem .. Algorithms – can be called for different entries of the list of (p, q) pairs simultaneously.

Proof. We need to show that one call of each of the aforementioned algorithms does not depend on
the result of any another one, and that these algorithms do not mutually destroy their result. It suffices
to observe that neither of Algorithms – actually needs the entries in the list of lp values, except for
the purpose of possibly changing a lp value. e lp list is later used in step of Algorithm . So, the
behaviour of these algorithms does not change, if we call each of them as appropriate with initial value

80 Chapter . Primality Testing — Repeated Computation

unifyMaybe :: (Eq a) ⇒ [Maybe [a]] → Maybe [a]
unifyMaybe xss ∣ any isNothing xss = Nothing

∣ otherwise = Just $ unify $ catMaybes xss

jacobiSumTestMainLoop
:: Map a b -- ^ parallel map instance to use
→ [(Integer,Integer)] -- ^ (p, q) list, pk ∣ ∣ q-1 ∣ t
→ Integer -- ^ n, the prime candidate
→ Integer -- ^ t from precomputation
→ [Integer] -- ^ list of primes with lp = 0
→ Maybe [Integer] -- ^ the result:
-- Nothing: not a prime
-- Just _: possibly updated list of primes with lp = 0

jacobiSumTestMainLoop amap xs n t lps
= let worker (p, q) = jacobiSumTestSelector p k q n lps

where k = nu (q-1) p -- multiplicity of p
in map+reduce’ (amap worker) unifyMaybe xs

Figure .: Parallel implementation of Jacobi sum test. We use farm or workpool as amap.

short name properties implementation

workpool A sorting blocking workpoolSorted
workpool B sorting non-blocking workpoolSortedNonBlock
workpool C non-sorting workpool’

Table .: Naming of workpools in this chapter.

lp = 0 for all p in question. We merely need to merge the list of lists of lp to the single list of lp for the
further processing.

is means for us, that we can execute the step of Algorithm in parallel. e calls to Al-
gorithms – will provide us with their versions of the lp list. All we need to do then is to reduce the
list of the lp lists to a single list. We can do it in the following way:

unify :: (Eq a) ⇒ [[a]] → [a]
unify = foldl1 intersect ○ nub

e actual function demands a bit more care, as it processes the lists of type [Maybe [a]] and should
stop consuming the list, if a Nothing occurs. Further, one needs to handle empty lists correctly. A full
implementation of the reduce function, called unifyMaybe, is shown in Figure ., top. Now we
can replace the main loop of the implementation, i.e., the function jacobiSumTestMainLoop in Fig-
ure ., with the code in Figure ., bottom. e resulting code runs in parallel. is code uses the
map+reduce skeleton scheme, shown in Figure . on page .

Note that we are able to change the order of the result list in the implementation of unifyMaybe.
is allows us to conclude the following result.

Corollary .. e order of evaluation of separate calls to Algorithms – is irrelevant, as long as the
correct order of the resulting lp list, i.e., the order of list elements, expected in the remaining program, is
restored aer the calls to helper algorithms.

Performance. Let us observe the performance of our parallel code. We take Mersenne primes as
input, meaning N = 2k − 1. e time is stated in seconds. As always (cf. methodology in Section .)
each program is run five times, then an average is built. We performed some experiments on sakania,

.. Jacobi Sum Test 81

n skeleton PE
1 2 3 4 5 6 7 8

512

farm 3.82 1.98 1.51 1.08 0.99 0.82 0.79 0.71
workpool A 3.82 2.00 1.36 1.12 0.94 0.83 0.72 0.69
workpool B 3.82 1.99 1.37 1.12 0.95 0.82 0.73 0.70
workpool C 3.82 2.00 1.37 1.11 0.93 0.83 0.74 0.71

607

farm 16.0 8.53 8.11 4.72 4.25 4.76 3.83 3.29
workpool A 16.0 8.49 5.97 4.72 4.05 3.70 3.37 3.14
workpool B 16.0 8.41 6.00 4.72 4.05 3.72 3.47 3.31
workpool C 16.1 8.30 6.04 4.70 4.06 3.78 3.32 3.14

Table .: Time measurement for Jacobi sum test on sakania. is is the version with original task order.
e value n in the table corresponds to the input value 2n−1. Workpool A is workpoolSorted, workpool B
is workpoolSortedNonBlock, workpool C is a non-sorting workpool’. e latter is explained on page .

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

P24:1
P23:1
P22:1
P21:1
P20:1
P19:1
P18:1
P17:1
P16:1
P15:1
P14:1
P13:1
P12:1
P11:1
P10:1
P9:1
P8:1
P7:1
P6:1
P5:1
P4:1
P3:1
P2:1
P1:2
P1:1

Figure .: Parallel Jacobi sum trace diagram with workpool A on PE. Input is 2607 − 1. Note the task
granularity. Arrows indicate messages from the master.

we used all eight cores for worker processes. We used nomemory tuning. In the remaining part of this
chapter we abbreviate the names of different workpool implementations as shown in Table .. We use
workpool A and workpool B. Our starting point are figures in Table ..

How good is the load balancing? To answer this question we perform somemeasurements on local
workstations. In Figure . we see a trace diagram of our initial parallelisation of Jacobi sum test. e
input was 2607−1, aMersenne prime. e executable, which has produced the visualised trace, was run
on local workstations. We used PE, this corresponds to twelve physical dual-core machines. We
observe that despite using dynamic task balancing with various sorting workpool implementations, we
still have an issue with unbalanced tasks near the end of the computation. e small sequential phase
at the end of the diagram represents the remaining steps of the algorithm. In the showed case, none
of the lp values were zero in Step of Algorithm on page . e inspection of messages in the
same diagram reveals that the last tasks are issued simultaneously, just some tasks take much longer
time than other tasks. We see this at . seconds: PE and PE obtain one task each. PE is busy
until . second, PE is done aer . seconds of work. However, we see that earlier tasks have this
problem to a less extent. Further, it seems that some small tasks are issued first, see PE and first tasks
on PE . We discuss this issue below.

We investigate into the task size for a typical parallel execution. To do so, we execute the program
with input 2607 − 1 on as many virtual PEs, as tasks are available. In this particular case that were
PE, which were executed on dual-core machines, i.e., on real processors. e initial setting is
depicted in Figure ., le. e horizontal axis shows the precedence of the tasks, le are the first
tasks, right are the last ones. In a typical workpool setting there are more tasks than PEs, the tasks

82 Chapter . Primality Testing — Repeated Computation

Precedence of tasks

Task execution time, direct order
Ti

m
e,

 ti
ck

s

0.
0e
+0
0

5.
0e
+0
8

1.
0e
+0
9

1.
5e
+0
9

Precedence of tasks

Task execution time, reverse order

Ti
m

e,
 ti

ck
s

0.
0e
+0
0

5.
0e
+0
8

1.
0e
+0
9

1.
5e
+0
9

Figure .: Distribution of tasks in a Jacobi sum program. Le: without a task pool transformation.
Right: with said transformation.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

P8:1
P7:1
P6:1
P5:1
P4:1
P3:1
P2:1
P1:2
P1:1

Figure .: Trace diagram for Jacobi sum test on sakania, input 2607−1, reversed task order, workpool C.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

P8:1
P7:1
P6:1
P5:1
P4:1
P3:1
P2:1
P1:2
P1:1

Figure .: Trace diagram for Jacobi sum test on local workstations, input 2607 − 1, reversed task order,
workpool C.

on the le will be consumed first. Only when these are computed, the next tasks will be issued. e
vertical axis shows the time to compute each task, measured in internal ticks of the Haskell runtime
system. We see that many ‘heavy’, large tasks appear at the right hand side of said diagram. ese tasks
will be computed last. As all other tasks are already computed, bad load balancing ensues. e reason
for what we see in the trace visualisations, e.g., in Figure ., is relatively small amount of remaining
tasks and the no possibility for the skeleton to know beforehand how hard each task is. We call the
collection of all tasks a task pool.

However, as single tasks are independent from each other (see eorem .), Corollary . tells
us, we can permute the tasks in the task pool in any way suitable for us. e aim is to start as many
large tasks as early as possible. To achieve this we reverse the list of the tasks (i.e., the order of the
(p, q) pairs) and reverse the precedence of the lp list. is action, applied to our test program with
input size 2607− 1, results in the order of the task pool depicted in Figure ., right. e axes and units
are the same as before. We see that most of the ‘hard’ time-consuming tasks move to the le part of
the plot. is means that these tasks are computed before the tasks to the right. Hence, a better load
balancing is to be assumed. We support our claim by inspecting the traces of the test executions of the
two approaches in question. e time measurements for this approach are presented in Table ..

.. Jacobi Sum Test 83

n skeleton PE
1 2 3 4 5 6 7 8

512

farm 3.75 1.95 1.48 1.06 0.99 0.81 0.78 0.71
workpool A 3.76 1.92 1.34 1.05 0.89 0.78 0.69 0.63
workpool B 3.77 1.93 1.33 1.05 0.88 0.77 0.69 0.64
workpool C 3.75 1.93 1.34 1.05 0.88 0.78 0.69 0.62

607
farm 15.51 8.32 7.89 4.56 4.07 4.50 3.68 3.22

workpool A 15.58 7.97 5.50 4.29 3.71 3.22 2.87 2.64
workpool B 15.58 7.98 5.47 4.23 3.63 3.16 2.91 2.58
workpool C 15.57 7.99 5.45 4.19 3.61 3.14 2.84 2.68

Table .: Time measurement for Jacobi sum test on sakania. is is the version with reversed task order.
e value n in the table corresponds to the input value 2n−1. Workpool A is workpoolSorted, workpool B
is workpoolSortedNonBlock, workpool C is non-sorting workpool’.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

P24:1
P23:1
P22:1
P21:1
P20:1
P19:1
P18:1
P17:1
P16:1
P15:1
P14:1
P13:1
P12:1
P11:1
P10:1
P9:1
P8:1
P7:1
P6:1
P5:1
P4:1
P3:1
P2:1
P1:2
P1:1

Figure .: Trace diagram for Jacobi sum test with reversed task order on local workstations, input
2607 − 1, reversed task order, workpool C. Arrows indicate messages from the master.

A further optimisation originates from the same observation. As we maintain the order of the
result elementsmanually, we do not need a sorting workpool. Workpool C in Table . is a non-sorting
workpool implementation, the workpool’ to be more precise. e order of the elements is secured by
sequential sorting in the post-processing phase aer the reduce. e length of the final, combined
result list is at most the total length of all the individual result lists from single tasks. Hence, such
sorting ismore efficient in a combinationwith a non-sortingworkpool than a direct implementation of
a sorting workpool. To facilitate a better comparison we also performedmeasurements of the program
execution time with original task order and non-sorting workpool with a sequential sort aerwards.
ese results are stated in Table . on page in the lines labelled ‘workpool C’.

Let us call the unaltered task pool program an ‘original’ one, while the program with a modified
task pool will be a ‘reversed’ one. e trace diagrams for the both cases are presented in Figure . on
page for the original and in Figures ., . and . for the reversed task pool. emessage arrows
in the latter image indicate that most of larger tasks are performed at the beginning of the computation.
e last issued tasks (at . seconds) are issued to the workers simultaneously. Just someworkers (like
PEs and) take much more time for the last task than other workers (like PE and). Our task
pool transformation resulted in the trace diagram shown Figure . as opposed to Figure . for an
unaltered task pool.

e best speedup on sakania, at eight PE, is 5.00 for the original version with workpool A and
2521 − 1 as input. It is 5.54 for the reversed version with the same input and workpool C. However, the
best speedup for the reversed version with larger input 2607 − 1 is 5.17, now for workpool B. For even
larger input 21279 − 1 the best workpool is ‘A’ with speedup 5.78 on eight PE for the reversed version.

84 Chapter . Primality Testing — Repeated Computation

1 2 3 4 5 6 7 8

1
2

3
4

5
6

7
8

PE

S
pe
ed
up

linear speedup
n=521, workpool C
n=521, farm
n=607, workpool A
n=607, workpool B
n=607, workpool C
n=607, farm

Figure .: Absolute speedup for Jacobi sum test. We use the reversed implementation for our measure-
ments. e two inputs were 2521 − 1 and 2607 − 1. e tests were performed on sakania.

We show the execution times of various program versions at multiple inputs in Tables . and ., the
speedup curves for different workpool implementations of the better, reversed case is in Figure ..
e latter figure shows clearly that we do not need to consider a farm: static task balancing without
information on task size is not of a benefit. For comparison, we visualised in Figure . a trace of
workpool C with input 2607 − 1 on eight local workstations. e corresponding image for sakania is
in Figure ..

We see a better performance of the implementation with reversed task pool. emaximal absolute
speedup achieved was 5.78 for the input 21279 − 1 on eight PE. An optimisation of the polynomial
arithmetic (see page , included in both sequential and parallel versions regarded here) and the task
pool optimisations from this section enabled a satisfying parallelisation of Jacobi sum test.

Estimating the execution time. For the estimation of the run time of Jacobi sum test, we used primes
of size ≈ 2600–2619 as the input. We designate the exponents as the input sizes, i.e., they range from
 to . e aim is to estimate the execution time for the input size from smaller inputs. We
use the relative speedup and, correspondingly, relative reference point. e runtimes, used to compute
the quality measures, are the mean times of five consecutive program runs. is approach should have
captured the general trend. We need the averaging because of the non-determinism of the workpool,
a particular single program execution might behave in a different manner.

e choice of the input has three reasons. Firstly, our standard inputs, the Mersenne primes in the
suitable range from 2521 − 1 to 21279 − 1, are too few and too far apart to obtain a reliable input size to
time relation. Secondly, we wanted to test our prediction methods on non-monotonously increasing
data. irdly, we wanted to perform Jacobi sum test on ‘generic’ primes, as Mersenne primes are of a
special form.

We were able to predict the execution time w.r.t. input size quite accurately. We show the initial
data in Table .. Note that the increasing input size does not always results in increased execution

.. Jacobi Sum Test 85

n 600 601 602 603 604 605 606 607 608 609

T(n, 1) 15.19 15.07 15.18 15.25 15.16 15.27 15.25 15.21 15.29 15.44
T(n, 8) 2.59 2.58 2.66 2.62 2.68 2.60 2.55 2.59 2.58 2.62

n 610 611 612 613 614 615 616 617 618 619

T(n, 1) 15.52 15.44 15.00 15.48 15.33 15.51 15.39 15.44 15.60 15.73
T(n, 8) 2.76 2.66 2.53 2.71 2.59 2.65 2.59 2.69 2.64 2.78

Table .: Timings for Jacobi sum test.

600 605 610 615

15
.0

15
.2

15
.4

15
.6

15
.8

relative reference point
Input size

Ti
m

e,
 s

ec
on

ds

observed values
spline
loess
lm(poly) deg. 3
lm(poly) deg. 4
lm

Method spline loess
lm(poly) of degree

lm2 3 4

Rel. err., % 0.40 −0.61 −1.35 −0.959 4.3298⋅ 10−5 −1.383

Figure .: Predicting sequential execution time of Jacobi sum test.

time. e plots of our prediction approaches are in Figures . and .. We see, that we were able
to predict the sequential time very well. Indeed, the relative error for the lm(poly) method with or-
thogonal polynomials of degree was merely 4 ⋅ 10−5%. e spline and loess methods were also quite
good, with 0.40% and −0.61% relative error appropriately. On the other hand, the estimation of the
parallel overhead w.r.t. n was disappointing, as we obtained the relative error of −9.08% with lm(poly)
of degree . To do so, we dismissed the value at n = 618. Still, with both predicted values for T(n, 1)
and B(n, p) combined, we obtain the time for T(619, 8) up to −2.66% relative error.

Even more interesting is the prediction of B(n, p)w.r.t. p. We assume the values on p ≤ 7 as given.
e values for n = 619 are used. e estimation is not easy, but we have obtained the value 0.79 with
lm(poly) of degree , viz. Figure .. is corresponds with the measured value for B(619, 8) up to
−2.5% relative error. Using it for the estimation of T(619, 8) in a combination with a given T(619, 1),
we obtain the execution time up to −0.73% relative error.

Parallel overhead and serial fraction. We evaluate the plots of parallel quality measures for our Jac-
obi sum test implementation. We used the timemeasurements, obtained on sakania for theMersenne
prime 2607 − 1 with reversed task pool. Figure . shows both plots, with parallel penalty B(n, p) on
the le and serial fraction f (n, p) on the right. We show the values for the farm and for three workpool
implementations, abbreviated ‘wp’ in the figures. e handles of these implementations originate from
Table .. We use the absolute reference point.

86 Chapter . Primality Testing — Repeated Computation

600 605 610 615

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

relative reference point
Input size

B
(n
,p
)

observed values
spline
loess
lm(poly) deg. 2
lm(poly) deg. 3
lm

Method spline loess lm(poly) deg. 2 lm(poly) deg. 3 lm

Rel. err., % 183 −10.01 −11.11 −9.081 −12.21

Figure .: Predicting parallel overhead w.r.t. n of Jacobi sum test.

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

relative reference point
 PEs

B
(n
,p
)

observed values
spline
lm(poly) deg. 2
lm(poly) deg. 3
lm

Method spline lm(poly) deg. 2 lm(poly) deg. 3 lm

Rel. err., % −15.07 −2.508 −34.04 8.823

Figure .: Jacobi sum test. Estimating B(n, p) w.r.t. p.

Both plots are decreasing in the interval from PE to PE . is would signal poor performance
of the sequential version. However, from PE to PE both measures do not show a significant de-
crease. e occasional ‘waves’ in both plots from to PE indicate slightly better and worse task
distributions across PEs. We have addressed this issue in previous sections. We see that neither work-
pool implementation can be called a clear winner: the plots of both quality functions for the workpool
implementations are quite interleaved at – PE. We conclude that the final grain of the better per-
formance of a particular workpool for a particular number of PEs depends of the task distribution in
the particular case. However, the task distribution is of course runtime-dependent. We find all three
workpools similarly good, with a slight preference for one or another method for a particular number

.. Jacobi Sum Test 87

1 2 3 4 5 6 7 8

1.
0

1.
5

2.
0

Jacobi Sum Test: Parallel Overhead

PE

B
(n
,p
)

wp A
wp B
wp C
farm

n = 607

1 2 3 4 5 6 7 8

0.
08

0.
12

0.
16

0.
20

Jacobi Sum Test:
Serial Fraction

PE

f(n
,p
)

wp A
wp B
wp C
farm

n = 607

Figure .: Parallel overhead (le) and serial fraction (right) for Jacobi sum test. e input is 2607 − 1,
data originate from sakania (viz. Figure .).

of PEs.
As for – PE, we see the parallel overhead for farm falling from to PE, increasing at PE, and

falling again for PE. e ‘hill’ at PE can be explained with bad task distribution. Note that up to
PE the parallel penalty for the farm version is always larger than that for all workpools. A possible inter-
pretation would be: the dynamic task management of a workpool creates more overhead at PE than
a more simple farm implementation. e large value of both performance measures at small number
of PEs can be also explained with the absolute reference point: the pure sequential implementation
does not need to manage all the tasks. Additionally, the sequential implementation does not need to
sort and to reduce the results in the sequential version, as it implements the premature abort property
differently.

As for the differences between parallel penalty and serial fraction, in this case they both are similar
to other observations we made. On the one side, we can see the effects from above more clear in the
serial fraction, the ‘waves’ have a larger amplitude in the right plot. On the other side, the mentioned
above effect at – PE cannot be observed in serial fraction because it begins only at PE.

Future work. e bottleneck for the better scaling of parallel Jacobi sum test is the size of the largest
single task. Figures . and . show the trace diagrams of the original and reversed task pools on
PE with input size 2607− 1. It was measured on local workstations with twelve dual-core machines. We
see clearly that with increasing number of PE larger tasks dominate the computation time. Ingenious
splitting of current large tasks to multiple smaller ones could help. Further, we observe that with
larger inputs more tasks are created, thus enabling the current approach on a larger scale. is claim is
supported by the number of tasks, i.e., of (p, q) pairs. ere are 145 of them for input 2607− 1, but their
number rises to 287 already for input 21279 − 1 and to 560 for 22203 − 1. Hence, the size of the input is
in a particular relation to the number of PEs, similarly to the scaled speedup or isoefficiency [Grama
et al.,].

In other words: the increased number of tasks accounts for better task balancing on larger number
of PE. To give an example we show trace visualisations for Jacobi sum test with input 21270−1 on twenty-
four (cf. Figure ., see also Figure . for input 2607 − 1 on the same number of PE) and forty local
workstations (Figure .). In the latter program run we used not only Intel CoreDuo machines, but
also other availablemachines, including older Intel PentiumDdual-cores, a newer Intel imachine and
three various Intel Xeon machines, including the eight core sakania. Still we were careful not to use
more (virtual) PE than cores available. Dynamic workpool implementations were quite able tomanage
the different computation times for the tasks of the same size. e imbalances, discussed here, originate
from different task sizes, not from bad processor performance on different PEs. e imbalance was

88 Chapter . Primality Testing — Repeated Computation

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

P24:1
P23:1
P22:1
P21:1
P20:1
P19:1
P18:1
P17:1
P16:1
P15:1
P14:1
P13:1
P12:1
P11:1
P10:1
P9:1
P8:1
P7:1
P6:1
P5:1
P4:1
P3:1
P2:1
P1:2
P1:1

Figure .: Trace for Jacobi sum test on local workstations, input size 21279 − 1, PE.

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

P40:1
P39:1
P38:1
P37:1
P36:1
P35:1
P34:1
P33:1
P32:1
P31:1
P30:1
P29:1
P28:1
P27:1
P26:1
P25:1
P24:1
P23:1
P22:1
P21:1
P20:1
P19:1
P18:1
P17:1
P16:1
P15:1
P14:1
P13:1
P12:1
P11:1
P10:1
P9:1
P8:1
P7:1
P6:1
P5:1
P4:1
P3:1
P2:1
P1:2
P1:1

Figure .: Trace for Jacobi sum test on local workstations, input size 21279 − 1, PE.

also present in the differently composed set of workstations. We use consistently workpool C. We
see some support for the conjecture about better task balancing for increased number of tasks. If we
compare the PE version with PE version, we see larger final tasks on more PEs. In the twenty-
four PE diagram (Figure .) only one PE works for seconds longer than average. Contrarily to that,
in the forty PE visualisation, five tasks compute for – seconds longer than average, four additional
tasks compute for – seconds longer than average. Nine tasks are done at least . seconds faster than
average. is shows further development potential of the task pool transformations for the parallel
implementations of the Jacobi sum test.

Another issue for the future work would be further improvement of the implementation, using
some further optimisations and theoretical advances. Issues discussed by [Lenstra, , Bosma and
van der Hulst, , Mihăilescu,] are of interest. Better, but, probably, more low-level power-
ing routines would account for better execution times. For these, consult, e.g., [Cohen, , Sec-
tion .] or [Crandall and Pomerance, , Chapter]. For generic fast multiplication routines see
next chapter. Special tricks for fast multiplication in residue classes are also reviewed in [Crandall and
Pomerance, , Chapter]. A classic one is [Montgomery,].

.. Conclusions 89

rabinMiller, jacobi :: Integer → Maybe Integer

isPrime :: Integer → Maybe Integer -- ensures primality
isPrime x = rabinMiller x »= jacobi

Figure .: Composition of primality tests in Haskell.

primality testing
Rabin–Miller test Jacobi sum test

map+reduce
farm workpool

parMap
spawn
Eden

Figure .: Overview of this chapter.

. Conclusions

Outgoing from a wish to implement a skeleton for parallel repeated computation we arrived at the
map+reduce implementation. We found it sufficient for the task of implementing two primality tests.
For that purpose the possibility of a premature abort was important, but granted for free in a parallel
functional setting. e Rabin–Miller test enables fast primality testing of large numbers. With the
Jacobi sum test we can issue guaranties of primality. An integer accepted by the test is definitively
prime, despite using probabilistic primality tests to obtain such a guaranty. e parallel performance
of the first stage, the Rabin–Miller test, is very well. e parallel quality of Jacobi sum test is well in the
multicore environment and satisfactory in the local workstations environment. A better insight into
the task load of the test would improve this performance.

As we hinted in Sections ., Rabin–Miller test is oen used as a first stage for more complicated
primality tests, like the Jacobi sum test. Having both we can build a chain of tests, actually assuring
primality. As Maybe is a monad, we can write the code in Figure .. is code will run the Jacobi sum
test only if the previous test (i.e., Rabin–Miller test) has returned Just n, a Nothing would be passed
through immediately. As the Jacobi sum test either ensures primality, or ensures compositeness, or
fails, the output Just n of the function isPrime will ensure that n is a prime number. us we have
completed our toolchain for the probabilistic parallel primality testing.

An overview of this chapter’s contribution is presented in Figure .. e boxes symbolise ‘build-
ing blocks’, i.e., the components of the implementation. e abstraction level grows from bottom to
top. Building on Eden primitives and map+reduce scheme, we arrive at the complete toolchain for
primality testing.

Rabin–Miller test has been parallelised in [Hahnel, , Cheung et al., , Schmidt et al.,].
ese works focus on (parallel) hardware design. In a contrast, we suggested a high-level parallelisa-
tion with the map+reduce skeleton scheme. Our approach supports the premature termination of the
computation. e parallelisation of the Jacobi sum test and the generic map+reduce skeleton scheme
form our original contribution. We are not aware of these results being presented in the literature.

C

FAST MULT I PL ICAT ION DIV IDE AND CONQUER

…and then the different branches of
Arithmetic—Ambition, Distraction,
Uglification, and Derision.

Lewis Carroll, Alice’s Adventures in
Wonderland

M
 soware needs various kinds of multiplication. Even if we limit ourselves
to basic structures and to two factors of the same kind, we need to multiply integers, poly-
nomials, matrices. But before we learn howdo it fast and in parallel, we need to realise why
we focus specially on multiplication. e addition and subtraction can be done in a linear

time in the number of the elements of a polynomial or of a matrix. is corresponds straightforwardly
to the bit-length of an integer. But the multiplication is different! Consider polynomials or matrices
over some unique factorisation domain. We call a single operation in this domain a ‘base operation’.
As we will see below, we can represent integers as polynomials. We need a quadratic number of base
operations for the naive integer and polynomial multiplication. e matrix product needs the cubic
number of base operations. So, the multiplication is truly a not trivial operation. As for the division,
its complexity depends on the complexity of the multiplication. ere are some division-related prob-
lems, viz. [von zur Gathen and Gerhard, , Chapter]. But from the complexity-theoretic point of
view, it suffices to master the fast multiplication to obtain an upper bound on all four base arithmetic
operations [von zur Gathen and Gerhard,].

Let us consider the multiplication of polynomials in a single variable. If we assume the same de-
gree n and the full density of both polynomials, then it takesO(n2) operations to compute the product,
which is not quite acceptable. Still, we consider the basic method in Section .. As the advance of
computing made calculations with large polynomials not only feasible, but also needed, a number of
more advanced approaches were stated. e first one is the Karatsuba multiplication. It uses a ternary
divide and conquer scheme. We present the divide and conquer skeletons in Section .. e polyno-
mials are discussed in Section ., the parallel Karatsuba multiplication for polynomials is discussed
in Section ... In the history of the fast multiplication further improvements followed the Karatsuba
multiplication, e.g., the Toom–Cook multiplication [Toom, , Cook,]. e crown of the mul-
tiplication quest was the method by Schönhage and Strassen [] utilising the fast Fourier transform,
see also [Gentleman and Sande, , Pollard, , Schönhage, , Cantor and Kaltofen, , Yap
and Li, , Fürer,]. We present parallel skeletal implementations of the said transform (which
we also call FFT from now on) in Section . and apply it to polynomial multiplication in Section ...

It is easy to map the approach of the polynomial multiplication to integers. e latter are seen as
polynomials in their base. e resulting integer is then obtained with Horner scheme evaluation of
the result polynomial at the base. We will see, how to model the fast integer multiplication with fast
polynomial multiplication on page . Hence, we focus on the core of the fast polynomial multiplic-
ation in this chapter. In order to implement both Karatsuba multiplication and FFT-based multiplic-
ation—and thus: the FFT—we need an implementation of the divide and conquer scheme.

e matrix-matrix product of n × n matrices takes O(n3) base operations in the account. An
idea, similar to Karatsuba multiplication, is the basis of the fast matrix-matrix multiplication, i.e., the
Strassen [] method. It computes the same product inO(nlog2 7) operations. We consider matrices
in Section . and deal with the Strassen method in Section ... We present an alternative, actor-like
implementation of a dcF divide and conquer skeleton in Section .. (See Table . on page for the
classification of the divide and conquer skeletons.) Conclusions follow in Section ..

92 Chapter . Fast Multiplication — Divide and Conquer

..

object

.

algorithm

.

skeleton

..............

integers

.

polynomials

.

matrices

.

Karatsuba

.

FFT

.

Strassen

.

Eden

.

?

.

?

.

?

.

?

.

?

.

?

.

?

Figure .: Questions of this chapter.

We base this chapter on our results from [Lobachev and Loogen, , Berthold et al., a,b,c].
Our mission statement is in Figure ., we need to pave ways from the aforementioned multiplication
algorithms for mathematical objects to their parallelisation in Eden. Figure . on page presents
the complete version of the above figure, we will fill the gaps in this chapter.

e contributions of this chapter are

• A case study of quadratic dense and sparse matrix multiplication in Haskell.

• Wepresent theEden implementation of the divide and conquer skeletons dcNtickets, divConFlat
and dcFarm.

• Case study of parallel Karatsuba multiplication with our skeletons.

• e implementation of the map-and-transpose skeleton in Eden. It has been suggested before
by Gorlatch and Bischof []. However, Gorlatch and Bischof implemented it in C+MPI.

• A skeleton-based implementation of the fast Fourier transform using above divide and conquer
skeletons and the map-and-transpose skeleton. Such implementations are not new, cf. [Grama
et al.,], but up to [Gorlatch and Bischof,] we are not aware of skeleton-based imple-
mentations. Contrarily to [Gorlatch and Bischof,], we compare both approaches to the
parallel fast Fourier transform.

• Strassenmultiplication has been implemented inHaskell, see, e.g., [Rainey andWise,]. We
base a parallel implementation on our divide and conquer skeletons. Contrarily to [Poldner and
Kuchen, a,b], we present a parallel functional approach.

• For the dcFarm skeleton we have implemented the actormodel [Hewitt et al.,] in Eden. is
was not done before.

• We include a throughout analysis of our results, using parallel penalty and serial fraction. e
former is our new-developed method.

. History

e definition of multiplication is as long as the written history of mankind. In the heritage of An-
cient Egypt, algorithms for addition, subtraction and multiplication can be found, e.g., in the Rhind
papyrus. We briefly sketch the historic development of multiplication, following [Chabert, , Eves,
]. e number system was additive, so addition and subtraction were quite easy. But, in order to
implement multiplication, division and reduction to the common denominator, more complicated op-
erations were required: duplication and mediation. We implicitly work in a binary positional number
system. Ancient Egypt mathematicians worked with particular vulgar fractions, however we aim for
integers or polynomials.

.. History 93

Algorithm Russian peasant multiplication.
Require: two integers, a and b.

: Let a(0) ← a and b(0) ← b.
: repeat
: write down a(i+1) ← ⌊a(i)/2⌋ and b(i+1) ← 2b(i).
: Set i ← i + 1.
: until a(i) = 0.
: Sum all b(i) where corresponding a(i) odd.

Ensure: product of a and b.

A method similar to the aforementioned is known as ‘Russian peasant multiplication.’ We show it
for integers, although all themultiplication algorithms in this section can be applied both for polynomi-
als and for integers, the only difference lies in the carry bits. ere is also a FFT-based multiplication
approach for integers. But it has some caveats and special cases, the polynomials do not have. For
more information see [Schönhage and Strassen, , von zur Gathen and Gerhard, , Emiris and
Pan,]. We begin at a low pace and present the Russian peasant multiplication in Algorithm . We
understand the division in Algorithm as integer division with flooring, i.e., 5/2 = 2. We denote floor-
ing by ⌊⋅⌋. In this algorithm we look for the unities in the binary representation of a and add together
the products of b with the corresponding powers of two. In other words: for a = ∑i ai2i , we compute

ab = ∑
i with a i≠0

b2i .

Example .. We compute 57 ⋅ 48 with Algorithm . We obtain

✓ 57 48

28 96
14 192

✓ 7 384
✓ 3 768
✓ 1 1536

Now, if we sum all the second columns of the marked lines, we obtain 48+ 384+ 768+ 1536 = 2736. is
is the correct product of 57 and 48. ✓

e multiplication became more feasible and easy with the introduction of a positional number
system. It is a rather old invention, used already by Babylonian astronomers. ey utilised a positional
system to the base of , we still see its remains in our measures of time and angle. e correspond-
ing multiplication algorithm is widely known as the ‘schoolbook multiplication’, it is exactly the way
the multiplication is taught in schools today. In [Chabert,] we see a bit different method, called
‘tableau’, ‘net’ or ‘grid’ multiplication, for the form of writing down the intermediate results, when
executing it on paper. Algorithm shows the schoolbook multiplication method in an algorithmic
description. Under [an , an−1, . . . , a0] we understand the digits of an integer a = [an , . . . , a0]. So, 1235
would be [1, 2, 3, 5]. However, it also can be a polynomial x3 + 2x2 + 3x + 5, we do not go into the
details of carrying, hence Algorithm is suitable for both. Knuth shows an algorithm where the addi-
tion is interleaved with elementary multiplication [Knuth, , Algorithm M from Section ..]. It
is immediately obvious, that Algorithm , Algorithm and Knuth’s version all have the complexity
ofO(n2) elementary multiplications.

If we represent the integers as lists, we can implement Algorithm quite easily. e following
code for polynomial multiplication originates from the Numeric Prelude [urston et al.,].

mul :: (...) ⇒ [a] → [a] → [a]
mul xs = foldr (λy zs → add (scale y xs) (shift zs)) []

94 Chapter . Fast Multiplication — Divide and Conquer

Algorithm Schoolbook multiplication.
Require: a = [an , an−1, . . . , a0] and b = [bm , bm−1, . . . , b0].

: for i = 0 to m do
: compute c(i) = [anbi , an−1bi , . . . a0bi].
: end for
: Add together c(0), . . . c(m) whereas i entry c(i) is shied i steps to the le. // Such a shi corres-

ponds to the multiplication by Bi , where B is the base of the number system used for a and b.
Ensure: product of a and b.

Here scale y xs is defined as map (y∗) xs, and shift prepends a zero, symbolising the multiplica-
tion by the variable. We have omitted the type context of the mul function.

e further development of the quadratic multiplication includes Napier’s rods, which were im-
proved by Lucas and Genaille. e latter rods were commercially printed in Berlin up to [Chabert,
]. John Napier (also: Neper, Nepair) of Merchiston, *, †.., also called ‘marvellous
Merchiston’, is remembered for discovering logarithms. Further, he stimulated the usage of decimal
point. e binary arithmetic was introduced by Gottfried Wilhelm Leibniz, *.., †.., in
L’explication de l’arithmétique binaire (). However, he was interested in it already in . Leibniz
related the problem of Chinese king Fohy to the binary arithmetic.

It the remaining part of this chapter we focus on two aspects, that is, firstly, on non-integer, e.g.,
univariate polynomial or matrix-matrix multiplication, secondly, on fast multiplication routines. (e
only exception is the comparison of two representations of the polynomials in Figure . on page .)
e methods for polynomials and integers are essentially the same, we focus on the first ones. See
page for a short treatment of integer multiplication.

. Divide and Conquer Skeletons

Before we continue with multiplication algorithms, we need to consider algorithmic skeletons for a
specific kind of algorithms, namely the divide and conquer ones. e essence of any divide and conquer
algorithm is:

. Given a task x, decide, whether it is trivial or not.

a) If not: divide it into a few subtasks xs.
b) If it is trivial: solve the task x and return the result.

. Call the algorithm recursively for each subtask from xs.

. Given the subsolutions ys of subtasks xs, combine them to a single solution. Return it.

e generic class of divide and conquer algorithms allows a different amount of subtasks, depending of
the recursion depth. However, we consider here only particular divide and conquer algorithms, where
the amount of the subtasks is fixed for each algorithm. We call such divide and conquer algorithms
regular. Further, according to the divide and conquer classification (see Section .. and [Herrmann,
]), FFT and Strassen matrix multiplication belong to the most restricted dcF class of divide and
conquer schemes, while the Karatsuba multiplication belongs to the dcC class, which requires the ori-
ginal problem to be present in the combine function.

Before we can continue with faster methods for polynomial multiplication, we need to introduce
some divide and conquer skeletons. ese will be used not only for Karatsuba multiplication, which
we will consider in Section ., but also for FFT (Section .) and Strassen matrix multiplication (Sec-
tion .). In this chapter we use the type DC a b, which we restate below.

type DC a b = (a → Bool) -- ^ trivial?
→ (a → b) -- ^ solve
→ (a → [a]) -- ^ divide

.. Divide and Conquer Skeletons 95

divConX_f k t trivial solve divide combine x
= divConX_c k t trivial solve divide

(λ _ parts → combine parts) x

Figure .: Interfacing dcF from dcC.

Figure .: Divide and conquer expansion schemes binary trees, depth . Le: distributed expansion,
right: flat expansion. Boxes symbolise processes.

→ (a → [b] → b) -- ^ combine
→ a -- ^ input
→ b -- ^ result

is type corresponds to the divide and conquer class dcC. We presented the complete classification in
Chapter , see Table . on page for an overview. We have defined the sequential divide and conquer
skeleton in Figure . on page . Each divide and conquer skeleton takes four parameter functions for
the actual implementation of a divide and conquer algorithm: to decidewhether the input is trivial (the
first parameter function, isTrivial) and, in this case, to solve it (using parameter function , solve),
or else to decompose non-trivial input into a number of sub-problems, which are solved recursively
(with parameter function , divide), and to combine the output (parameter function , combine).

Interface to dcF skeletons. e difference between dcC and dcF classes lies in the additional para-
meter for the combine function. us, it is possible to implement the dcF skeletons in terms of dcC
skeletons. e essential idea is to change the signature of the combine function. So, the interface for
dcF skeleton divConX_f, based on the above dcC implementation divConX_c is shown in Figure ..
We denote the dcF skeletons in Haskell with the type DC’ a b.

type DC’ a b = (a → Bool)
→ (a → b)
→ (a → [a])
→ ([b] → b)
→ a → b

However, because of different types of k and t in different versions, one needs to write three such
interface functions: each with a correct type for corresponding implementation of dcF skeleton.

.. Distributed Expansion Skeleton

We see two basic approaches for the parallel regular divide and conquer. e first one is presented here,
the other one is detailed in the next section. We discussed these two approaches in [Berthold et al.,
a,b], see also [Cesari andMaeder, b] for a special case with focus onKaratsubamultiplication.
Imagine a divide and conquer tree. e very first idea is to spawn a parallel task for each branch of the
tree. However, in this case the father task is locked until all (supposedly equal) spawned tasks return
results of their computation. So we give only r − 1 tasks away for r-ary divide and conquer tree. ese
r−1 tasks are instantiated as new processes, as long as PEs are available. ese branches will recursively
produce new parallel subtasks again, resulting in a distributed expansion of the computation. We show

96 Chapter . Fast Multiplication — Divide and Conquer

1

2

3

5 7 6

4

8

1

2

5 13 69 1410

3

7 11 15

4

8 12 16

Figure .: Ticket placement with dcNtickets skeleton for binary and quaternary divide and conquer
trees. Images from [Berthold et al., c].

it in Figure ., le, for the binary tree. Another approach is to unfold the divide and conquer tree to
a larger depth and then to process the many small tasks in a workpool. It is called flat expansion and
is depicted in Figure ., right, again for a binary scheme. e main problem of the flat expansion is
to control the combine step. We elaborate on it in the next section and focus on distributed expansion
here.

A ticket list is used to control the placement of newly defined processes in Figure .. At first, the PE
numbers for placing the immediate child processes are taken from the ticket list. en, the remaining
tickets are distributed to the children in a round-robin manner using the function unshuffle. e
explicit process placement with the ticket lists is a simple and flexible way to control the distribution
of processes and the recursive unfolding of the task tree. If too few tickets are available, computations
are performed locally. Duplicate tickets can be used to place several child processes on the same PE.
e numbers in Figure ., top and bottom, give the PE numbers used for placement with the ticket
lists [2..8] and [2..16] respectively.

e implementation of the dcNtickets_c skeleton is in Figure .. e skeleton receives two addi-
tional parameters: the arity of the divide and conquer tree k and a list of the tickets. If the latter list is
empty, we use the sequential skeleton. is is the first equation of dcNtickets_c. e second equation
handles two cases. In the first guard expression the trivial case is solved. e second guard expression
is the interesting, parallel case. In the beginning the demand control is established. e evaluation
of the list of children is demanded early, then the evaluation of myRes and localRess to the reduced
normal form is forced, before the result of the application of combine can be used. e latter is the
outcome of the skeleton invocation.

In the where-clause of the dcNtickets_c skeleton, the ticket list is split into the first k− 1 elements
and the remaining list. en, the position of the children and of the further ancestors (i.e., grandchil-
dren, etc.) is determined. e initial tasks are divided into two parts, the head of the resulting list is
myIn, which is processed by a recursive call—by an application of the binding ticketF in the definition
of myRes. e tail of the divided tasks is theirIn. e part of the computation, deemed to be local, is
performed by mapping the sequential skeleton on localIns—that part of the list of the divided tasks,
for which we have no free tickets. is results in localRess. e parallel child tasks are computed in
the binding of childRes: the functions childProcs, i.e., the parallel recursive call of the skeleton, are
applied to at most k-many procIns. e PE numbers for these processes reside in the childTickets
part of the tickets list.

.. Divide and Conquer Skeletons 97

dcNtickets_c :: (Trans a, Trans b)
⇒ Int -- ^ n (expect n children)
→ [Int] -- ^ Tickets (machine ids to use)
→ DC a b

dcNtickets_c k [] trivial solve divide combine x
= divConSeq_c trivial solve divide combine x

dcNtickets_c k tickets trivial solve divide combine x
∣ trivial x = solve x
∣ otherwise = childRes ‘pseq‘ -- early demand on the list of children

rnf myRes ‘pseq‘ rnf localRess ‘pseq‘
combine x (myRes:childRes ++ localRess)

where
-- splitting computation into processes
(childTickets, restTickets) = splitAt (k-1) tickets
-- denote position of (children, further ancestors)
(myTs:theirTs) = unshuffle k restTickets
ticketF ts = dcNtickets_c k ts trivial solve divide combine
insts = length childTickets
(procIns, localIns) = splitAt insts theirIn
childProcs = map ticketF theirTs
childRes = spawnAt childTickets childProcs procIns
-- local computation:
myRes = ticketF myTs myIn
(myIn:theirIn) = divide x
localRess = map (divConSeq_c trivial solve divide combine) localIns

Figure .: Expansion-based divide and conquer with tickets.

.. Flat Expansion Skeleton

Contrary to the previous approach, the flat expansion skeleton performs several steps of divide locally
on the master PE in order to generate a large amount of smaller tasks. When these tasks are done, they
are again combined locally on the master. As combine is connected with a large volume of received
data, it should be generally more trivial than divide. As for the many small tasks, we have generated,
they are processed in a task balanced parallel map implementation—in other words: in a farm or a
workpool.

e flat expansion divide and conquer skeleton given in Figure . is a specialisation of the ‘divide
and conquer by replicated workers’ (dcrw) skeleton, displayed in [Peña and Rubio, , Loogen et al.,
]. e ‘replicated workers’ is another term for ‘a master-worker scheme’. e skeleton exploits the
fact that our divide and conquer scheme has the fixed branching degree k. e divide and conquer tree
is unfolded up to a given depth d and each process selects one of the resulting sub-trees (with function
taskNr). Instead of a workpool—a skeleton with dynamic task balancing—we can use a simple farm
with static task distribution. is suffices for the regular parallelism of our applications. It is possible to
specify the parallel map implementation as a parameter. e function combineTopMaster combines the
results level-wise. e advantage of this skeleton is that the divide and conquer tree can be unfolded to
produce much more tasks than available processor elements. is helps to achieve a balanced parallel
computation.

It is important that the unevaluated task information can be passed to the child processes which
select their own parts of it. is technique is called direct mapping [Klusik et al.,], viz. Chapter .
It reduces the computation time in master PE for divide. A real application would use future handles,
also known in Eden environment as remote data [Dieterle et al., b], to pass the result of previous
distributed computation to the workers. is is allowed, as in the production use the input data should
be distributed along the PEs anyway. We will come back to this issue in Section ... As all processes

98 Chapter . Fast Multiplication — Divide and Conquer

divConFlat_c :: (Trans a, Trans b)
⇒ Map a b -- ^ a custom map implementation
→ Int -- ^ depth of parallel DC tree
→ DC a b -- ^ DC type

divConFlat_c myParMap depth trivial solve divide combine x
= combineTopMaster combine levels results
where (tasks, levels) = generateTasks depth trivial divide x

results = myParMap (divConSeq_c trivial solve divide combine) tasks

data Tree a = Tree a [Tree a] ∣ Leaf a

-- define, how Tree a can be evaluated to rnf
instance NFData a ⇒ NFData (Tree a)

where rnf (Tree a ls) = rnf a ‘pseq‘ rnf ls
rnf (Leaf a) = rnf a

-- the helper functions for the combine in dcC
combineTopMaster :: (NFData b) ⇒ (a → [b] → b) → (Tree a) → [b] → b
combineTopMaster c t bs = fst (combineTopRnf c t bs)

combineTopRnf :: (NFData b) ⇒ (a → [b] → b) → (Tree a) → [b] → (b, [b])
combineTopRnf _ (Leaf a) (b:bs) = (b,bs)
combineTopRnf combine (Tree a ts) bs
= (rnf res ‘pseq‘ combine a res, bs’)
where (bs’, res) = foldl f (bs, []) ts

f (olds, news) t = (remaining, news ++ [b])
where (b, remaining) = combineTopRnf combine t olds

generateTasks :: Int → (a → Bool) → (a → [a]) → a → ([a], Tree a)
generateTasks 0 _ _ a = ([a], Leaf a)
generateTasks n trivial divide a
∣ trivial a = ([a],Leaf a)
∣ otherwise = (concat ass, Tree a ts)
where (ass, ts) = unzip $ map (generateTasks (n-1) trivial divide) (divide a)

Figure .: Flat expansion divide and conquer skeleton for k-ary task trees.

are created by the same ‘master’ process, a simple round robin process placement—which is the de-
fault—is sufficient. e only explicit demand control is the enforced evaluation of children’s results
prior to their combination.

. Univariate Polynomials

One of the ubiquitous structures in mathematics are polynomials. We focus here on polynomials in
one variable. We define the univariate polynomials and present some thoughts on the representation of
polynomials in Section ... e Karatsuba multiplication follows in Section ... e same section
devises the complexity of Karatsuba’s algorithm. Sections .., .. and .. describe the perform-
ance of our parallelisation, estimate the execution time w.r.t. input size and conclude correspondingly.

.. Preliminaries

An univariate polynomial is a finite sequence of values an , . . . , a0 in a single variable x, i.e., anxn +
⋅ ⋅ ⋅ + a0. We need a precise definition first.

.. Univariate Polynomials 99

Definition . (Polynomial). Given a finite index set I ⊂ N, a sum of terms in a variable x

f (x) =∑
i∈I

aix i

is a polynomial of degree max I. Herein for all i ∈ I the value ai is called the coefficient, i is called an
exponent because of x i . A monomial is a polynomial, consisting of a single term in the sum.

To store a polynomial we store its coefficients. We have not told yet, what type the coefficients ai
have. Indeed, this is various. We can have polynomials over Z, Q, R, C, finite fields. We could use
more complicated constructs, e.g., polynomials overmatrices, if wewould like to. So, themathematical
theory speaks of polynomials over some unique factorisation domain¹, abbreviated UFD. So, given
such a UFD K, we denote the ring of polynomials with K[x]. It is a UFD, if K is. (See eorem A.
in the Appendix.) Even more: K[x] is a K-algebra of polynomials, see [Grove, , p.]. If I = ∅,
we have a zero polynomial. Its degree is−∞. A polynomial with I = {0} is called a constant polynomial.
If K has no zero divisors, then a constant polynomial u ∈ K[x] is a unit in K[x] if and only if u is a
unit in K.

An alternative to the ‘coefficient’ representation is the ‘point–value’ representation of polynomials
[Cormen et al.,]. In this case, for a polynomial f (x) of degree n, we store a set of pairs {(xi , yi) ∶
i ∈ {0, . . . , n}} such that yi = f (xi) with xi ≠ x j for all i , j ∈ {0, . . . , n} and i ≠ j. To convert
the ‘point–value’ representation to the ‘coefficient’ representation from above, we need to interpolate
the polynomial. To obtain a ‘point–value’ representation from the ‘coefficient’ one, we evaluate the
polynomial at n + 1 distinct points xi . e ‘point–value’ representation allows a faster multiplication,
but the ‘coefficient’ representation is more convenient for evaluation at an arbitrary point. We consider
only the ‘coefficient’ representation below.

e shape of the set I is important. It should be finite and contain only non-negative integers. If we
allow negative exponents, we obtain Laurent polynomials. If we allow infinite index set I, we obtain
series. We briefly discussed them in Chapter . With both extensions we get Laurent series. All of
them are very different from the polynomials. For instance, for polynomials over rationals, the set of
the multiplicatively invertible polynomials consists only of constants. For Laurent polynomials over
the same field, the latter set includes all monomials.

Basic Representation. We have at least two possibilities for the ‘coefficient’ representation of polyno-
mials. Either we store a list of coefficients—we shall call this approach a dense representation. Or we
store a list of pairs of coefficient and exponent. Such representation is called a sparse one. We use both
approaches to represent polynomials in Haskell. We use Int as an index set. e rationale behind this
is: limiting the maximal degree of polynomials to 232 or 264 is not an actual limitation.

type PolyD a = [a]
type PolyS a = [(Int, a)]

But what is a? It represents the UFD K, we can safely constrain Num a ⇒ a. A more algebraic
implementation would introduce its own type class for UFDs and constrain a to be its instance. But
even in our representation, the above types describe polynomials over various possible types. In other
words, this is a symbolic representation of polynomials, which abstracts from the base UFD. e al-
gorithms, we present below, do not change with the change of the base type.

Concerning the data structure choice, it is arguable that for large polynomials arrays might be a
better choice. In a sequential case: they definitely are. But as we need to introduce some overhead
to transmit arrays in Eden and because of our FFT implementation, it might be justified to use lists.
e reason is: our implementation of FFT will also use lists as its input and output. Now, the choice
between sparse and dense representations of polynomials depends on the input. If we have very sparse
polynomials, then a dense representation is no good. However, if the polynomials are not very sparse,
we could win with a dense representation, as we can use the FFT-based multiplication method. We

¹See Section A., esp. Definition A.. on page for the definition of a unique factorisation domain.

100 Chapter . Fast Multiplication — Divide and Conquer

 0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

 8000 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 0

 10

 20

 30

 40

 50

 60

'Dense'
'Sparse'

Figure .: Comparing naive dense and naive sparse polynomial multiplication.

describe the FFT-based multiplication in detail in Section ... A full-fledged implementation would
not use a type alias for lists, but define an own type, possibly with named fields. To give an example:

data Poly a = {coeffs :: [a], leadCoeff :: a, degree :: Int,
numRealRoots :: Int, roots :: [Maybe (Closure a)], approxRoot ::
[Complex Double], ... }

Here Closure a denotes the type of the elements in the algebraic closure.
us it will be possible for some function in a complicated program to store some extended in-

formation about a given polynomial fully transparent for the rest of the program. Examples of such
information are degree and roots of the polynomial. However, let us not consider this advanced tech-
nical features any longer. We compare a dense and a sparse polynomial multiplication next.

In order to compare the feasibility of sparse and dense polynomials, we have implemented naive
polynomial multiplication for both storage types. e non-naive methods are presented in the next
section. We compare the execution time of the multiplication for different density of polynomials and
for various degree. We compute the product of different polynomials of the same degree. e result is
a D plot, which provides us with thresholds for a hybrid algorithm. Figure . compares the runtime
of dense and sparse polynomial multiplication, obtained with GHC . on sakania. e degree of the
polynomials varies from up to at the first horizontal axis, the density varies from . to . at
the second horizontal axis. e vertical axis denotes the execution time. e coefficients are randomly
generated small integers. We see: for density ≥ 0.6 for small degrees and for density ≥ 0.7 for larger
degrees the dense polynomial multiplication is faster.

.. Karatsuba Method

We shall present the Karatsuba algorithmnow, basing on [Karatsuba andOfman, , Karatsuba, ,
Bernstein, , von zur Gathen and Gerhard,]. We formulate the algorithm for the polynomials
here, although it works for both integers and polynomials. See [Berthold et al., a] and Table .
on page for the results of the parallel integer version. e only difference of the latter is that it has
to care about carrying, when reconstructing the result aer the actual multiplication.

History. is paragraph on history of Karatsuba multiplication follows [Karatsuba,]. Andrey
Kolmogorov (АндрейНиколаевич Колмогоров), *.., †.., is well known for his other

.. Univariate Polynomials 101

Algorithm Karatsuba multiplication.
Require: polynomials u and v of degree n = 2k .

: Separate u and v in lower and upper parts with f = f1xn/2 + f0 for f ∈ {u, v}.
: Compute three products

r2 ← u1v1
t ← (u1 + u0)(v1 + v0)
r0 ← u0v0

using recursive calls.
: Set r1 ← t − r2 − r0.

Ensure: e product r2xn + r1xn/2 + r0 of u and v.

contributions, including the Kolmogorov complexity and the solution of the Hilbert’s irteenth Prob-
lem in a collaboration with V. Arnold (Владимир Игоревич Арнольд). e Kolmogorov complexity
handles the complexity of representing some amount of information, contrary to the algorithmic com-
plexity, which we simply reference as the complexity in this work. Before Kolmogorov conjec-
tured the classical multiplication algorithm to be optimal. By conjecture any multiplication algorithm
would have the complexity Ω(n2). We call it the Kolmogorov n2 conjecture, following [Karatsuba,
]. is conjecture definitely existed in , as it was discussed at one of the meetings of Moscow
Mathematical Society.

e first breakthrough happened in autumn . A young mathematics student Anatolii Karatsu-
ba (Анатолий Алексеевич Карацуба), *.., †.., took part in a seminar on the complex-
ity of computations. Among other topics theKolmogorov n2 conjecturewas presented there personally
by Kolmogorov. In one week the student came up with a divide and conquer algorithm, which had a
lower bound: O(nlog2 3). us Karatsuba has disproved the Kolmogorov n2 conjecture. Kolmogorov
reported this in the further seminar session and terminated the seminar. Two years later Kolmogorov
(probably in collaboration with Yu. Ofman) wrote an article about this new method. We know this art-
icle as [Karatsuba and Ofman,], however Karatsuba [] states to have learnt about the article
only upon seeing the reprints.

e algorithm. e essence of the Karatsuba algorithm lies in a tricky partitioning of the multiplic-
ands with the subsequent usage of the divide and conquer scheme. We consider the version of the
Karatsuba algorithm for polynomials. Suppose, we compute a product of two polynomials u and v,
both of degree n = 2k . We denote with u1 and u0 the upper and lower ‘halves’ of the polynomial u.
In a more formal way, u = u1xn/2 + u0 and v = v1xn/2 + v0. e conventional product is uv. Let us
transform it to

uv = (u1xn/2 + u0)(v1xn/2 + v0) = u1v1xn + (u1v0 + u0v1)xn/2 + u0v0.

But we could have obtained these factors differently! It holds

(u1 + u0)(v1 + v0) = u1v1 + u1v0 + u0v1 + u0v0

and we have to compute u1v1 and u0v0 anyway. is leads to the instructions of Algorithm . Per
[Bernstein,] this algorithm corresponds to evaluation and interpolation.

To derive a statement on the complexity of Karatsuba multiplication, we show a more general
version of Lemma . from [von zur Gathen and Gerhard,]. We follow the addenda of the latter
book. We will use this proposition also for the complexity statement of Strassen multiplication, see
eorem . on page . We write lb x for the binary logarithm of x, also denoted as log2 x. e
graphical representation of this complexity for the depth five is in Figure ..

102 Chapter . Fast Multiplication — Divide and Conquer

Figure .: e complexity of the Karatsuba algorithm corresponds to the surface of this fractal. We show
it for the depth five. Redrawn from [von zur Gathen and Gerhard,].

Proposition .. Let a, k be in R+ and T(n), S(n) ∶ N → N. Additionally, S(2n) ≤ kS(n) for all n
in N. It holds

T(n) ≤ aT(n/2) + S(n)

for n = 2i with natural i > 1. en for i ∈ N and n as above holds

• In case ‘a = k’: T(n) ≤ T(1)nlb a + S(n) lb n.

• In case ‘a ≠ k’: T(n) ≤ T(1)nlb a + k
a−k (n

lb(a/k) − 1)S(n).

If additionally nlb k ∈ O(S(n)) holds, then

• In case ‘a = k’: T(n) ∈ O(S(n) lb n) holds.

• In case ‘a ≠ k’: T(n) ∈ O(S(n)nlb(a/k)) holds.

Proof. We unfold the recursive calls in T(n) = T(2i) ≤ aT(2i−1) + S(n) ≤ . . . is results in

T(n) ≤ aiT(1) +
i−1
∑
j=0

a jS(2i− j) ≤ T(1)2i lb a + S(2i)
i−1
∑
j=0
(a/k) j .

e last inequality holds because S(2i− j) ≤ k− jS(2i). If a = k, then the fraction a/k is 1 and T(n) ≤
T(1)2i lb a + iS(2i) results. Else

i−1
∑
j=0
(a/k) j = (a/k)

i − 1
a/k − 1

= k(2i lb(a/k) − 1)
a − k

holds. e latter equality results from multiplying both numerator and denominator with k.

A similar statement was shown in [Cormen et al., , eorem .] under the name of a ‘master
theorem’ for solving recursions, see also [Manber,]. Now let us apply the above proposition to
Karatsubamultiplication. e initial consideration is clear: tomultiply two polynomials of degree n−1
(i.e., with n coefficients), we need to multiply three factors of half length. So T(n) = 3T(n/2)+O(n),
i.e., a = 3. Of course, we compute each T(n/2) as a recursive call. e more exact shape of S(n) is 4n,
as we do n additions, 2n subtractions and again n additions in Algorithm . e trivial multiplication
has a cost of unity, in other words: T(1) = 1. It holds S(2n) = 8n, i.e., k = 2. Hence, per Proposition .

.. Univariate Polynomials 103

Karatsuba multiplication
dcNtickets divConFlat

ssf
spawn
Eden

Figure .: e skeletal implementation of Karatsuba multiplication.

PEs 1 2 4 8

Multicore distributed expansion 7.75 4.10 2.44 1.96
Haskell 6.11 flat expansion 5.74 3.27 1.79 1.55

Eden 6.8 distributed expansion 6.29 4.17 2.15 1.51
flat expansion 6.24 5.52 1.89 0.88

Table .: Run time comparison of Karatsuba multiplication with Eden and Multicore Haskell (GpH) on
sakania. Time is in seconds. Data originates from [Berthold et al., a].

it follows

T(n) ≤ T(1)nlb 3 + 2
3 − 2

S(n)(nlb(3/2) − 1)

= nlb 3 + 2S(n)(nlb(3/2) − 1)

= nlb 3 + 8n ⋅ nlb(3/2) − 8n

= nlb 3 + 8n1+lb(3/2) − 8n

= nlb 3 + 8nlb(2⋅3/2) − 8n
= 9nlb 3 − 8n ∈ O(nlb 3).

We have shown the following theorem.

eorem .. e Karatsuba multiplication method for two input polynomials of degree ≤ n = 2k (for
some k ∈ N) over a ring has the complexity ofO(nlog2 3) ring operations.

It is possible to generalise Karatsuba’s formula to a larger arity of the divide and conquer tree.
Such approaches and further modifications where made in [Toom, , Cook,], more on the
implementation side is told in [Weimerskirch and Paar, , Montgomery,]. e method by
Strassen [] is an analogue of Karatsuba multiplication for matrices. We handle Strassen matrix
multiplication in Section ...

A Haskell implementation of polynomial Karatsuba multiplication was suggested e.g., in [Her-
rmann,], the parallel Eden implementation [Loogen et al.,] is easy tunable with a fitting
divide and conquer skeleton. We have instantiated the divide and conquer skeletons from above.

Implementation. A skeletal implementation of the Karatsuba multiplication was available to us in
the form of an Eden test program. We have extended the implementation to new divide and conquer
skeletons. An overview is in Figure .. is modified implementation was used to compare Mul-
ticore Haskell and Eden in [Berthold et al., a]. e latter work considered a bit Eden compiler.
Table . shows the results of Karatsuba multiplication from this paper. Below we present the Eden
implementation using the new bit compiler.

We show snippets of the program code, as it is a well-known algorithm, where we are interested
majorly in the skeletal parallelisation. We stress it is not ours! eHaskell source code implementation
of Algorithm is shown in Figure ..

104 Chapter . Fast Multiplication — Divide and Conquer

An interesting point in the shown implementation of Karatsuba multiplication is the usage of the
so-called ‘li trick’. To discuss it we need to recall how data communication works in Eden. Every
data structure, which might be transmitted to another machine, should be an instance of the Trans
type class. It specifies how the variables of a given type are send and received. ere is a special
Trans instance for lists (see Figure . on page), which enables list streaming. In this case the list
elements are sent separately and incrementally, stream processing functions can start processing first
list elements without waiting for the remaining ones. However, this induces an overhead of sending a
message pro list element. In a case, when the lists are large and the cost for processing one element is
small, this approach is not acceptable.

However, as of now the Trans instance for the lists is specified in the Eden supporting module,
it is not possible for the application programmer to modify this instance. Instead, the ‘li trick’ is
used. Namely, besides special instances of Trans, a generic instance exists. It is used as a default
implementation for a non-specialised instance derivation. is instance puts all the data of a value
to-be-sent into a single message. is instance is defined in the same system module, where the Trans
instance for lists resides. Now, in an application, a new type is artificially created. e actual data,
in this case: a list, is wrapped into the said type. As it has no special Trans instance, the default, all-
packing instance is used. e new data type L in Figure . implements the above idea.

Aside from this issue, the implementations of divide and combine are very straightforward. e
function karatsuba is the top-level implementation. It receives an additional integer parameter for the
depth of the parallel divide and conquer recursion. We show the implementation with flat divide and
conquer skeleton, which in its turn, uses the ssf implementation of the parallel map. As in practise
Karatsuba method performs better than the schoolbook multiplication only from a particular input
size onwards, the solve function uses the quadratic method, akin to Algorithm .

.. Performance

e performance of our implementation is very good. We obtained on eight PE sakania the relative
speedups of . for input size and . for the input size . In both cases this is a relative
speedup, we used the flat expansion skeleton with divide and conquer tree depth and ssf’—a farm
with direct mapping, which does not co-locate tasks with the first PE. We call the latter ‘master PE’.
Nevertheless we want to stress the achieved super linear speedup. e speedup curves are plotted for
both input sizes in Figure .. We have also measured the absolute speedup of . for the input size
 . We were unable to execute the sequential version of Karatsuba multiplication for the input size
 . e probable reason is the excessive memory usage. Next we will consider the values of the
parallel penalty w.r.t. number of processors and of the serial fraction to evaluate the above results.

We have obtained super linear speedups for some particular input size of Karatsubamultiplication,
namely for the largest input we measured. We need to investigate the reason for such a phenomenal
result. Some positive reasons—like cache effects—aside, a poor performance of the sequential version
can also lead to super linear speedup. A possible reason is a memory problem. So, we consider the
two usual parallel quality measures: parallel penalty w.r.t. number of processors and serial fraction
with relative reference point. ese are depicted appropriately in the top and in the bottom part of
Figure .. e le half of this figure shows both measures for input size , where no super
linear speedup occurs. e right hand side displays the values for the input size , the case of
super linear speedup.

Both quality measures decrease slowly for input size , while at – PEs both are almost
constant. e increase at two PE is discussed below. As for the quality measures in case of the input
size , whenwe consider – PEs, we see a decline at – PEs and an increase at –. Interestingly,
the values at and PE are approximately the same. Further, it is noteworthy that said values for –
PEs are smaller than zero (dashed horizontal line in the plots). ese values are also quite close. is
indicates a good parallelisation quality on this side with a possibly bad sequential implementation.
As we consider the values with the relative reference points, this means problems with our – PEs
versions. is is a hint for a probably unfitting speedup value.

.. Univariate Polynomials 105

type Poly a = [a] -- Num instances are not shown

-- Lift trick
data L a = L {fromL :: a}
instance NFData a ⇒ NFData (L a) where

rnf (L a) = rnf a
instance Trans a ⇒ Trans (L a)

divide :: L (Poly Int, Poly Int) → [L (Poly Int, Poly Int)]
divide (L (is1, is2)) = [L (is1a, is2a), L (is1b, is2b),

L (is1a + is1b, is2a + is2b)]
where ldiv = (max (length is1) (length is2)) ‘div‘ 2

(is1b, is1a) = splitAt ldiv is1
(is2b, is2a) = splitAt ldiv is2

solve :: L (Poly Int, Poly Int) → L Poly Int
solve = ... -- sequential, naive multiplication

-- combine uses the initial task for the size information
combine :: L (Poly Int, Poly Int) → [L Poly Int] → L Poly Int
combine (L (is1, is2)) [L u, L v, L w] = L result

where ldiv = (max (length is1) (length is2)) ‘div‘ 2
u0s = replicate (2∗ldiv) 0 ++ u -- u ∗ base^(2∗ldiv)
wuv = w - (u + v) -- calculate w-u-v (= w-(u+v))
wuv0s = replicate ldiv 0 ++ wuv -- multiply w-u-v by base^ldiv
result = u0s + v + wuv0s -- sum of subresults

karatsuba :: Int → Poly Int → Poly Int → Poly Int
karatsuba depth is1 is2
= fromL $ divConFlat_c ssf’ depth trivial solve divide combine $ L (is1,is2)

-- ssf’ does not co-locate a task with master PE

Figure .: Implementation of Karatsuba multiplication.

Discussion. At PE there is a large value of both parallel penalty w.r.t. number of processors (Fig-
ure . on the next page, top) and serial fraction (same figure, bottom). ere are two possible reasons.
Firstly, two PE might be too few for an efficient parallelisation to happen. We will consider a trace
visualisation to decide on this. Secondly, as we use relative reference point and relative speedup, the
single PE version has zero parallel overhead. However, the problem size might be too large for a small
number of PEs. Here, a notion of a scaled speedup [Gustafson et al.,] might have more sense.

Let us consider in Figure . the trace diagram, produced by Karatsuba multiplication program
with input size on PE. We see that in fact only the second PE is working, while the master
PE is idle most of the time. is explains the almost non-existent speedup at two PE for input size
 , which is also reflected in high penalty values for PE in Figure ., le. However, the trace
visualisation for eight PE with input size reveals some work in the master PE, viz. Figure ..
e same figure shows that the worker processes are somewhat reluctant in their startup and have a
corresponding lag when terminating. is image is disappointing, as such balancing issues should
have prohibited super linear speedups. In this particular case we deem the overall ‘lost’ time to be %
of the total work (i.e., of p ⋅ T(n, p)). We calculate this simply: we see in the trace diagram that each
next process takes a secondmore for startup and needs this very secondmore for termination. Further,
we have seven worker PEs, the total execution time is . seconds. us, our expectation for the ‘real’
speedup would be ≈ 7.

106 Chapter . Fast Multiplication — Divide and Conquer

1 2 3 4 5 6 7 8

2
4

6
8

Speedup for Karatsuba Multiplication

relative speedup
PEs

S
pe
ed
up

speedup for n=32000
speedup for n=128000
linear speedup

Figure .: Speedups of Karatsuba multiplication on sakania.

1 2 3 4 5 6 7 8

0
5

15
B
(n
,p
) parallel penalty wrt p

1 2 3 4 5 6 7 8

0
40

B
(n
,p
) parallel penalty wrt p

1 2 3 4 5 6 7 8

0.
2

0.
8

n=32000
PEs

f(n
,p
) serial fraction

1 2 3 4 5 6 7 8-0
.0
5

0.
20

n=128000
PEs

f(n
,p
) serial fraction

Figure .: Quality measures for Karatsuba multiplication. We use relative reference point.

5.0 10.0 15.0 20.0 25.0 30.0

P2:1

P1:1

Figure .: Trace diagram for Karatsuba multiplication for input size 32 000 on two cores.

.. Estimation of the Runtime

We present the estimation of the execution time of Karatsuba multiplication basing on [Lobachev and
Loogen, c] and Chapter . We estimate the sequential time and the parallel penalty w.r.t. task
size n. Combining them, we obtain an estimation of the execution time for a not measured input size.

With GHC . we were unable to execute the sequential program for the input sizes from
onward. We used the sequential execution time in the range from to to predict the
sequential execution times for larger input sizes. We measured the parallel execution time up to input
size . We use these values as a reference for our estimation. e parallel execution time on
PE is predicted in the range – from the data in range – .

We found various combinations of our usual methods more useful in different ranges of the input
sizes. An overview is in Figure .. We see that for each range of the task size to predict at least one

.. Fast Fourier Transform 107

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

P8:1
P7:1
P6:1
P5:1
P4:1
P3:1
P2:1
P1:1

Figure .: Trace diagram for Karatsuba multiplication for input size 128 000 on eight processors.

20000 40000 60000 80000 100000 120000

0
10

20
30

40
50

Estimating Parallel Execution Time

Ti
m

e,
 s

ec
on

ds

observed time
loess + loess
lm(poly) + loess
loess + lm
lm + lm(poly)
lm + loess

 Input size
absolute reference point

Figure .: Predicting the parallel execution time of Karatsuba multiplication.

good combination of the prediction methods exists. e method lm for the sequential time, combined
with loess for the parallel penalty, results a relative error of−0.0253% for an estimation of the execution
time for the input size . Other remarkable values and methods are summarised in Table ..

.. Conclusions

We have presented a parallel implementation of Karatsuba multiplication. We focused on divConFlat
skeleton, which produced very good results, the relative speedup for the input size was clearly
superlinear. We investigated reasons for such a behaviour of our code. We performed the estimation of
execution time of our implementationw.r.t. the input size. e resultswere very good, with remarkably
small relative errors.

. Fast Fourier Transform

e Fourier transform is a very significant procedure. An application of the Fourier transform to an
input vector x results in an output vector x̂, such that the ‘time’ component in it is replaced with the
‘frequency’ component. To give an example: for a vector [1, 2, 4, 2] the transform corresponds to a
change from ‘2 is at positions 2 and 4’ to ‘2 appears in the vector twice’. In digital signal processing,
the input and output vectors are considered as signals, indexed with Z, in special cases we consider
only a window—a finite part of the signal [Lyons,]. We are interested in the discrete transform,

108 Chapter . Fast Multiplication — Divide and Conquer

n statistical method for rel. error, %T(n) B(n, 8)

100 000 loess loess −1.958
104 000 lm(poly) loess −0.166
104 000 lm loess −1.792
108 000 lm loess −0.188
108 000 lm(poly) loess 1.128
120 000 lm loess −0.025
120 000 lm(poly) loess −0.137
124 000 loess lm −0.306
124 000 lm lm(poly) −1.696
128 000 lm lm(poly) −0.292

Table .: An overview of good prediction methods for Karatsuba multiplication.

the formal treatment of the continuous Fourier transform is far beyond the scope of this work. Here
i denotes the imaginary unit,

√
−1. e Fourier transform commonly operates on complex-valued

inputs and outputs, although there are real-valued variants. Aer an overview of the related work in
Section .. and some theory in Section .. we consider the fast Fourier transform in Section ...
We abbreviate the latter name to FFT. Some practical results are in Section .., and a better approach
is in Section ... e performance of these two FFT implementations is discussed in Section ...
Wewill show an application of the FFT for the polynomial multiplication in Section ... We envision
our FFT implementation as a divide and conquer one, although there are also other approaches to it,
the keyword is ‘filters and pipes’ [Arjona et al.,]. e conclusions are in Section ...

.. Related Work

e fast Fourier transform itself, and its parallelisation in particular, form a very large topic, which
has been rigorously researched—and still is. ere have been implications that already Gauß knew of
the fast way to compute the transform [Heideman et al.,]. e modern history of the FFT begins
with the publication by Cooley and Tukey []. Since then, a lot of research on FFT has been done.
Nussbaumer [] presents an overview of FFT and accompanying concepts. e transform is heavily
used in signal processing, see, e.g., [Lyons,]. ere are also important applications in computer
algebra. We cannot cover everything, but aim to show the research directions, essential for this work.
A landmark is the paper by Schönhage and Strassen [] on using the FFT for multiplication, see
also [Gentleman and Sande, , Schönhage, , Cantor and Kaltofen, , Knuth, , Yap and
Li, , von zur Gathen and Gerhard, , Emiris and Pan,]. For other than Cooley–Tukey
approach to FFT, consult [Winograd,]. Winograd defined closed formulae for the particular input
sizes of the transform, while the composition of these formulae is similar to the ‘classic’ FFT. e state
of the art of the FFT implementation is fftw [Frigo and Johnson,].

e interest in a parallel FFT implementation was always high, cf. [Pease,]. For the overview
of the approaches on parallel FFT, consult [Duhamel and Vetterli, , Grama et al.,]. Various
implementations exist, e.g., [Gupta et al., , Agarwal et al., , Hammes et al., , Bailey et al.,
, Dmitruk et al., , Grelck and Scholz, , Crandall et al.,], alternative approaches are
[Arjona et al., , Jackson et al.,]. Grama et al. [] show two different ways of implementing
the parallel FFT. e skeleton-based approach, which we will present in Section .., is based on pa-
pers by Gorlatch, partially in a collaboration with Bischof [Gorlatch, , a, Gorlatch and Bischof,
].

e convolution is closely related to FFT. It accounts for the possibility of the fast multiplication,
see Section ... ere are some subtle details, which account to the additional term in the complexity.
e latter isO(n log n log log n) for the fast integer multiplication. e pioneers were Schönhage and
Strassen []. A much more generic variant, working for polynomials with coefficients from an

.. Fast Fourier Transform 109

arbitrary algebra was introduced by Cantor and Kaltofen []. If we limit the coefficients to fields,
supporting FFT, we can use theO(n log n)method [Emiris and Pan,].

.. eeory of FFT:e ‘Slow’ Fourier Transform

Notation. We denote vectors in bold lowercase, e.g., x. e indices of a vector of length n are
[1, . . . , n]—vectors’ indices begin with a unity. Sometimes we write #x for the length of the vector x.
We denote some subset of a vector x with elements with indices [k, . . . , l]with x[k,...,l]. For example, a
vector with all odd elements of x with #x = n is x[1,3,...,2k+1] where 2k + 3 > n. For a single, j element
of x we write simply x j.

Definition. We define the Fourier transformed values x̂, of an vector x of length n as

x̂k =
n
∑
j=1

xk e
−2π i jk

n

²
=∶ω jk

. (.)

e underbraced part of the above equation defines the n primitive root of unity to the power jk. See
also Section .. on page . Both e2πi/n and e−2πi/n are primitive roots of unity of order n.

e typical naive way to compute the Fourier transform is through a matrix-vector product of x
with the so-called Fourier matrix. We denote here the n such matrix with Fn. e few first Fourier
matrices are [Strang,]:

F2 =
1√
2
(i

0 i0

i0 i2) =
1√
2
(1 1
1 −1)

F4 =
1√
4

⎛
⎜⎜⎜
⎝

i0 i0 i0 i0

i0 i1 i2 i3

i0 i2 i4 i6

i0 i3 i6 i9

⎞
⎟⎟⎟
⎠
= 1
2

⎛
⎜⎜⎜
⎝

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎟
⎠

= 1
2

⎛
⎜⎜⎜
⎝

1 1
1 i

1 −1
1 −i

⎞
⎟⎟⎟
⎠
(F2 F2

)
⎛
⎜⎜⎜
⎝

1
1

1
1

⎞
⎟⎟⎟
⎠

So, the pattern is easy graspable, the next matrix F2n consists of a combination of Fn, successively
multiplied with powers of the primitive n root of unity ω and even-odd shuffle. We formalise it as

F2n = (
In Dn
In −Dn

)(Fn Fn
)S2n,

where In = diag 1n, Dn = diag ω = diag [1,ω,ω2, . . . ,ωn−1] and S2n is an 2n × 2n even-odd shuffle.
We see, the Fourier matrix is easy decomposable in a divide and conquer manner. Essentially,

it is exactly what Cooley–Tukey fast Fourier transform algorithm is about. But it does not construct
the matrix Fn explicitly. Still, the formal base for the FFT is the Danielson–Lanczos lemma, which
we have informally presented above for the Fourier matrices. With it we can split an n-size discrete
Fourier transform of x of length n to two n/2-size transforms plus some additional operations. ese
correspond to an FFT of size two! We denote here application of the transform to some vector x as x̂.
We will handle the FFT rigorously in the next section.

e inverse FFT is equivalent to FFT with some other parameters, and generally has the same
characteristics and complexity. Its computation utilises the fact, that if ω is a primitive n root of
unity, then ω−1 is also one. See [von zur Gathen and Gerhard, , eorem .] for more. A single
additional caveat is the factor n in the resulting output of the inverse transform, but even it can be
handled beforehand by a careful prescaling of the ‘forward’ transform. To be short: we do not need to
care of computing the inverse FFT too much, if we can compute the ‘forward’ transform.

110 Chapter . Fast Multiplication — Divide and Conquer

Decimation in Frequency
divide (l, r) from x

s = r + l
d = r − l
t = d ⋅ ω

recur ŝ from s
t̂ from t

combine x̂ from ŝ, t̂

Decimation in Time
divide (o, e) from x
recur ô from o

ê from e
combine l = ô + ê

t = ô − ê
r = t ⋅ ω
x̂ = (l, r)

Table .: Variants of FFT, in a short form.

.. eeory of FFT:e Fast Fourier Transform

Anoverview of FFT is in [Duhamel andVetterli,]. ebasics are nicely explained in [Strang,].
We can easily represent the Fourier transform as a divide and conquer algorithm. is was done by
Cooley and Tukey []. e result bears the name of fast Fourier transform and has reduced the
complexity of the transform toO(n log n) for input vector of length n. We show the complexity result
later in this section. e explicit matrix construction from the previous section is rather harmful for
an efficient algorithm.

Variants. An overview of this section is available in Table .. For a divide and conquer version
of FFT we divide our input vector x of length n into two halves: l = x[1,...,n/2] and r = x[n/2+1,...,n].
en we compute the element-wise sum s = r + l and difference d = r − l. Finally, we component-
wise multiply d with twiddle factors vector ω, resulting in t. e twiddle factors vector is defined as
ω = [ω0,ω1, . . . ,ωn/2−1] with ω being a primitive root of unity of order n, e.g., ω = e−2πi/n ∈ C. Note
that the vectors l, r, s, d, ω and t all have the length n/2. By the way: we do not need much additional
memory. ere is a variant of FFT, running in-place, however, it requires destructive assignment. Now
we recursively compute the FFT of s and t with the FFT-transformed vectors ŝ and t̂ as the result. e
recursion ends at the singleton vectors, which are returned unaltered. Now, having ŝ and t̂ of length
n/2 each, we need to combine them to x̂. We do it with interleaving: we take the first element of ŝ,
then the first element of t̂, then the second element of ŝ, then the second element of t̂, and so on. More
formally we can write for k ∈ {1, . . . , n}

x̂ = [ŝ1, t̂1, ŝ2, t̂2, . . . , ŝn/2, t̂n/2] =
⎧⎪⎪⎨⎪⎪⎩

ŝ⌈k/2⌉ k odd
t̂k/2 k even.

We have just obtained the FFT transformed vector of length n. e FFT described above, was one of
the multiple ways to compute the transform. It is called decimation in frequency, abbreviated: DIF.

ere is another approach, called decimation in time (DIT). It is, in fact, the dual algorithm to the
decimation in frequency FFT. e input vector x of length n is divided into two vectors o and e of
the half size by interleaving x. So, the vector o holds only odd and e only even elements of x. en
we compute recursively the FFT transform of o and e, resulting in ô and ê. e combine step is more
complicated. e first half x̂[1,...,n/2] of the final result is the component-wise sum of the results of the
half size transform. e second half is the component-wise difference of the same vectors, multiplied
with the twiddle factors ω. e latter are the same as in the DIF case.

e two versions presented above, are the so-called radix two versions: we use binary divide and
conquer. ere are versions of FFT with higher radix values, generally described as r-radix FFT. If
we use different radices in different recursion depths, we obtain mixed-radix FFT. In [Berthold et al.,
c] we paid attention to the parallel four radix divide and conquer FFT implementation. We de-
scribe the algorithm below, see also the above paper and [Nussbaumer,] for more details. We
implement DIF four radix FFT. Let us divide the input vector into four parts. We number the parts
through: x1 to x4. Please note: x1 is the first element of x, but x1 is a vector called so. en we compute

.. Fast Fourier Transform 111

Algorithm e fast Fourier transform [von zur Gathen and Gerhard, , Algorithm .].
Require: For n = 2k ∈ N with k ∈ N, a polynomial f ∈ R[x] of shape fn−1xn−1 + fn−2xn−2 + ⋅ ⋅ ⋅ + f0 in

formof its coefficients [fn−1, . . . , f0], a primitive root of unityω in R of order nwith corresponding
powers ω,ω2, . . . ,ωn−1.

: if n = 1 then return f0.
: end if
: Set

r0 ←
n/2
∑
j=0
(f j + f j+n/2)x j , r∗1 ←

n/2
∑
j=0
(f j − f j+n/2)ω jx j .

: Call the algorithm recursively to evaluate r0 and r∗1 at the powers of ω2.
: return [r0(1), r∗1 (1), r0(ω2), . . . , r0(ωn−2), r∗1 (ωn−2)].

Ensure: e vector f̂ , the Fourier-transformed of f . It holds f̂ = [f (1), f (ω), f (ω2), . . . , f (ωn−1)].

the FFT of them, resulting in ŷ1, . . . , ŷ4. e results are combined to

x̂1 = (ŷ1 + ŷ3) + (ŷ2 + ŷ4), x̂2 = (ŷ1 − ŷ3) − i(ŷ2 − ŷ4),
x̂3 = (ŷ1 − ŷ3) + (ŷ2 + ŷ4), x̂1 = (ŷ1 − ŷ3) + i(ŷ2 − ŷ4).

e final result x̂ is just the concatenation of x̂j for j ∈ {1, . . . , 4}. Please observe that if we substitute
for xj and ŷj single elements (resulting in xj = ŷj) for all j ∈ {1, . . . , 4}, then we obtain the FFT for
the vectors of length four. We reiterate, that this forms the essence of the FFT: we can divide a k ⋅ l-
sized Fourier transform into l-many k-sized Fourier transforms, which are divided and combinedwith
l-sized transform.

Complexity. Based on [von zur Gathen andGerhard,], we state an algorithm for computing the
FFT and show its complexity isO(n log n) in the length of input. Aswe know, R[x] denotes the algebra
of univariate polynomials over R, where R is a commutative ring with unity, wherein primitive roots
of unity ω of sufficient degree n exist. An intuition is: R = C. For any positive n ∈ N primitive roots of
unity of degree n exist in C. We show the formal description of FFT, formulated for polynomials, in
Algorithm . We identify the input vector with a polynomial with the coefficients being the elements
of the input vector. In a similar manner, Wilf [] sees FFT as a change of the ‘description’ of a
polynomial. Borodin andMunro [] present FFTof a polynomial as amultipoint evaluation and the
inverse FFT as interpolation. e following statement is derived from [von zur Gathen and Gerhard,
, eorem .] and [Nussbaumer, , Section ..]. Recall that lb is the binary logarithm.

eorem . (Complexity of FFT). Given an integer n, being a power of 2, a ring R, and ω ∈ R a
primitive root of unity of order n, Algorithm computes the FFT of an input vector of size n over R using
n lb n additions in R and 1⁄2n lb n multiplications by powers of ω. So, we can compute FFT of input of
length n in 3⁄2n lb n ∈ O(n log n) operations in R.

Proof. We leave the correctness proof to [von zur Gathen and Gerhard,]. As for complexity:
let s(n) be the number of additions and m(n) be the number of multiplications in R for the input
size n. e costs for steps of the algorithm are shown in Table .. We have s(n) = m(n) = 0, s(n) =
2s(n/2) + n, m(n) = 2m(n/2) + n/2. Unfolding the recursion we obtain s(n) = n lb n and m(n) =
(n/2) lb n.

Alternatively, usingProposition . twice, with a = 2, k = 2both times, we can see that s(n),m(n) ∈
O(n lb n) = O(n log n) for the logarithm in any base > 1.

In [Nussbaumer,] we find complexity statements for base field F, on top of which the com-
plex number field F(i) is constructed, wherein the actual FFT computation happens. Further, [Nuss-
baumer, , Sections ..–..] devises the complexity of two radix FFT separate for both DIF and
DIT cases and of four radix FFT. Some observations on the constants are made, but the complexity
remains inO(n log n).

112 Chapter . Fast Multiplication — Divide and Conquer

Expr. Step Cost

s(n) 1 0
m(n) 1 0
s(n) 2 0
m(n) 2 0
s(n) 3 n
m(n) 3 n/2
s(n) 4 2s(n/2)
m(n) 4 2m(n/2)
s(n) 5 0
m(n) 5 0

Table .: Complexity of separate steps of FFT.

fftDIF :: [Complex Double] → [Complex Double]
fftDIF [x] = [x]
fftDIF xs = shuffle [fftDIF (lsÐ→+ rs), fftDIF ((lsÐ→− rs)Ð→⋅ ws)]

where (ls, rs) = splitAt (length xs ‘div‘ 2) xs
ws = map (w ^) [0..] -- list of powers of a root of unity
w = ... -- a fitting primitive root of unity

(Ð→+) :: [Complex Double] → [Complex Double] → [Complex Double]
xsÐ→+ ys = zipWith (+) xs ys -- invariant: xs and ys have the same length
--Ð→−,Ð→⋅ are defined similarly

Figure .: A non-skeleton based radix two FFT implementation (DIF).

A simple, non-skeleton-based Haskell implementation of the FFT is in Figure .. Vectors are
represented as lists. e library function splitAt of type Int → [a] → ([a], [a]) divides a list at
the given position into two parts. e function transpose of type [[a]] → [[a]] from the module
Data.List transposes a matrix, stored as nested lists. e library function concat :: [[a]] → [a]
flattens the latter to a single list. e library function zipWith of type (a → b → c) → [a] → [b]
→ [c] applies a given binary function to corresponding elements of its two parameter lists and builds
the list of the results of such applications.

.. Performance of the Divide and Conquer Skeletons

e performance results of the parallel divide and conquer FFT implementations, reported in [Ber-
thold et al., a,b,c], were not completely satisfying. For a better approach, see Section ... In the
current section we will report the aforementioned results and discuss reasons for them.

We needed to use list chunking (viz. Chapter) to reduce the communication overhead. Instead of
modifying the parameter functions at skeleton instantiation, we designed a wrapper skeleton chunkDC.
It is depicted in Figure . for the skeletons in the dcF class, i.e., of the type DC’ a b. All parameter
functions of a divide and conquer skeleton are wrapped with a pair of unchunk/chunk applications.
e parameter functions unchunk and chunk should be inverse to each other.

e following run time experiments have been performed on the local network of Linux worksta-
tions with Intel CoreDuo processors and GB RAM connected by Fast Ethernet. We used the Eden
implementation on top of GHC .. We tested the standard Cooley–Tukey -radix FFT algorithm
variants decimation in frequency and decimation in time with the distributed expansion and flat ex-

.. Fast Fourier Transform 113

chunkDC :: Int -- ^ chunk size
→ (Int → [a] → [[a]]) -- ^ chunking function
→ ([[b]] → [b]) -- ^ unchunking function
→ DC’ a b -- ^ input skeleton
→ DC’ a b -- ^ result

chunkDC c chunk unchunk dcSkel trivial solve divide combine xs
= unchunk $ dcSkel (trivial ○ unchunk)

((chunk c) ○ solve ○ unchunk)
((map (chunk c)) ○ divide ○ unchunk)
((chunk c) ○ combine ○ (map unchunk))
(chunk c xs)

Figure .: Implementing chunking in a divide and conquer skeleton.

pansion skeletons. Figure . shows typical trace visualisations and the run times obtained with the
following parameters: input size 220 (double precision complex numbers), chunk size , recursion
depth , and heap size Mb. Note that in this case we tuned the memory size, available to the pro-
gram, with the command line option -H. Our experiments have shown that list chunking is essential
for the performance of the distributed expansion skeleton (see le part of Figure . on the next page),
but varying the chunk size did not have a great impact on the run times. We chose the chunk size to
be in the run time experiments here.

e trace diagrams in Figure . reveal that the flat expansion skeleton (see right part of the figure)
leads to a much better run time behaviour than the distributed expansion skeleton (le part). is is
due to the good task balance in the worker processes which start immediately. Note that the skeleton
co-locates one worker process with the main process on machine one (lowest bars). e communica-
tion overhead is low—only messages were sent in both versions. With the flat expansion skeleton
and the direct mapping trick, we can drastically reduce the input communication, i.e., an overhead of
distributing tasks to the worker processes. Each worker receives the whole unevaluated task specifica-
tion and evaluates its own part on demand. Contrarily, work distribution is slower with the distributed
expansion skeleton, because the main process distributes the tasks to all worker processes. ese are
initially blocked, waiting for their tasks, and start working at different points in time. is leads to an
inhomogeneous run time behaviour.

e decimation in frequency flat expansion -radix version (top right part of Figure .) was the
fastest of all -radix versions with . seconds. e reason is that the post processing in the master
can be done very fast, because combining the results is a trivial shuffle, while the top level combining
phase of the decimation in time version takes almost three quarters of the overall run time.

-Radix vs. -radix. In theory, the -radix algorithm should be faster than -radix, as it reduces the
number of multiplications and enables the sharing of some sub-results. In Table ., we show the run
times of the four possible combinations of -radix algorithm in comparison to -radix, with the same
input size 220 = 410. e shape of the trace visualisations is very similar. Hence, we do not show
the visualisations for the -radix programs. e run time measurements show that the -radix FFT
behaves much better with the distributed expansion scheme than -radix, but the run times are bad in
comparison to the flat expansion scheme. When using -radix with the flat expansion scheme, we get
a modest improvement of the overall run time. e (non-shown) traces reveal that the worker times
are almost halved when using -radix instead of -radix, but the postprocessing in the main process
still dominates the overall run time. It is possible to further increase r and to counter the growing gap
in acceptable input length with mixed radix FFT. In this case we would utilise large values for r as long
as possible and then switch to smaller values, mostly 2 or 4. However, we have chosen a completely
different approach, which is called ‘distributable homomorphism’.

114 Chapter . Fast Multiplication — Divide and Conquer

Distributed Expansion Flat Expansion

D
ec

im
at
io

n
in

Fr
eq

ue
nc

y

Run time: . s Run time: . s

D
ec

im
at
io

n
in

Ti
m

e

Run time: . s Run time: . s

Figure .: Traces and run times of divide and conquer FFT approaches, without/with messages on local
workstations. Trace visualisations are from [Berthold et al., b].

-radix
Distrib. Flat

DIF . .
DIT . .

-radix
Distrib. Flat

DIF . .
DIT . .

Table .: Run times of -radix vs -radix on eight local workstations. Time is in seconds. Data originates
from [Berthold et al., c].

.. Distributable Homomorphism

In our FFT example, the distributed expansion skeleton does not scale well. Flat expansion skeleton
scales better, but it has a drawback in the sequential divide and combine, where the first can be
solved with various techniques, but the latter becomes the larger problem, the more tasks—and hence:
PEs—we use. e generic reason for this problem is the large communication complexity of the FFT.
A skeleton-based solution to relax the one-to-all communication patterns was suggested by Sergei Gor-
latch in a sequence of papers of distributable homomorphism [Gorlatch,] in the context of FFT
[Gorlatch, a, Gorlatch and Bischof,]. e actual approach is widely known as the ‘transpose
FFT’, cf. [Grama et al.,], alas it was presented there in a non-skeleton-based manner.

Recapitulate the key idea of Cooley–Tukey FFT scheme. Let us call two elements k-distant, if
between which another k − 1 elements lie. So, in FFT we process 1-distant element pairs first, then
2-distant, then 4-distant, and so on. We see the distance is increasing, and the locality of data is fading
out. Most FFT implementations perform a data recombination before the actual transformation to
maintain better data locality. We could do such permutation in each step to maintain the 1-distance
through the computation, but it is too costly. So, we place our data in a m-dimensional hypercube and
do a permutation each few steps. Such permutation corresponds to the rotation of the hypercube. e
latter brings the distant elements back to 1-distance. If we restrict our dimension to two, then we have
to do only one rotation in-between, which corresponds to matrix transposition. A permutation in the
beginning of the computation is recommended to establish data locality, but as we operate on unmod-

.. Fast Fourier Transform 115

ified data, we can resort to the direct mapping trick. In a some sense, we perform an m-dimensional
FFT, which simulates the single-dimensional transform.

We have implemented this approach in Eden. It resulted in a much better scalability than our
previous approaches, alas for the price of higher memory usage. We had to store the positions of the
permuted elements for the global FFT transformation.

How it works. We present the details, basing on [Berthold et al., b] and its extended version
[Berthold et al., c]. e desired core functionality is

parMap (fft) ○ transpose ○ parMap (fft)

We abstract a bit and imagine two distinct unknown worker functions f1 and f2 in the parallel maps.

parMap (f2) ○ transpose ○ parMap (f1)

e input vector is divided into rows on am-dimensional gridwith side lengths l = 2k . We consider
the twodimensional case, so the grid is a matrix (m = 2) and the input vector length is n = l2 = 4k . We
can separate three phases of the algorithm.

. Preprocessing

a) Permute the input

b) Tag input elements with their position. is ensures the ‘virtual global’ length

c) Split into rows

. Central processing: ‘local fft3 ○ global transpose ○ local fft3’

. Postprocessing

a) Remove tags

b) shuffle, i.e., concat ○ transpose

In the step a the i input element is now at the position bitreverse(i). e latter function produces
the bit-reversed binary representation, e.g., 11012 becomes 10112. Such bit-reversals can be also used
in the Cooley–Tukey FFT implementations to improve data locality. Our application of the FFT does
not insist on the bit-reversal. As for fft3 from step , it will be defined subsequently. It is essentially
the standard FFT, using the tagging information.

is approach is very similar to a multidimensional—in this case: twodimensional—FFT. e key
difference is in the tagging. While for multidimensional FFT the twiddle factors are based on actual
row lengths and positions, the local FFT worker function for distributable homomorphisms, called
fft3 here, applies the very same FFT transform as ever. But the twiddle factors are calculated, based
on the global length and position information, which we include in preprocessing step b. We form
at this point a triple (position, length, data element). Hence, we achieve the computation of
singledimensional FFT with an approach for a m-dimensional transform.

So, fft3 is (almost) the usual sequential FFT. e divide function is not spectacular, it is a trivial
list division. However, the combine function needs to use the global length and positioning informa-
tion from the triples. In a contrast to that, the multidimensional FFT applies standard transform to
the each of the rows as if it were a singledimensional transform for the current row only. In other
words: an implementation of multidimensional FFT is a byproduct of the discussed approach. It is
briefly discussed on page .

e skeleton. We have managed to map the singledimensional FFT problem (solvable with divide
and conquer) to a multidimensional-like FFT problem, being a sequence of maps and hypercube rota-
tions. In our case ‘m = 2’, we have a scheme map ○ transpose ○ map. In [Berthold et al., b] we
have devised a skeleton for such tasks.

116 Chapter . Fast Multiplication — Divide and Conquer

parMapTranspose :: Int → ([a] → [b]) → ([b] → [c]) → [[a]] → [c]
parMapTranspose np f1 f2 matrix = shuffle res

where
myProcs css = spawn [distr2d_f np f1 f2 rows

∣ rows ∈ unshuffle np matrix] css
(res, chanss) = myProcs $ transpose chanss

distr2d_fs :: Int → ([a] → [b]) → ([b] → [c]) → [[a]]
→ [ChanName[b]] → ([[c]], [ChanName [b]])

distr2d_fs np f1 f2 rows theirChanNs
= let (myChanNs, theirFstRes) = createChans np

intermediateRes = map f1 rows
myFstRes = unshuffle np $ transpose intermediateRes
res = map f2 $ shuffleMatrixFracs theirFstRes

in (multifill theirChanNs myFstRes $ res, myChanNs)

-- combine n matrix fragments into one matrix
shuffleMatrixFracs :: [[[a]]] → [[a]]
shuffleMatrixFracs = ... -- implementation omitted

Figure .: Parallel map-and-transpose skeleton from [Berthold et al., b].

It is immediately obvious that a sequential transpose bears too much overhead. All the data have
to be sent to the master PE, computing transpose, and then sent back to the workers. We need a dis-
tributed transpose. In [Berthold et al., b] we have implemented this functionality with a dynamic
channel communication in the skeleton. We utilised the primitives new and parfill, cf. Section ...
e core idea is to sequentially transpose the channels for obtaining the data. Figure . shows the
implementation.

Details of implementation. Let us consider the implementation of the skeleton in Figure .. e
parallel map is easily defined. Let np be the number of PEs. e matrix rows are familiarly divided
into np contiguous blocks with unshuffle. At the end the shape of the final result is reconstructed
with shuffle. e processes are created with spawn, see Chapter . We call the process, creating all
other processes, the ‘master’ or the parent process. In each process the function distr2d_fs np f1
f2 consumes its portion of the rows and of the lazily received input (a row of css). is row is a list of
channel names to establish a direct link to all processes in an all-to-all manner. Recall, a channel name
is a not-yet-open channel. e channel list features a channel for the current process to talk to self for
the sake of simplicity. Each process evaluates the function distr2D_fs. us the first np input channel
names myChanNs are created. ese are returned to the parent process in the second component of the
result tuple. e parent process receives a matrix chanss :: [[ChanName a]] of channel names: np
channel names from np processes. e matrix is transposed by the parent process and sent back row-
wise. Hence, each process receives lazily np channel names called theirChanNs for sending data to all
processes. In this manner, we can transpose the data matrix without sending and receiving it again
from parent process.

Aer map f1, a process locally unshuffles the columns of the locally transposed result rows into
np lists. ese are sent via the received input channels of the other processes by the multifill call.
e latter function is an improved parfill for lists. e input for the second map is received via the
initially created own input channels. e column fragments build rows of the transposed intermediate
result matrix. e second map f2 call provides us the final result of the child processes.

A derivative skeleton. e skeleton from above is quite large and not modular. A major improve-
ment is possible with the remote data concept, cf. [Dieterle et al., b] and Section ... Using it

.. Fast Fourier Transform 117

farmRD :: (Trans a, Trans b) ⇒ (a → b) → [RD a] → [RD b]

parTransposeRD :: (Trans b) ⇒ [RD [[b]]] → [RD [[b]]]

mapTranspose :: (Trans a, Trans b, Trans c)
⇒ ([a] → [[b]])
→ ([[b]]→ [c])
→ [[a]] → [[c]]

mapTranspose f g = fetchAll ○ (farmRD g)
○ parTransposeRD ○ (farmRD f)
○ releaseAll

Figure .: A possible implementation of the map-and-transpose skeleton with remote data.

and a plausible parallel map, say, farmRD, we would write the code in Figure . for the implementa-
tion of distributable homomorphismswith worker function fft3. Recapitulate: releaseAllmaps [a]
to [RD a] and fetchAll brings the data back to [a] from [RD a]. As always, RD stands for the ‘remote
data’. e function farmRD is a remote data version of a farm, parTransposeRD is a parallel transposi-
tion. We show their types in Figure .. A further important point is that a proper implementation
should obtain a distributed input and produce a distributed result. However, it suffices to remove
in the code in Figure . the leading fetchAll and the trailing releaseAll to obtain the desired
behaviour.

Unfortunately, we observe that the remote data version creates more processes than needed: the
first parallel map and the second have distinct processes, all of them live quite long and start early. e
actual fact of creating too many processes is not surprising: we have two parMaps and the processes,
forming the first one, need to live on in order to deliver the processed data to the second group of
the processes, forming the second parMap. What we discuss is the process life duration. We have not
the expected behaviour: the first group of processes should die soon aer the second group launches.
e reasons are: firstly, the communication is streamed, i.e., it takes some time. us, the primary
processes do not die early. Secondly, a demand exists on the weak head normal form of the result of
the computation, thus forcing the instantiation of the second process group, as the RD constructor is
always immediately available. us the secondary processes start early.

We conclude that the hand-craed implementation from Figure . is more optimal that the re-
mote data version from Figures .. On the contrary, the latter version is much easier to implement.
Note also: the code in Figure . is a skeleton, using another skeleton.

Note that both in the remote data case and in the monolithic skeleton case from [Berthold et al.,
b], we envision the input data to be already distributed along the PEs and the result remains
distributed. is solves a further major problem of our direct divide and conquer implementation:
the enormous overhead for data collection in master PE. e current implementation leaves the FFT
transformed data in a column-wise manner. In other words: we omit the postprocessing step b—
shuffle of the results with subsequent result collection.

Multidimensional FFT. It is possible to represent a singledimensional discrete FFTwith input length
n ⋅ m as a twodimensional discrete FFT of size n × m if n �m. It is done with the Ruritanian map-
ping, which is also called Good’s mapping [Nussbaumer, , p. –]. Another approach is the
Winograd’s nesting algorithm [Nussbaumer, , p.]. Generalisations of these allow to map a one-
dimensional transform of length∏d

i=1 pi to a d-dimensional transform. However, the factors pi should
be coprime.

Multidimensional FFT is also important for applications, e.g., image processing. ere are many
different ways to perform amultidimensional FFT.e simplest case for two dimensions is the column-
rowmethod. In this case, a singledimensional FFT is applied to the columns and then to the rows of the
two dimensional matrix. ismethod can be generalised to d dimensions of length n each, assuming a

118 Chapter . Fast Multiplication — Divide and Conquer

Figure .: Trace of parallel FFT using map-and-transpose skeleton on a Beowulf cluster. Image from
[Berthold et al., b].

grid of regular basis, the cost corresponds to dnd−1 times the cost of singledimensional FFT of length n.
Even if we stay in two dimensions, we trade the overhead to compute a single FFT of length 210 against
the overhead to compute 2 ⋅ 25 FFTs of length 25. e formal representation of twodimensional FFT
of length n1 × n2 is

x̂k1 ,k2 =
n1
∑
l=1

n2
∑
m=1

xl ,mω
(l−1)(k1−1)
1 ω(m−1)(k2−1)2 ,

with ω1 = e−2iπ/n1 ,ω2 = e−2iπ/n2 , k1 ∈ {1, . . . , n1}, k2 ∈ {1, . . . , n2}. We see, the computation scheme
for the twodimensional FFT is similar to the map-and-transpose FFT computation, i.e., it requires
two maps of onedimensional transforms and a transpose in each dimension. We use the above parallel
map-and-transpose skeleton also to implement the twodimensional FFT.Our implementation, started
with the input size 210, produces the relative speedup . at worker PE at local workstations with
Intel CoreDuo CPUs. is corresponds to full PE. e heap size was Mb, the message queue
size was Mb, the chunking size was . e efficiency is .%, calculated with full PEs. We evaluate
the singledimensional FFT implementations next.

.. Performance

e trace visualisation (cf. Section .) of our implementation of the transpose FFT is shown in Fig-
ure .. is image was produced from a trace, generated on a Beowulf cluster, see pages –
for details. e frequent yellow phases correspond to garbage collections—this implementation has
an increased memory usage due to the extended location information for fft3. e communication
phase is at .–. seconds. We need to further investigate, whether memory shortage has influence
on the performance of our program.

.. Fast Fourier Transform 119

We evaluate the program execution time measurements, we have obtained in [Berthold et al.,
b] for the flat expansion divide and conquer skeleton and the monolithic map-and-transpose
skeleton, both instantiated with a corresponding implementation of the FFT.

Evaluation: NetworkedWorkstations

In this section we consider the results on local workstations, the next section handles the results, ob-
tained on the Beowulf cluster. See page for the specifications of the hardware used. In this section
we use the relative speedup and the relative reference point for both the parallel penalty w.r.t. number
of processors and for the serial fraction.

Flat expansion. Consider the ‘normal’ divide and conquer skeleton first. All the plots for it are shown
in the le half of Figure .. We used -radix FFT, the input size was 220, the depth was . In other
words, tasks were created. e heap size (-H parameter) was Mb, chunking size was , the
message buffer (-qQ parameter) was set to Mb. e best speedup is 3.90 at PE, increasing number
of PEs does not improve the result, see Figure ., top le. e vertical line marks the PE mark,
where the speedup is the best. We need to admit, that we used eight dual-core machines, i.e., PEs
are the maximum with single process placement. From this mark onward we have double process
placement—each dual-core machine has two OS processes on it, each with its own Eden RTS. is is
justified, as we still never have more than one OS process pro core, but this approach seems to affect
the network communication, see Figure .. A strange effect is that the maximal speedup is at , not
 (full) PE. e probable reason lies in the communication overhead, which dominates the time in the
master process and thus slows down the whole computation. We see that the speedup degrades at –
PEs and not really recovers at – PEs. e growth of the speedup at – PEs is satisfying. We will
see a better behaviour below, when we will consider the map-and-transpose FFT implementation on
the same local workstations.

Interestingly, the shapes of the parallel penalty B(n, p)w.r.t. p and of the serial fraction f (n, p) are
not quite the same. We present these two quality measures for the flat expansion skeleton in the lower
le part of Figure .. e parallel penalty is in the le middle part of the figure, the serial fraction
is below it, in the le bottom part. We use the relative reference point. e parallel penalty increases
slowly from to PE and is nearly constant for – PEs. From to PE we have fast growth, from
 PE onwards the curve jitters and very slowly increases. e overall growth of the parallel penalty
in the rage – PEs corresponds to the slowdown of the speedup, likewise, the slight decrease in –
PEs matches the increase of the speedup in the same range. e fast growth maps to the decreasing
speedup, while the unsteadiness of the parallel penalty curve at – PEs is reflected in the similar
behaviour of the speedup curve. To give an example: a local minimum at PE in the parallel penalty
means a local peak at the same PE in the speedup. e serial fraction plot in Figure ., bottom le,
looks differently, but tells us quite the same. Notably, it decreases a bit at – PEs and increases again
at PE. is is different to the ongoing increase of the parallel penalty at – PEs. We mark and
PEs as a very good values, since the serial fraction there is small. We see a small peak at PE, which
corresponds to a minor speedup deficiency there. e decline of the serial fraction at – PEs is more
visible than for parallel penalty and the increase at – PEs is more steep. Still, this behaviour gives
us the same information, as the corresponding parts of the parallel penalty plot above. e minima at
 and PEs are more clearly visible with serial fraction. To interpret the serial fraction in the way
Karp and Flatt [] meant it, the – PEs versions have a smaller serial fraction than the initial value
at PE, which is a hint for the PE version to be slightly not optimal. Still, much more remarkable
is the increase at – PEs and the jitter, but anyway high values at – PEs. ese signal us, that the
parallelisation, which optimal for up to PE is no longer optimal for larger number of PEs. In other
words, our flat expansion FFT implementation does not scale on networked local workstations. is
confirms the impression, we have from observing the speedup curve in Figure ., top le.

Map-and-transpose skeleton. Next we consider themap-and-transpose FFT implementation on the
local workstations. e result is kept distributed, the input size is the same, meaning that 210 tasks

120 Chapter . Fast Multiplication — Divide and Conquer

2 4 6 8 10 12 14

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Workstations – DC Flat

relative speedup
 Full PEs

S
pe
ed
up

observed speedup
linear speedup

2 4 6 8 10 12 14

1
2

3
4

5
6

7

Workstations – map-transpose

relative speedup
Worker PEs

S
pe
ed
up

observed speedup
linear speedup

2 4 6 8 10 12 14

0
2

4

B
(n
,p
)

parallel penalty

2 4 6 8 10 12 14

0.
10

0.
20

Full PEs

f(n
,p
)

serial fraction

2 4 6 8 10 12 14

-2
0

2

B
(n
,p
)

parallel penalty

2 4 6 8 10 12 14-0
.2
0

0.
00

Worker PEs

f(n
,p
)

serial fraction

Figure .: Evaluation of FFT on local workstations.

are processed. e heap size is Mb. In this section under ‘PE’ we mean ‘worker PE’. One PE is
designated as the ‘master’. e plots are shown in Figure ., right. e top right part of this figure
shows the speedup curve. We see the super linear speedup at – PEs, a speedup decline at – PEs, a
fast climb up to PE, and slowly increasing, but almost not improving values at – PE. At PE the
speedup degrades. e speedup values are 6.43 at PE and 7.24 at PE. e former is very satisfying,
the efficiency is 91.82%, while the latter is not. Note, we use relative speedup w.r.t. the worker PEs.

To obtain some clues about the behaviour of our parallel program, we consider the usual two
quality measures in the lower right part of Figure .. e parallel penalty B(n, p)w.r.t. p is negative
between and PE, rises from to PE and falls again to a relatively small positive value at PE. e
negative part corresponds to the super linear speedup at – PE, the rising part matches the degrading
speedup values and the decreasing positive past at – PEs stands for the very quickly recovering
speedup in the same range. e vertical line in the speedup plot (Figure ., top le) marks the still
almost-linear speedup values at PE. e same vertical line is in both quality measures’ plots. We
interpret this border as the full amount of single-placed workers: we used dual-core machines, one
is busy as the master, workers are le. In a further development, we have a rapid decline of the
speedup at PE, as one worker is co-located. is means the increase of the parallel penalty w.r.t. p.
We have a slightly improving speedup, which corresponds to slowly increasing parallel penalty at –
PE. e decline of the parallel penalty at – corresponds to the recovered speedup behaviour. Note
that aside the missing value at PE, the serial fraction plot (i.e., Figure ., bottom right) mimics
the behaviour of the parallel penalty graph. e horizontal dashed line in both quality measures’ plots
marks the zero value. We see that the negative values correspond to the super linear speedup.

An interpretation of the serial fraction plot follows. We connect the negative values at – PEswith
super linear speedup. From to PE the serial fraction curve is increasing, thus symbolising some
increasing overhead. But at – PE it falls again to almost zero, hence we consider the parallelisation
for – PEs as very satisfying. is corresponds to the good speedup value of 6.43 for PE. e initial
decline is probably related with too much work for too few PEs, another possible reason is the commu-
nication overhead between the workers. is is different from the usual suspect, the communication

.. Fast Fourier Transform 121

overhead in master for sending (or receiving) the tasks (or the results). In this case the workers need
to perform a distributed transposition and communicate in an all-to-all manner. As the volume of
the communication is the same, the workers seem to have less overhead, when they communicate the
same amount of information not to, e.g., three other workers, but to, e.g., six other workers. We would
assume that such a behaviour should continue with increasing number of PEs, i.e., that the map-and-
transpose skeleton scales well. However, it is not so in our observations on the local workstations, at
– PEs. Still, we think, that the reason for such behaviour is our setup and not the drawbacks of
the skeleton or of the implementation. Namely, from eight workers onward, we have double place-
ment—at least one dual-core machine hosts two processes in this case. As both of them share the
same network connection, the communication on the doubly-placed machine is affected. is could
explain the speedup decrease we see at worker PE. Further adding more workers helps a bit to cope
with the communication overhead, but does not produce as good speedups as before. e slow overall
increase of the parallel penalty from to PEs confirms our assumption. e minor declines of the
parallel penalty at and at PE are probably related with some positive effects of scaling, a short-term
victory of the increased number of workers against the inter-worker communication overhead.

Overall, we see a quite good behaviour of the skeleton for low number of PE, which is not so nice
for larger numbers of PE. However, we consider this drawback to be an artifact of the regarded setup.
To look into this problem and to observe scaling at larger number of PE we consider experiments on
a Beowulf cluster next.

Evaluation: Beowulf Cluster

e following experiments were performed on the Beowulf cluster of the Heriot-Watt University.

Flat expansion. Contrary to the above experiment on the local workstations, we use here the flat
expansion -radix divide and conquer FFTwith parallel depth two andnot three. edepth produces
a mediocre speedup of . on PE with best overall speedup being . on PE. So, we consider the
depth experiment in a more detail. As only tasks are available, no observations beyond worker
PEs are performed. e heap size (-H parameter) was Mb, the message buffer (-qQ parameter) was
 Mb. e chunking size was .

Consider the speedup graph in Figure ., top le. We show the relative speedup. It is almost
linear at – PE, a small setback occurs at – PE, the speedup decreases at – PE. We see the best
overall speedup of 5.57 at PE, then another decline occurs. As only tasks are issued, one possible
reason for this lies in the task distribution across the PEs. We consider it in Table .. ‘Full PEs’ means
the total number of processing elements, ‘worker PEs’ stands for the PEs actually doing some work
and not overseeing the task distribution. As in previous chapters, ‘full rounds’ and ‘remaining part’
stand appropriately for how oen the worker PEs have one task each and for the amount of the tasks
remaining in the last, incomplete round (provided that all tasks need the same time to compute). e
‘total rounds’ row is self-explanatory. ‘Idle in last round’ shows the amount of worker PEs, which are
not working in the incomplete round. e quotient of this figure and of the number of worker PEs is
the ‘slack-off ’. We see that, e.g., aer some significant slack-off at – worker PEs, eight worker PE—
naturally—have zero slack-off. is explains the ‘jump’ in the speedup at full PE, which we see in
Figure ., top le. According to Table ., the next zero slack-off configuration is worker PE. At
this mark (full PE) we see a modest recover from all the problems faced at – full PEs.

e theoretic considerations from above correspond to the issues we observe in both quality meas-
ures for the flat expansion FFT computation on the Beowulf cluster. We show the parallel penalty
B(n, p) w.r.t. p and the serial fraction f (n, p) in the bottom le part of Figure .. e relative ref-
erence point is used. ere, small slack-offs at and full PEs correspond to the local minima in both
plots. Further, it is very interesting to observe the correspondence of the increase both of the parallel
penalty and of the serial fraction at – full PEs with the ever-increasing slack-off values in Table ..
We interpret the values of the serial fraction at points PE and PE as a sign of absent problems in
the parallel implementation at said configurations. Otherwise, as the increase at – full PEs can be
explained with bad task distribution, the only real problem which can be read from the serial fraction

122 Chapter . Fast Multiplication — Divide and Conquer

5 10 15

1
2

3
4

5

Beowulf – DC Flat

relative speedup
 Full PEs

S
pe
ed
up

observed speedup
linear speedup

5 10 15 20 25

5
10

15

Beowulf – map-transpose

relative speedup
Worker PEs

S
pe
ed
up

observed speedup
linear speedup

5 10 15

0
4

8

B
(n
,p
)

parallel penalty

5 10 15

0.
08

0.
16

 Full PEs

f(n
,p
)

serial fraction

5 10 15 20 25

-3
-1

1

B
(n
,p
)

parallel penalty

5 10 15 20 25

-0
.0
6

0.
00

Worker PEs

f(n
,p
)

serial fraction

Figure .: Evaluation of FFT on Beowulf cluster.

full PEs 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
worker PEs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

full rounds 16 8 5 4 3 2 2 2 1 1 1 1 1 1 1 1
remaining part 0 0 1 0 1 4 2 0 7 6 5 4 3 2 1 0

total rounds 16 8 6 4 4 3 3 2 2 2 2 2 2 2 2 1
idle in last round 0 0 2 0 4 2 5 0 2 4 6 8 10 12 14 0

slack-off, % 0 0 66.7 0 80 33.3 71.4 0 22.2 40 54.5 66.7 76.9 85.7 93.3 0

Table .: Task distribution for depth two flat expansion FFT computation.

plot is its high value at full PE, where the task distribution should not harm anymore. It is not clear
to us, why the speedup curve does not make any high jumps at full PE, as it does at full PE. A
possible reason is the communication overhead in the master process; however, we cannot see such a
problem in the serial fraction plot. Still, we have seen above that other our implementations of the flat
divide and conquer FFT also have scalability problems, so let us consider a better way to implement
the parallel FFT.

Map-and-transpose. We discuss here the parallel map-and-transpose implementation of FFT on a
Beowulf cluster. e input size is again 220, we used the memory tuning parameter -H to set the heap
size to Mb. All the plots for this implementation are in Figure ., right. Below ‘PE’ stands
for ‘worker PE’. Because of large memory footprint and because of communication issues with self
we did not produce the single worker PE version of the map-and-transpose FFT time measurement.
Instead, we ran the program on two worker PE and assumed the perfect speedup. In other words, we
took the time on two PE and doubled it to obtain the ‘sequential’ time against which we perform all
other computations. We can confirm the choice of the linear speedup value for – PE with a look to
Figure ., top right. It shows a super linear speedup between and worker PE on local workstations.

.. Fast Fourier Transform 123

0 5 10 15 20 25

0
10

20
30

40

Beowulf – Time Comparison

Full PEs

Ti
m

e,
 s

ec
on

ds

collected results
distributed results
retrofitted estimation

map-and-transpose FFT

Figure .: Distributed result map-and-transpose vs. gathered result. Time is in seconds, measured on
Beowulf cluster. Data from [Berthold et al., b].

Wewill consider the values of speedup, parallel penalty w.r.t. number of worker PEs and serial fraction,
obtained in a manner, discussed above. e ‘pure’ PE–time relationship, without any fictional data
points, is shown in Figure . as the distributed result method. Additionally this figure shows the
times for the same computation with the result collection in master PE. We shall discuss this figure,
especially the ‘retrofitted’ line later, aer we have considered the both quality measures.

e speedup plot on Beowulf cluster, seen in Figure ., top right, is good. We see that a larger
part of the speedup curve is super linear, but there are also some setbacks in the right part of the curve.
emap-and-transpose implementation processes large amount of tasks (210 to be exact), so we do not
expect issues with task balancing. We have the speedup . at PE, . at PE, a crash to . at
 PE, and the total maximum of . at PE. However, we need to investigate whether these results
emerge due to our choice of the numerator in the speedup formula or because of some other positive
side effects. e efficiency is .% at full PE.

e parallel penalty plot w.r. t. number of PE in the lower right part of Figure ., is constantly
zero at – worker PEs (due to the choice of PE time), drops rapidly at – PEs, then rises again slowly
with few small setbacks at – PEs. At PE the parallel penalty is positive again, and the speedup is
almost linear: .. e increase of the curve at – PEs corresponds to the point where the speedup
degrades. e parallel penalty decreases slowly at – PEs only to see a large peak at – PEs. At
these values the speedup has a major setback, which we cannot explain. e parallel penalty value at
 PE decreases again, compared to PE, which is a slight increase compared to PE. e values
at – worker PEs increase slowly, which corresponds to slowly-than-linear increasing speedup at
these points. We think that the decline at – worker PEs can be explained by the memory shortage
in the workers. e nodes of the Beowulf cluster did not have much memory, hence the amount of
work pro PE was probably too large for these configurations. From PE onward, the parallel penalty
generally increases. e derivative of the speedup declines fast at – PEs. e zeromark at the parallel
penalty corresponds to the linear speedup, we see this clearly at – PEs and – PEs.

e serial fraction plot in Figure ., bottom right, is very similar to the parallel penalty graph
above it. e sole exception is the absent value at PE due to the nature of the serial fraction. e serial
fraction values have a similar relation to the zero as the values of the parallel penalty—serial fraction is

124 Chapter . Fast Multiplication — Divide and Conquer

negative if the speedup is super linear. Let us discuss the serial fraction plot in amore detail. e falling
values at – PE signal a bad sequential version. We conjectured this above with the probable culprit
being the memory shortage. An inspection of the trace diagram in Figure . on page supports
this assumption. We see four major garbage collections there. From worker PE onward the serial
fraction ismajorly increasing. We disregard the fewminor exceptions here. Said behaviour of the serial
fraction indicates an increasing serial part in the computation. It could be the communication from
master to the workers. Such problems in the context of the master-worker schemes were considered,
e.g., in [Berthold et al.,].

Now aer we have seen the parallel penalty w.r.t. number of PE and the serial fraction plots in
Figure ., bottom right, let us consider the PE–time relationship in Figure .. It shows the same
execution times of the map-and-transpose FFT program we discussed before, but also some further
data. eplots are shown for the full number of PEs, not for theworker PEs as above. egreen straight
line shows the times for the distributed result variant. In this case the final results remain distributed
across the PE, shuffled.is is the version, we considered above. e dashed red line shows the times
for the same program in a collected result variant, here the final results are communicated back to the
master. As we talk about 220 complex doubles, the communication overhead shows its effect and this
version is clearly handicapped. Finally, the blue dotted line shows an attempt to fit values for an ideal
speedup to the shown PE–time relations. As the decreasing serial fraction at – worker PEs—i.e., –
full PEs—indicates the drawbacks of the sequential reference time, used in Figure ., right, we used
the time at full PE as a base for this retrofitting. e reason for the choice of full PE is: the serial
fraction at – full PEs is falling, whereas for – full PEs it is nearly constant and from PE onward
the increase begins. We aim for the smallest PE number with non-falling serial fraction. Of course,
said curve does not correspond to the real speedup plot of Figure ., top right. It is rather a vision
of the execution time values for an ideal, linear speedup.

Estimation of runtime. We estimated the execution time of map-and-transpose FFT on worker
PE of the Beowulf cluster with our approach from Chapter . We obtained the parallel execution time
up to −2.33% exact, using the loess method for B(n, p) w.r.t. p and the equation (.).

Conclusions. We have discussed two different implementations of the parallel FFT on two differ-
ent hardware platforms. We have seen that the flat expansion skeleton does not scale well in case of its
FFT instantiation. We have also seen that themap-and-transpose FFT implementation produces good
and reassuring performance results. However, as both Figure ., right, and Figure . reveal, an in-
creased communication overhead can hinder the optimal performance of this approach. is supports
the need in keeping the data distributed. In said two cases, two issues, correspondingly: the double
PE placement and the complete collection of the results, were reasons for the degrading performance.
If none of these happen, the performance of the skeleton is as good as seen in Figure ., right. Hence,
a scheme with the distributed transposition, where data may stay distributed at the beginning and at
the end of the transform, benefits the parallel FFT significantly.

.. FFT-based Polynomial Multiplication Method

e best known to us multiplication method is based on the fast Fourier transform and utilises the
fact, that polynomial multiplication is in fact a convolution. An answer to the question ‘What do FFT
and multiplication have in common?’, the convolution is a term from functional analysis, describing
an ‘overlapping degree’ of two functions. In a more common for us way, for two vectors x and y, a
convolution x ∗ y is a product of each element of the first vector with each element of the second
one—not element-wise! With n = #x = #y it holds

(x ∗ y)k =∑
j
x jyn− j+1

.. Fast Fourier Transform 125

Algorithm FFT-based multiplication.
Require: vectors x, y of length n.

: Compute the FFT transformed of the input vectors, resulting in x̂ and ŷ.
: Multiply them component-wise, resulting in ẑ = x̂ ⋅ ŷ.
: Complete the inverse FFT of ẑ, resulting in z.

Ensure: product z = x ∗ y.

0 5000 10000 15000 20000

0
2

4
6

8
10

12

Degree, n−1

T
im

e,
 s

ec
on

ds

●●●

●

●

●

●

● Naive
Modified naive
Haskell for Maths
Numeric Prelude
FFT−based

Figure .: Multiplication of dense univariate polynomials. Plot from [Lobachev and Loogen,].

for all k ∈ {1, . . . , n}. is is the polynomial multiplication of two polynomials with coefficients x
and y [Knuth,]. e next theorem states, that the Fourier transform ‘untangles’ the convolution.
See [Nussbaumer, , Section .] or [von zur Gathen and Gerhard, , Lemma .] for the proof.

eorem. (Convolution theorem). For two complex-valued vectors of an equal size, the Fourier trans-
formation of their convolution is the point-wise product of their Fourier transformed. In sign:

x̂ ∗ y = x̂ ⋅ ŷ.

is enables us to reach the fastest multiplication algorithm currently known. As the element-wise
product isO(n) for input length n, all we need to do for a very fast multiplication is in Algorithm .
We need to apply the FFT three times, all subsequent operations are dominated by the asymptotic
complexity of the FFT, thus the asymptotic complexity of Algorithm isO(n log n).

A subtle detail of the implementation is that FFT-based fast convolution, transforming polynomi-
als in R[x] of degree < n, produces a result in R[x]/⟨xn − 1⟩. To relax this drawback it suffices to use

126 Chapter . Fast Multiplication — Divide and Conquer

some fitting transform of size ≥ 2n. A more important and hideous detail is the requirement to the
base ring R to have primitive roots of unity of any order n. Aer von zur Gathen and Gerhard []
such rings ‘support FFT’. Only in such rings the complexity of the fast convolution is O(n log n) for
the input vectors of size n [von zur Gathen and Gerhard, , Emiris and Pan,]. It is possible
to find some roots of unity in fitting residue rings [Geddes et al.,]. ere is a way to cope with
this drawback in an arbitrary commutative ring, see [Cantor and Kaltofen,]. It adds a factor of
log log n to the complexity of the multiplication [Schönhage and Strassen, , Borodin and Munro,
, von zur Gathen and Gerhard, , Emiris and Pan,]. e computation happens not mod-
ulo x2n − 1, as decided above, but modulo x2n + 1 for 2n > deg f g for factors f and g. is approach
is called a ‘negative wrapped convolution’. We do not focus on it further and consider polynomials
over C, where naturally all primitive roots of unity exist. We disregard hereby the problem of the
representation of any integer in the finite arithmetic of C with satisfying precision.

Although there are plenty more generic FFT algorithms, for instance, Rader’s algorithm (which
works for prime sizes) or Winograd’s FFT algorithm (which is defined for many small transform sizes),
the sizes, with which the classical Cooley–Tukey implementation can cope, are bound by a power of r.
We considered r = 2, 4. As we need to fill up the input vectors with zeroes from length n to 2n to obtain
the full result, we choose a simpler method: we fill the vectors up to the next power of two larger than
2n. us we can use the standard two-radix Cooley–Tukey FFT to obtain the full result. We focus on
algorithms and their parallelisation in this thesis, hence we decided not to consider advanced domain
construction, needed for the methods of [Schönhage and Strassen, , Cantor and Kaltofen,].

We still need to be cautious. e current implementation of the FFT works for complex doubles,
so not for all possible coefficients of the result a fitting approximation exists. However, we stick to
our prototype implementation. We use it on polynomials in Z[x] with Z ⊂ Z, i.e., with coefficients
limited not to extend the exact integer representation in the mantissa of a double precision float. us
we model the polynomial multiplication over a field, which supports FFT.

Integers. e multiplication of large integers is similar to the polynomial multiplication. With a
representation of integers in base p, we have a simple mapping between integers and polynomials in
variable p, where p is the base of the chosen integer representation. Using polynomial evaluation
with Horner scheme, it is possible to evaluate these artificial polynomials at p, obtaining an integer.
Summarising, it is possible to multiply integers with an algorithm similar to Algorithm . However,
there are also better approaches. Von zur Gathen andGerhard [] describe a ‘three primes’ residual
FFT multiplication algorithm, capable of processing very large integers. is variant is theoretically
limited by an upper bound, but it ismuch larger than availablememory. Essentially, this algorithmuses
nine FFT computations with roots of unity modulo said primes. en, the result needs to be recovered
from the residual representation. For our approach towards such reconstruction see Chapter . For
further discussion of three primes FFT multiplication see [von zur Gathen and Gerhard,] and
[Cesari and Maeder, a].

us, the practical computational complexity of the multiplication of two large (but bounded)
integers isO(n log n) in their maximal bit-length n [von zur Gathen and Gerhard,].

Relevance. Based on [Lobachev and Loogen,], we show some results on the performance of
the FFT-based polynomial multiplication. We used AMD Athlon X + CPU with Gb RAM
running Linux and GHC .. For the same degree, each test was run ten times and the mean value of
measured execution time has been determined. We utilised standard Haskell lists for representing the
polynomials. We tested four differentO(n2) implementations:

. Our own naive implementation with lists of integers

. Our naive implementation, modified à la Numeric Prelude

. e implementation from Haskell for Math [Amos,]

. e implementation from Numeric Prelude [urston et al.,]

.. Matrices 127

FFT
divConFlat dcNtickets map-transpose

parMap spawn channels
Eden

Figure .: e skeletal implementation of the FFT.

and our sequential FFT-based implementation. We multiply two dense univariate (n− 1)-degree poly-
nomials with random coefficients. e coefficients are random signed integers in Z . e result is
shown in Figure .. e Numeric Prelude implementation is much better than other naive imple-
mentations, which show similar run times. e probable reasons are the some clever inlining and
usage of standard higher-order function on lists, which are optimised using stream fusion [Coutts
et al.,].

We see, a sub-quadratic method for polynomial multiplication is definitely superior. It is clearly
visible in Figure .. Our current FFT algorithm is relying on the fact, that the length of its input is
a power of two, see the same figure. e rapidly ascending lines correspond to the times of quadratic
methods. Unfortunately, we have no explanation for the decreasing execution times of the FFT-based
algorithm for 16 000 ≤ n ≤ 20 000. e vertical line at designates the de facto limit of the naive
methods. is concludes our presentation of the FFT.

.. Conclusions

We have developed and presented parallel implementations of the fast Fourier transform, abbreviated
FFT. In the beginning, we utilised the divide and conquer skeletons with distributed and flat expan-
sion. However, we saw the communication overhead to be very significant. us, we have implemen-
ted a special map-and-transpose scheme for the parallel FFT [Gorlatch, a, Grama et al.,].
We developed a monolithic skeleton and tested it on a Beowulf cluster. We have also briefly con-
sidered a composable implementation of the same map-and-transpose skeleton and an approach to
multidimensional FFT. We presented four extensive evaluations of the quality measures of two our
FFT implementations on two different platforms. is way we obtained significant insights into said
implementations. We have also discussed how to use FFT to implement multiplication.

An overview is available in Figure .. It is the ‘building blocks’ metaphor, the abstraction level
increases from bottom to top. e global view on this chapter’s results is in Figure . on page .

. Matrices

Matrices are a further very popular structure in mathematics. Intuitively perceived as a vector of vec-
tors, a n×m matrixM over a field F is denoted withM ∈ Fn×m. We consider briefly the approaches to
matrix representation on a computer next. Section .. discusses the fast matrix multiplication. Sec-
tion .. presents some performance results of the skeleton instantiation with the Strassen algorithm.
Section . presents an alternative approach towards the parallelisation of Strassen matrix multiplica-
tion. Combined, these sections provide two implementations of the fast parallel matrix multiplication.

.. Representations

Multiindexed list. We can represent a matrix as a multiindexed vector. is is the approach known
to us fromHaskell’s Data.Array library. We simply use pairs of integers as indices and store thematrix
in a single list, be in dense or sparse, e.g.,

type SparseMatList a = SparseList (Int, Int) a

128 Chapter . Fast Multiplication — Divide and Conquer

However, this approach has a quite drawback. Most matrix algorithms are not laid out for opera-
tions on single matrix elements, but rather on some subsets of the matrix. Options for natural subsets
of a matrix include rows or columns and smaller matrices. More on that is in Section ... e
well-known classification of matrix algorithms is presented in [Golub and Van Loan,]. A matrix
algorithm is called

first level if it operates on complete vectors;
second level if it operates on rows or columns of matrices,

i.e., matrix-vector multiplication;
third level if it operates on complete matrices,

i.e., matrix-matrix multiplication.

Two natural choices for the level two representation are rows and columns. However, the actual
multiindexed list representation does not maintain the data locality for the column format. Further, it
will be quite inefficient to extract a particular row, as we need to seek through all the previous elements
in all previous rows.

Nested lists. e naivest representation of a matrix in Haskell is a list of lists. Let

type NaiveMatrix a = [[a]]

Depending on the partitioning scheme (rows or columns in the outer list), we can gain access to the
desired subset (either row or column) quite easy. So we can conclude

type NaiveMatrix a = List Int (List Int a)

If we were to apply some row-based algorithm to a matrix in a row-based representation, where
the actions on the separate columns are independent, we could very easily compute in parallel with
a parMap. e transformation from a row-based to a column-based representation and vice versa is
the transposition, as implemented sequentially in the function transpose of type [[a]] → [[a]]
from Data.List library. As we have learnt in Section .., the distributed transposition requires an
all-to-all communication.

Matrix as an array. is approach essentially doubles the multiindexed lists, but the access time of a
single matrix element is constant. For the sake of Gauß elimination we implement matrices as arrays
in Eden. is data type is not quite native for pure functional language, but we did not want to use
nested lists for matrix representation. We write

type MatArr a b = Array (a, a) b

e.g., MatArr Int (Fraction Integer). We will use this matrix representation in Section ... Note
that in any of the above representations the type b is not limited in any form. To be able to compute
with such a representation, the type b should be an instance of Num and Fractional. Recall, this is our
implementation of the symbolic computation: we model it with polymorphism.

.. Strassen Method

As before with polynomials, we focus on the most important operation of the matrix arithmetic: the
matrixmultiplication. An overview of our implementation efforts is in Figure .. Wewill implement
Strassen matrix multiplication using two algorithmic skeletons. e one would be the divConFlat
skeleton from Section ... e other one will be defined later, in Section .. But consider the
Strassen algorithm first. e computational complexity of the naive matrix-matrix multiplication² of
two n × n matrices is O(n3) operations in the base field. e complexity result is very easy to see, if
we regard the naive matrix multiplication as three nested for-loops, each processing n elements for the
product of two n×nmatrices. A well-known approach to reduce this complexity is the Strassenmatrix

²For the definition of the matrix-matrix product see Section A. on page in the Appendix.

.. Matrices 129

Strassen multiplication
divConFlat dcFarm
parallel map skeletons actors

spawn remote data
channels

Eden

Figure .: Implementing parallel Strassen matrix multiplication.

multiplication algorithm with the complexity ofO(nlog2 7) base operations for the two n × n matrices.
ere are some advances, see, e.g., [Brent, ,Winograd, , Coppersmith andWinograd, , Pan,
a,b, Laderman et al., , Huang and Pan, , Li et al., , Cohn et al., , Huang et al.,
]. However, we consider here the approach of Strassen []. Its communication complexity
is O(n2). Strassen’s method is oen used as a first stage of a hybrid parallel matrix multiplication
implementation. See, e.g., [Luo and Drake, , Grayson and Geijn, , Huss-Lederman et al.,
, ottethodi et al., , Nguyen et al.,]. A related Haskell implementation is [Rainey and
Wise,]. Other approaches include the method of Gentleman [] and the method, presented in
[van de Geijn and Watts,]. Gentleman’s approach is also referred to as method of Cannon [],
its implementation and improvements are considered, e.g., in [Hendrickson et al., , Gupta and
Sadayappan, , Agarwal et al.,]. An Eden implementation of the Gentleman algorithm has
been suggested in [Peña and Rubio,].

e algorithm. For products of matrices of odd dimensions various techniques can be used. One of
them is padding, the addition of a further zero row or column. Another is dynamic peeling, the removal
of an ‘extra’ row or column. e ‘peeled off ’ computation is performed separately. Details can be found,
e.g., in [Huss-Lederman et al.,]. ese techniques can be applied in each recursion step, thus we
can constrain ourselves to matrices with dimensions being the powers of two.

We assume the input matrices have dimension of 2l × 2l . Now for C = AB we define

M1 = (A1,1 +A2,2)(B1,1 + B2,2)
M2 = (A2,1 +A2,2)B1,1

M3 = A1,1(B1,2 − B2,2)
M4 = A2,2(B2,1 − B1,1)
M5 = (A1,1 +A1,2)B2,2

M6 = (A2,1 −A1,1)(B1,1 + B1,2)
M7 = (A1,2 −A2,2)(B2,1 + B2,2),

(.)

where the notion Xi,j means the j block in i row, while each matrix X is divided into four blocks
in total. All the multiplications in (.) are done with recursive calls. e recursion ends at the single-
element matrices. In practise one would quite quickly switch to the naive algorithm aer passing a
certain threshold. en the result is reassembled:

C1,1 =M1 +M4 −M5 +M7

C1,2 =M3 +M5

C2,1 =M2 +M4

C2,2 =M1 −M2 +M3 +M6.

(.)

We summarise the above method in Algorithm .

Quadtrees. Strassen matrix multiplication operates in a divide and conquer manner ‘cutting’ one
operation of eight in a recursive block-wise representation. is is similar to the Karatsuba integer

130 Chapter . Fast Multiplication — Divide and Conquer

Algorithm Strassen matrix multiplication.
Require: input matrices X and Y of dimensions m × k and k × l appropriately.

: procedure P(X, Y)
: Let n̂ be the maximum of m, k, l , let n ≥ n̂ be the next power of two.
: Fill the matrices X and Y with zeros, resulting in A and B of dimensions n × n.
: return A, B
: end procedure
: procedure S (A, B) // both parameters have the dimension n × n

// Each multiplication is computed with a recursive call of S .
: Partition A and B per (.), resulting in matrices M1, . . . ,M7, each of dimension n/2 × n/2.
: Combine M1, . . . ,M7 per (.), resulting in matrices C1,1, . . . ,C2,2. ese are the four quad-

rants of the matrix C.
: return combined matrix C of dimension n × n
: end procedure
: procedure M S(arbitrary matrices X, Y)
: Call P(X, Y), resulting in padded matrices A, B.
: Call S (A, B), resulting in the product matrix C.
: end procedure
Ensure: C = AB is the product of the matrices X and Y with sides padded to the next power of two.

.

.

Figure .: e z-curve. Le: recursion depth one, right: depth two.

multiplication. In this case each matrix is divided into four submatrices. A quaternary tree is very
suitable for a clean representation of such block-wise operations. Such trees are called quadtrees.

e quadtrees are quaternary trees with no information in the nodes. ey are easily defined in
Haskell, as we will see below. A matrix is recursively divided into quadrants, like this:

∗ ∗

∗ ∗
,

and stored in the quadtree structure. is implies the traversal of the matrix in the so-called z-order.
e latter is deeply related to the z-curve, which is a space-filling curve. It is recursively defined as
the curve, going from the top-le quadrant to the top-right, then to bottom-le and finally to bottom
right quadrant. is shape is similar to the shape of the letter z, hence the name. We show a rendition
of the first two iterations of the z-curve in Figure .. See [Abdali and Wise, , Rainey and Wise,
] for more details.

Algorithm implies the partition of the input matrices into four blocks each and a recursive
descent. e following code in Haskell outlines the data structure for the quadtrees.

data QTree a = QEmpty
∣ QNode (QTree a) (QTree a) (QTree a) (QTree a)
∣ QLeaf a a a a

.. Matrices 131

e first constructor is reserved for the empty sub-trees. We decided against implementing the
tree node as QNode QTree [a] to enforce the ‘four-arity’ in the type system. e NFData and Trans
instances were added to the definition in the real code to ensure that the data can be reduced to normal
form and that the data is transferable between the PEs.

Complexity. We need to prove the complexity statements from above. We base our presentation
on [Wilf,] and some results from [von zur Gathen and Gerhard,]. A slight improvement
in the number of additions is the Winograd algorithm []. Among others, Coppersmith, Pan and
Winograd have produced numerous improvements of the exponent w in the O(nw) complexity of
matrix multiplication, see, e.g., [Winograd, , Coppersmith andWinograd, , , Pan, a,b,
Huang and Pan,]. See also [Bürgisser et al.,]. Other publications on a similar topic include
[Laderman et al., , Li et al.,].

Consider the Strassen multiplication of two 2l × 2l matrices over a UFD R. We will need m(l)
multiplications and s(l) additions to accomplish it. We count subtractions as additions. As we need
seven recursive calls to compute (.), set m(l) = 7m(l − 1) and m(0) = 1. It follows m(l) = 7l for
l ≥ 0. In other words,

m(n) = 7log n/ log 2 = nlog 7/ log 2 = nlog2 7 = n2.81... , m(n) ∈ O(nlog2 7).

As for additions, in each of the recursive calls of (.) we perform s(l − 1) additions in the base UFD R.
Each of the eighteen calls to addition (or subtraction) of thematrices does square number of thematrix
operations in R. In other words, in the first recursion level, which corresponds to the size of the matrix
side 2l−1, each of the calls does 22l−2 additions in the base UFD. It follows with n = 2l

s(n) = 7s(n/2) + 9/2n2.

In terms of Proposition . we have a = 7, k = 4. Again, lb is the base-two logarithm. Hence

s(n) ≤ s(1)nlb a + k
a − k

(nlb(a/k) − 1) ⋅ 9/2n2 = nlb 7 + 6nlb(7/4)+2 − 6n2 = 7nlb 7 − 6n2 ∈ O(nlog2 7).

So, the s(n) is in the same complexity class as m(n). For n being not the power of two, the padding
maximally doubles the dimension. We have just shown the next theorem.

eorem .. e complexity of Algorithm for the product of two n × n matrices over a UFD R is
O(nlog2 7) arithmetic operations in R.

We can visualise the complexity of a single step of the Strassen multiplication as a volume of a
cube with side n, which has one eighth of it removed. e removed fraction corresponds to a cube
with sides n/2, removed from the original cube. e complexity of the naive matrix multiplication
algorithm takes the whole volume of the cube, without cutting anything out. We show a corresponding
structure for two steps of Algorithm in Figure .. It is the threedimensional analogue of Figure .
on page .

.. Parallel Performance

e instantiation of a divide and conquer skeleton with Strassen multiplication is straightforward. Fig-
ure . shows the code. We introduce another constructor for QTree, QFull contains a matrix in a
non-quadtree representation. us we can switch to the naive O(n3) matrix multiplication as soon
as we need to. e functions divide and combine closely follow Algorithm and equations (.)
and (.). e helper functions isTrivial and solve are straightforward. e parallel skeleton-based
implementation is very simple:

strassen :: Num a ⇒ Int → QTree a → QTree a → QTree a
strassen d x y = divConFlat (farm’ noPe) d isTrivial solve divide combine (x,y)

132 Chapter . Fast Multiplication — Divide and Conquer

.

Figure .: e complexity of the first two steps of Strassen multiplication corresponds to the volume of
this fractal.

We merely replaced the skeleton.
All our tests are conducted on sakania, on random integer matrices with entries between ±1000.

We use a hybrid implementation: few steps of the Strassen method, followed by the naive matrix mul-
tiplication. e test input consists of two 29 × 29 randomly generated integer matrices, which means
219 entries in total. Each multiplication is performed five times, we take the mean time. We do not
measure the time needed to generate the test input. We utilise the existing divide and conquer skeleton
divConFlat. It produces the absolute speedup . on PE with GHC . implementation. For input
size 210 × 210 our program produces an absolute speedup of .. ese results are acceptable. e
parallel version was written very fast: we needed to change the skeleton invocation in the strassen
function—a single line of code.

Figure . shows the trace diagram of the parallel Strassenmultiplication on sakania. e parallel
depth was one. We used no memory tuning runtime options. e message buffer was set to Mb.
A bit more than two seconds are spent in beginning of the program for the generation of the input
matrices. We computed the product of two 29 × 29 matrices, generated as discussed above. We see
the worker processes start simultaneously at . seconds, but begin working at different time, from
. to ., seconds. In other words, the worker PEs start computing few seconds apart. is accounts
for the relatively low speedups. e time from . seconds to the begin of the computation is used
for the communication of the input matrices to the workers. At . seconds all workers are green, i.e.,
working. At . seconds the first worker is done. e last worker finishes at . seconds. Shortly
before seconds the program terminates.

We plot the speedup curves for the Strassen-based multiplication with divConFlat skeleton in
Figure .. We show the performance for the depths – of parallel divide and conquer tree. Depth
shows best results. e depth results in a slightly worse, but more smooth curve because of less issues
with task distribution. We will discuss these in detail below. e depth and versions are even worse,
so we do not focus on these. e additional, ‘adaptive’ depth is the program version, which creates as
many tasks, as needed to saturate all PEs, namely, for arity r and p PEs the depth is ⌈logr p⌉. In the
setting of sakania this means tasks for 1 < p ≤ 7 and tasks for p = 8. At said points we see a close
correspondence with depths and appropriately.

We see some strange symptoms—like a degrading curve—in the speedup plot for depth in Fig-
ure .. To understand this behaviour we will consider the theoretical task distribution of the relevant
instance of the divConFlat. It uses one PE as a master, tasks will be co-located, if needed. Further, we
aim to create only one level of parallel divide and conquer expansion. is means seven worker tasks
are placed. We display our thought experiment in Table .. We assume all tasks are of the same size,
i.e., they take equal time to process. We have already explained all rows of such a table on page ,
with a notable exception of the second row. e entry ‘co-located with master’ of Table . shows the
number of tasks, which land at the same PE as themaster. e notion *means that in the default place-

.. Matrices 133

data QTree a = QEmpty
∣ QFull [[a]]
∣ QNode (QTree a) (QTree a) (QTree a) (QTree a)
∣ QLeaf a a a a

-- corresponding arithmetic operations are defined in an omitted Num instance

divide :: Num a ⇒ (QTree a, QTree a) → [(QTree a, QTree a)]
divide ((QNode a11 a12 a21 a22), (QNode b11 b12 b21 b22)) =

[((a11 + a22), (b11 + b22)),
((a21 + a22), b11),
(a11, (b12 - b22)),
(a22, (b21 - b11)),
((a11 + a12), b22),
((a21 - a11), (b11 + b12)),
((a12 - a22), (b21 + b22))]

combine :: Num a ⇒ [QTree a] → QTree a
combine ms = QNode ((ms!!0) + (ms!!3) - (ms!!4) + (ms!!6))

((ms!!2) + (ms!!4))
((ms!!1) + (ms!!3))
((ms!!0) - (ms!!1) + (ms!!2) + (ms!!5))

isTrivial :: (QTree a, QTree a) → Bool
isTrivial (QNode _ _ _ _, QNode _ _ _ _) = False
isTrivial _ = True

solve :: Num a ⇒ (QTree a, QTree a) → QTree a
solve = uncurry ∗

strassenSeq :: Num a ⇒ QTree a → QTree a → QTree a
strassenSeq x y = divConSeq isTrivial solve divide combine (x, y)

Figure .: Strassen multiplication in Haskell.

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

P8:1
P7:1
P6:1
P5:1
P4:1
P3:1
P2:1
P1:2
P1:1

Figure .: Trace visualisation of Strassen multiplication with divConFlat skeleton, depth one.

ment the task is co-located, but this could be avoided with a cleverer placement scheme. We see that
PE is not a very fortunate configuration and that – PEs are unlucky. e latter part of this theoretic
prediction corresponds with the practical result of Figure ., top le, we see bad performance at –
PEs. We also see a minor decline of the speedup at PE, but cannot be sure the reason is a task dis-
tribution problem. e recovering speedup at PE is interesting. If we would use no tasks co-located
with the master process, we would see a large slack-off at this number of PE. But the co-location with
master makes it possible to finish the computation in a single round. We denote this with * value in
the table. Another confirmation is the behaviour of the depth speedup curve in Figure ., top le.
We see that the larger number of tasks reduces the bad issues with task distribution, but the overall
performance of the depth version does not reach the better values of the depth version. Now, if we

134 Chapter . Fast Multiplication — Divide and Conquer

1 2 3 4 5 6 7 8

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Strassen Method – Speedup

absolute speedup
PEs

S
pe
ed
up

observed speedup at depth 1
observed speedup at depth 2
observed speedup at depth 3
observed speedup at depth 4
observed speedup adapt. depth
linear speedup

1 2 3 4 5 6 7 8

3.
0

5.
0

absolute reference point
PEs

B
(n

,p
) *

 1
0^

6

parallel penalty, depth 2

parallel penalty, depth 1

1 2 3 4 5 6 7 8

0.
20

0.
30

0.
40

Strassen Method – Serial Fraction

absolute reference point
PEs

f(n
,p
)

depth 1
depth 2
depth 3
depth 4
adapt.

1 2 3 4 5 6 7 8

0.
23
7

0.
24
3

absolute reference point
PEs

f(n
,p
)

serial fraction,
depth 2

Figure .: Speedup and quality measures for Strassen matrix multiplication. Input size 29×29. Top le:
speedup, bottom le: parallel penalty, top right: serial fraction, an overview, bottom right: serial fraction
for depth .

full PEs 1 2 3 4 5 6 7 8
co-located with master 7 3 2 1 1* 1* 1* 0

full rounds 8 4 2 2 1 1 1 1
remaining part 0 0 2 0 3 2 1 0

total rounds 8 4 3 2 2 2 1* 1
idle in last round 0 0 1 0 2 4 0* 0

slack-off, % 0 0 33.3 0 40 66.6 0* 0

Table .: eoretical task distribution in depth one parallel Strassen multiplication. A star (*) denotes a
co-located task on the master PE.

look at the values for PE, we see a rapid increase of the speedup in depth version, but nothing like
that in depth version. Summarising, we were able to find an explanation to the strange behaviour of
the depth speedup curve at – PEs.

Consider now the practical results on the parallelisation quality of Strassenmultiplication. We look
at the two usual quality measures—parallel penalty and serial fraction. e parallel penalty B(n, p) w.
r.t. p in Figure ., bottom le, black line for depth , has a small peak at PE, declines again at PE,
then rises quite sharply at – PEs, then declines and is nearly constant at – PEs. In other words it
designates the , , and PE configurations as best ones in the given setting. is agrees with the
theoretical results of Table .. is interpretation of the parallel penalty matches the observations
from the speedup plot. As for the parallel penalty plot for depth (red line in Figure ., bottom
le), we see an almost steady increase, which fits the speedup curve in Figure ., top le. e large
absolute values of B(n, p)—around 106—are due to the time unit, which was microseconds in this
particular case.

e serial fraction f (n, p) for depths to and for the adaptive depth method is in Figure .,
top right. e serial fraction values for depths and are always much larger than their counterparts
for depths and . Further, the plots for higher depths almost coincide, similarly to the appropriate

.. Divide and Conquer with Actors 135

speedup curves. Hence, they are of little interest for us. e ‘adaptive’ version matches well the depth
version up to the point at PE, where it matches the depth version. is is exactly the intended
behaviour of the adaptive version. Let us focus on depths and below. In a contrast to the parallel
penalty, the serial fraction plot for depth skeleton decreases at – PEs. It slows down the decrease
at PE, but we see no peak as in the parallel penalty. An increase at – PEs matches the degrading
speedup at the same number of PEs. e PE value brings a decline, the PE value is almost identical
to PE. is is similar to the parallel penalty and also matches our task distribution theory from
Table ..

Interestingly, the depth parallel penalty is almost constant at – PEs. To be more exact: the
difference between its values in this range is too small to be seen easily in Figure ., top right. For
this reason, we consider the depth parallel penalty in Figure ., bottom right. We can conjecture
that PE version is quite perfect, as tasks and one master can be distributed perfectly well over
PE. Still, the serial fraction has almost the same value at PE, as in PE (dashed horizontal line in
Figure ., bottom right). We could not see these issues in the parallel penalty in Figure ., bottom
le. Overall, the serial fraction for depth suggests a good parallelisation, but the speedup (Figure .,
top le) suffers from communication overhead.

We do not perform an estimation of the run time of our implementation of Strassen matrix mul-
tiplication w.r.t. the input size n, as we use only the powers of two for the matrix sides. We have too
few measurable data points, which are too far aside. As for the estimation w.r.t. p, we performed it
for depth version. Depth configuration depends too much on task balancing issues, which we ad-
dressed with other methods. We predict the execution time for p = 8 from times at p < 8. With loess
we estimated B(n, p) w.r.t. p with the relative error of −1.50%. e spline method was exact up to
−4.98%. Combining the estimation of B(n, p) with the sequential time per (.), we obtained the par-
allel run time with a relative error −0.945%, using loess-based estimation. We see a good performance
of our prediction method.

. Divide and Conquer with Actors

e actors [Hewitt et al., , Agha et al.,] form a quite high-levelmodel of concurrent computing.
As Agha [] states, actors are “self-contained, interactive, independent components of a computing
system”. Modern implementations of actors include Erlang [Armstrong,], Scala actors [Haller and
Odersky,], Haskell actors [Sulzmann et al., , Sulzmann,]. e last-mentioned library
implements multi-headed receive patterns, an extension of the actors formalism, but is quite low-level.
Also related is [Epstein et al.,]. We will present an actor-based implementation of a divide and
conquer skeleton next. Aer the implementation is introduced, wewill explain its relation to the actors
in Section ...

In the context of the actors emphasis is oen set on the open distributed systems, where one part of
the system can be modified without changing everything else. We cannot model the dynamic changes
of the payload code at the runtime of the program with Eden. But we can still use the actor model. In
[Haller and Odersky, ,] the receive clause of an actor is modelled with a pattern matching on
the events. e main problem is how to enable an ‘Eden actor’ to receive all the time and not only for
the initial moment, as it would be a case with Eden processes, having obtained their input completely.
We will see below, that we can solve this problem using streams [Wray and Fairbairn,].

e structure of below code is: we will use farm as a ‘task manager’, on top of it the actor-like
message passing will be implemented, which, again, will be used to implement divide and conquer.
See Figure . for a visual presentation. Our approach is a generalisation of divConFlat, see also
[Peña and Rubio, , Loogen et al.,]. It is similar to [Poldner and Kuchen, a,b] in the sense,
that we have a task pool, wherein different types of tasks are injected.

e basic idea behind the dcFarm skeleton is a ‘lazy’ farm with external task creation. For more
details on the classification of task creating skeletons see Chapter . Our approach is similar to [Priebe,
, Brown and Hammond,]. e lazy input list of the parallel farm is concatenated with new

136 Chapter . Fast Multiplication — Divide and Conquer

divide and conquer
actors

farm remote data

Figure .: Implementing divide and conquer with actors.

..

farm

.transform

Figure .: e idea behind a task creating farm.

tasks, which are created from the lazy list of the results by the transform function. We display the
basic scheme in Figure ..

.. Implementation

In order to submit new divide and conquer tasks for the parallel processing, we need to unify the types.
Instead of the usual DC’ a b type, we need some common type c, which is both the type of the problem
and the type of the result. We solve this problem by wrapping the divide and conquer structure into a
single datatype, which contains both the divide and combine tasks. Further, we need to distinguish the
to-be-processed and already processed tasks. is adds up to four constructors. e function, sitting
in a worker process, obtains the stream of tasks to process and returns already processed results. is
function is the transition function of an actor. e actor itself is a combination of such a function,
provided with the facilities for the remote execution, and stream communication.

e suggested scheme has a drawback. Let consider the divide phase. A divide task of depth i
has been processed by a worker and was divided into r divide tasks of depth i + 1. Each of these tasks
is processed by a separate worker. is means that the data in each of the tasks travels to the master
(forming the result of the depth i task) and back to the workers from the master, forming new, depth
i + 1 tasks. In other words, larger communication overhead is present. We solve this problem with
the remote data, viz. Chapter . So, although the handles are communicated from the worker to the
master and back to the workers in the suggested scenario, the actual data is communicated directly
between workers. Earlier experiments have shown, that the evaluation order of the initial tasks might
be not optimal. e reason is: the release function of remote data spawns a thread to evaluate the
data. For large number of tasks, created directly in the master, it happens oen that the first tasks,
for which the workers are waiting, are not evaluated early enough. e programmer has no influence
on the thread scheduling. But in fact at this, initial stage the remote data is meaningless, as the data
needs to be communicated from the master to appropriate workers anyway. We designate a special
constructor for such, initial tasks. It carries the data directly, without futures. Hence, a data type with
five constructors emerges, see Figure ., top. e farm, lazily consuming the list of its transformed
results, is easily written, see function dcFarmBodySimple in Figure ., middle. We need the function
dcFarmBody in Figure ., bottom, which is a bit more complex than its above analogue. In the ‘simple’
case we let the results through the transform function and inject them as tasks into the farm skeleton.
e actual case (dcFarmBody) uses the additional parameter postfork to find the ToCombine tasks of
too high level (i.e., of low depth in the divide and conquer tree) and processes them locally. Apart from
this, dcFarmBody forms the same loop of the data flow, as dcFarmBodySimple. is was the easy part,
more work is in the transform function and in the divide and conquer wrapper around dcFarmBody.
We discuss them next. Essential is the definition of the single actor transition function from the four
divide and conquer parameter functions. It happens in the same wrapper function dcFarm.

.. Divide and Conquer with Actors 137

data DCTask a b = InitialToDivide Depth a
∣ ToDivide Depth (RD a)
∣ Divided Depth [RD a]
∣ Combined Depth (RD b)
∣ ToCombine Depth [RD b]

type Depth = Int
type Arity = Int

dcFarmBodySimple :: (Trans a, Trans b)
⇒ Arity → Depth
→ (Arity → [DCTask a b] → [DCTask a b]) -- ^ task pool transf.
→ (DCTask a b → DCTask a b) -- ^ working function
→ [DCTask a b] → [DCTask a b] -- ^ input to result

dcFarmBodySimple k d transform f initTasks = farm’ noPe f allTasks
where newTasks = transform k res

allTasks = initTasks ++ newTasks

dcFarmBody :: (Trans a, Trans b)
⇒ Arity
→ Depth -- ^ parallel divide depth
→ Depth -- ^ postfork combine depth
→ (Arity → [DCTask a b] → [DCTask a b]) -- ^ task pool transform
→ (DCTask a b → DCTask a b) -- ^ working function
→ [DCTask a b] → [DCTask a b] -- ^ input to result

dcFarmBody k d postfork ttf f initTasks = localRes
where -- parallel part

remoteRes = farm’ noPe f (initTasks ++ newRemoteTasks)
newRemoteTasks = ttf k putInPool
-- select parallel and local, sequential parts
(putInPool, stayLocal) = span (not ○ p_stayLocal) remoteRes

where p_stayLocal (Combined d’ _) ∣ d’ ≤ postfork = True
p_stayLocal _ = False

-- local work
localRes = stayLocal ++ map f newLocalTasks -- stayLocal already computed
newLocalTasks = ttf k localRes

Figure .: e DCTask declaration and the farm with external task creation.

e task pool transform function. Weneed to know how the results are transformed, before they are
injected back into dcFarmBody. One of the issues to take care of is the termination of the skeleton. So,
let us consider the function transform in Figure . in a more detail. Firstly, if we see the final result,
i.e., Combined 0 x, we terminate the list. e zero level means the top-most position in the divide
and conquer tree, if this position is reached in the combine step, then the computation is finished.
e second equation of transform makes a list of ToDivide tasks from a single Divided result. is
represents another step of the divide step. e return value consists of the said task and a result of
the recursive call of transform on the remaining list. e depth parameter is updated in the working
function, which we present below. e third equation of transform handles the termination of the
input stream. e fourth equation uses the helper function catchNewToCombineTask. is function
looks whether the arity-many next elements of its input list are Combined results of the same depth. If
it is the case, these elements are combined into a single ToCombine task of a higher level. In this case,
the helper function returns a pair of the new combine task and the remaining list elements. In the
opposite case, Nothing is returned. e function transform checks the result of the helper function
and throws an error in the negative case. If the result is sane, the new task is returned and the function

138 Chapter . Fast Multiplication — Divide and Conquer

catchNewToCombineTask :: Arity → [DCTask a b] → Maybe (DCTask a b, [DCTask a b])
-- implementation omitted

transform :: Arity → [DCTask a b] → [DCTask a b] -- ^ task pool in and out
transform k ((Combined 0 x):r) = [] -- done!
transform k ((Divided d’ xs):r) = let ys = zipWith ToDivide (repeat d’) xs

in ys ++ transform k r -- flatten the list!
transform k [] = [] -- done! We have reached the postfork depth
transform k xs = case catchNewToCombineTask k xs of

Just (newTCTask, rest) → newTCTask : transform k rest
Nothing → error ”transform: DC structure is broken!”

Figure .: e transform function of the dcFarm implementation.

transform is called recursively on the remaining list elements.

e divide and conquer wrapper and the definition of the working function. Let us consider the
dcFarm wrapper function, which gives our skeleton the DC’ a b type. We also need to consider the
definition of the working function, which is defined in the same place, namely in Figure .. e
skeleton takes three additional parameters: the arity k of the divide and conquer tree (it is in case
of Strassen multiplication), the depth d up to which new parallel tasks are issued, and the depth m
up to which the divide and conquer tree is processed locally in the master PE. It should hold d > m.
e case d = m corresponds to the divConFlat implementation in the divide phase. Contrarily to the
flat expansion, all the combine operations from the depth d onward are performed in a distributed
manner. To put it short, the skeleton below may perform distributed divide steps, then it solves the
distributed tasks locally in the workers, and may perform distributed combine steps of a given divide
and conquer algorithm.

At the first glance the most distributed divide phase, i.e., the m = 0 setting, results in the best
parallelism. But this is not so. If we launch the skeleton with one to-be-parallel divide task of depth
zero, it is processed in the first worker, yielding k divide tasks of depth 1. If the number of PE is
larger than d + 1 then the PEs are not even saturated aer two first divide steps. We need to add the
communication penalty for the larger tasks. is problem is illustrated in Figure . for k = 3, m = 0
and PE. us we have introduced the parameter m to ‘prefork’ the fitting amount of tasks. is
parameter can easily be precomputed. Let p be the number of PE and k the arity of the divide and
conquer tree. en m = ⌈logk p⌉ will surely saturate all PEs.

Hence, we do not state the initial task as ToDivide 0 (release x), but rather create km initial
tasks locally. is happens in the definition of initTasks. ese tasks are then processed by the
dcFarmBody function, from their results the transformed, secondary tasks are created. e helper
function tryNtimes is used to compute initTasks. It becomes a parameter function f, a predicate p,
a number of applications, and the initial input. As long as p holds, and if the number of applications is
smaller than requested, the function f is applied again to the result of previous applications. e final
result is a tuple of the last function application and the total number of applications.

e worker function wf in Figure ., bottom, is the final part of the transformation of a di-
vide and conquer problem into a map problem. It pattern matches on three ‘input’ constructors of
DCTask—InitialToDivide, ToDivide and ToCombine. e first two equations of wf handle the divide
tasks. Eventually, the actual data needs to be communicated with fetch. e remaining part of these
two cases is in the helper function. If the predicate isTrivial is satisfied, then the task is solved
locally. e same happens in the recursion depth parameter d’ in the input task is larger or equal to
the maximal parallel recursion depth d. e only difference in this case is that the further processing
is done not with the function solve, but with the correspondingly instantiated sequential divide and
conquer skeleton. e third case in the guard expression of the helper function is a further parallel
divide step. Here the divide function is applied to y, the resulting list is released to remote data, and

.. Divide and Conquer with Actors 139

-- helper function. Applies f n times, if p holds
-- return value is a pair (final result, number of applications)
tryNtimes :: (a → a) → (a → Bool) → a → Int → (a, Int)
tryNtimes f p x n = ... -- implementation omitted

-- helper function. Evaluates the input to rnf and applies a function afterwards
rnfApply :: NFData a ⇒ (a → b) → a → b
rnfApply f x = rnf x ‘seq‘ f x

dcFarm :: (Trans a, Trans b)
⇒ Arity -- ^ Arity of the DC tree
→ Depth -- ^ parallelLevels: depth to unfold DC tree in parallel
→ Depth -- ^ prefork: depth up to which only the master unfolds
→ Depth -- ^ postfork: number of combine levels to do sequentially
→ DC’ a b

dcFarm k d prefork postfork isTrivial divide solve combine x
= fetch $ fromCombined $ last $

dcFarmBody k d postfork transform (wf d) initTasks
where -- compute initial tasks, as prefork tells

initTasks = map (InitialToDivide splitDepth) initRaw
(initRaw, splitDepth)
= tryNtimes (concatMap divide) (all $ not ○ isTrivial) [x] prefork

-- worker function, this is the actual actor’s transition function
wf d (InitialToDivide d’ y) = helper d’ y
wf d (ToDivide d’ x) = helper d’ (fetch x)
wf d (ToCombine d’ ys) = Combined (d’-1)

$ (release ○ combine ○ fetchAll) ys
-- both divide branches do almost the same:
helper d’ y

∣ isTrivial y = rnfApply ((Combined d’) ○ release) (solve y)
∣ d’ ≥ d = rnfApply ((Combined d’) ○ release)

(divConSeq isTrivial divide solve combine y)
∣ otherwise = rnfApply (Divided (d’+1) ○ releaseAll) (divide y)

Figure .: e wrapper function dcFarm and the definition of the working function.

the depth parameter is incremented. In all three cases before wrapping the corresponding results into
the appropriate constructor and possibly applying release, the helper function rnfApply is used to
force the evaluation of the content. e third, ‘combine’ equation of wf is simpler. e input list is
fetched from remote data, combined to a single value, which in its turn is released again to remote data.
Putting the Combined constructor around this result and decrementing the depth counter finalises the
second equation of wf.

.. Actors

With the presented framework we have modelled actors in a pure functional style. e crucial obser-
vation is that issuing a new divide or a new conquer task to the working function on a remote process
is in fact sending a message to divide or to combine the attached data to a (remote) actor. Admittedly,
this is a very primitive actor model, but note the high-level implementation, not bothering with chan-
nels and low-level message passing. e channels for communication with an actor are the implicit
streams, connecting the worker processes with the master. When a new process is created, an instance
of the working function is placed on it. is is a new actor. Process termination, correspondingly, kills

140 Chapter . Fast Multiplication — Divide and Conquer

..
master

.

depth worker

.

depth workers

.

depth workers

..
depth workers

.
time

.

PEs

Figure .: e completely distributed divide with arity three and depth two at PE. If a PE has no task
at the moment, it is blocked.

1 2 3 4 5 6 7 8

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

PEs

S
pe
ed
up

divConFlat depth 1
divConFlat depth 2
dcFarm depth 2
linear speedup

Figure .: Comparing the speedups for divConFlat and dcFarm on sakania.

an actor. e non-initial messages, i.e., the output values of the worker function, are sent to themaster
per the farm scheme. However, aer the post-processing with transform, the messages are sent to the
further actors. Although the communication formally goes over the master, the actual data flows over
a shortcut using the remote data: we model direct communication of actors.

Contrarily to the traditional actor scheme, in this implementation the master decides, which mes-
sage is sent to which actor. e tasks are distributed according to the round-robin laws of the farm
skeleton. In our implementation an actor never discards a message.

.. Conclusions 141

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

P8:1
P7:1
P6:1
P5:1
P4:1
P3:1
P2:1
P1:2
P1:1

Figure .: Trace visualisation of Strassen multiplication with dcFarm skeleton. Black arrows symbolise
messages. Parallel depth , prefork depth , postfork depth .

Performance. We instantiate the dcFarm skeleton with Strassen multiplication. We use the same
input as for the divConFlat version: 29×29 integer matrices. e executable was produced with GHC
.. We used no manual memory management. e best dcFarm approach results in relative speedup
. on PE on sakania. e absolute speedup is even more modest: .. We used the depth
version. e depth version has even worse speedup of . in the same setting. e divConFlat
version resulted in the absolute speedup . for depth and . for depth on the same hardware
for the same input size. ese quantitative differences between the two approaches are highlighted in
Figure ..

We see thatwith the exception of PE,where divConFlatwith depth has task balancing problems,
the dcFarm with depth produces worse speedup than both divConFlat with depth and . We need
to admit, that both skeletons with divide and conquer depth have similar performance.

Figure . shows the trace diagram of the depth parallel Strassen multiplication on sakania.
A bit more than two seconds are spent in beginning of the program for the generation of the input
matrices. e combine phase is clearly seen at – seconds. It shows nicely the actor approach of the
dcFarm skeleton. Note the heavy worker-to-worker communication in the combine phase.

We do not present the plots for the parallel penalty and the serial fraction for the dcFarm imple-
mentation. Our goal was to compare the performance with the ‘standard’ divConFlat.

.. Bottom Line

Wehave presented a straightforward implementation of Strassen fast matrixmultiplication. We instan-
tiated the divConFlat skeleton with it and obtained acceptable speedups. We also experimented with
a new dcFarm skeleton, which was implemented in an actor-like manner. We found it slightly worse
than the traditional skeletal approach.

. Conclusions

An overview of our contributions is in Figure .. Boxes show entities, straight lines show dependen-
cies. e dotted lines show possible dependencies of marginal or prototyped implementations.

We have implemented two parallel multiplication routines for univariate polynomials (which are
also usable for large integers) and two formatrices. We presentedKaratsubamultiplication, FFT-based
multiplication (including some approaches to the parallel FFT for that sake) and Strassen matrix mul-
tiplication. ese three methods belong to the algorithmic base of a modern parallel computer al-
gebra system. ey also share a structural principle: these three algorithms are divide and conquer
algorithms. With our approach to algorithmic skeletons we were able to extract common parallelisa-
tion principles of said three algorithms. is way we were able to shorten the development time of
the implementation of the core algorithms of computer algebra. We were able to switch fast between
various parallelisation approaches, see various divide and conquer implementations of the FFT.

We experimented with the divide and conquer expansion schemes. e transition from a sequen-
tial program to a parallel one was extremely easy, given an existing fitting skeleton, as the examples of
Karatsuba multiplication and Strassen multiplication show.

e Strassen matrix multiplication was also implemented using two skeletons. e one is the
divConFlat skeleton. e other is the ‘actor-like’ approach of dcFarm. In the latter case, the divide and

142 Chapter . Fast Multiplication — Divide and Conquer

..

object

.

algorithm

.

skeleton

..............

s

...

integers

.

polynomials

.

matrices

.

Karatsuba

.

FFT

.

Strassen

.

dcNtickets

.

divConFlat

.

map-transpose

.

dcFarm

.

actors

.

remote data

. channels.

parallel maps

.

spawn

. Eden

Figure .: An overview of this chapter.

conquer structure was modelled with a farm skeleton and streams. is case study emphasises again
the flexibility of the skeleton-based approach in a parallel functional setting.

C

DATA PARALLEL AR ITHMET IC

e purpose of computing is insight,
not numbers.

Richard Hamming, Introduction to
Applied Numerical Analysis

I
 the wish to perform some computation exactly leads to an overhead not
present in the computation with floating point approximations. While the numerical ana-
lysis expects floating point operations—FLOPs—to have the same cost and focuses on the
error analysis [Golub and Van Loan,], in the domain of the exact operations this is

not so. Most of the exact operations depend on the cost of (integer) multiplication M(n), which itself
depends on the length n of the integers in question [von zur Gathen and Gerhard,]. But these
lengths are not constant, while the computation progresses. e intermediate expressions are oen
even larger than the final result is. is is known as the intermediate expression swell [Tobey, ,
von zur Gathen and Gerhard,].

To give an example of a dependency of exact operations on M(n), consider an example. Imagine
a computation with a matrix over Q(

√
3), the cost for the computation in Q[x]/⟨x2 − 3⟩ bears the

cost for computing in Q, while the latter depends on the cost of computing in Z × Z. Hence, we
have tracked a dependency of a complicated algebraic computation to the computation cost of single
integer operations. Of these the cost for integer multiplication M(n) is the most interesting one. We
considered fast multiplication algorithms (i.e., algorithms with improved M(n)) in Chapter . As we
already know, integermultiplication cost dominates the integer addition cost. e integer division cost
depends on M(n). We discuss further issues, emerging from this fact, in Section ..

A common approach to reduce the computational complexity of symbolic computations, i.e., to
reduce the intermediate expression swell, is a residue arithmetic. We consider residues of integers in
this chapter in Section .. A residue system w.r.t. some prime m is the field Z/m where m is an ideal,
generated by m. e addition and multiplication are the usual operations in Z, combined with the
residue computation modulo m. e latter is an integer division by m with the actual result being
the residue, the remainder of the division. e focus of this chapter lies on systems i) using multiple
residues at the same time and ii) capable of representing fractions. e latter problem is tackled for
a single residue case in Section .. It is possible to represent certain subsets of rational numbers as
integers in a residue class—and to recover the rational numbers from integers. is property holds for
a bound, connecting the input rational numbers and output residue class. It is stated in eorem .
on page .

To scale the residue class’ size correctly, an upper bound on the final result is required. is bound
needs to be known beforehand, a priori. Fortunately, closed formulae for such bounds are known for
many algorithms. If we have such an a priori upper bound on the result of our computation, then we
can perform it in a correspondingly scaled residue class with the result remaining exact. e benefit
is the reduced computation time, especially for intermediate expressions, which might be significantly
larger than the bound [von zur Gathen and Gerhard,]. Using the Chinese Residue eorem we
can split a single large residue class into multiple smaller residue classes. e latter can be designed to
fit into a machine word, where a single operation in a small residue class requires merely a constant
time. us we can obtain arbitrary precision by increasing the number of small residue classes. e
computation itself needs to be sufficiently long to dominate the costs for mapping to and from residue
classes. It has no sense to perform these operations before and aer each single arithmetic operation.
Instead, the whole computation is ‘lied’ to the residue classes.

144 Chapter . Data Parallel Arithmetic

A further effect of introducing multiple residue classes is that the computation in each of them
can be performed independently. Once the computation has started, each of the residue classes does
not require a connection with any of its neighbours. Only when collecting the final result we would
again consider multiple residue classes as a whole. us, a multiple residue classes arithmetic is a
parallelisation technique. As the parallelisation occurs on the payload data, with no communication
in-between, we consider such arithmetic as a tool for data parallelism. A data parallel arithmetic can
be applied to whole classes of algorithms, thus it is in fact a parallelisation scheme.

Such methods are traditionally implemented for an integer arithmetic. A typical example is the
multiple-residue integer arithmetic of Section .. However its rational counterpart is not quite straight-
forward. It is important to take care of common factors of the numerator and denominator of the
fraction with the moduli of the residue classes. Even more important is how these common factors are
separated. We consider two approaches to a rational multiple-residue arithmetic in Section .. One
of these approaches has been introduced in [Gregory and Krishnamurthy,], the other one is our
own work. We demonstrate a counterexample for the first method in Section .. e same section
shows that our approach is unaffected. A more formal foundation is provided in Section ..

At this point we are done defining the rational multiple-residue arithmetic and showing its prop-
erties. We turn to more practical issues. Using an implementation of LU factorisation, we present
and evaluate a data parallel program in Section .. Finally, Section . presents some related work,
including a comparison with Maple. Section . concludes and lists up directions for future work.

is chapter is based on [Lobachev and Loogen, a,b, Lobachev, a], our first work on this
topic is [Lobachev,]. It is an alternative development of an arithmetic, introduced in [Gregory
and Krishnamurthy,]. A new textbook [Kornerup andMatula,] corrects the original present-
ation of Gregory and Krishnamurthy, yielding the same definition of the common factors extraction
as the matter of discussion here. However, Kornerup and Matula [] present only a brief sketch of
arithmetic operations. Our pioneer work, presenting the arithmetic in detail, appeared . Further,
[Lobachev and Loogen, a] appeared on of September , whereas [Kornerup and Matula,
] appeared on of September. Priority aside, we learnt of [Kornerup and Matula,] only
in March , in the process of the preparation of this work. It is genuinely an independent discov-
ery. Such attention to the rational multiple-residue arithmetic only emphasises its importance. For
example, [Ebert, , Buchberger et al., , Winkler, , Arnold, , Idrees et al.,] search
for a residue-based approach to Gröbner bases computation. We leave this particular topic for the
future work.

. WhyWe Cannot Use Vulgar Fractions

Recapitulate the definition of rational numbers as equivalence classes on pairs of integers. We can
straightforwardly encode it in Haskell:

data (Integral a) ⇒ Fraction a = Fraction {
numerator :: Integral a ⇒ a
denominator :: Integral a ⇒ a

}

e first element of the pair is called numerator and the second is a denominator. Of course this
representation is not unique, but using a greatest common divisor (GCD) and limiting the sign makes
it unique. e standard, reduced representation of a/b is a/g

b/g , where g = gcd(a, b). We know that
following holds:

a
b
+ c
d
= ad + bc

bd
,

a
b
c
d
= ac
bd

.

When computing with fractions, we can observe the increasing values of numerator and denominator,
whilst the ‘absolute value’ of the fraction is still small enough. An example is 99999999⁄100000000 , which
has a small absolute value ≈ 1. us we need a measure for the components of the fraction.

.. Single Integer Residue Class 145

Definition . (Farey fractions). All vulgar fractions a/b satisfying ∣a∣ ≤ N , ∣b∣ ≤ N for some N ∈ N
are called Farey fractions of order N . We sometimes denote them as FN .

John Farey, Sr., *, †.., was a geologist. He introduced the Farey sequence from the definition
above. Interestingly, he was curious about some properties of this sequence, but the key property of
the Farey fractions was not proved by him [Hardy, , MacTutor,].

Definition .. We call ∥a/b∥F = max{∣a∣, ∣b∣} a Farey measure of the fraction a/b.

Lemma .. e Farey measure is not a norm.

Proof. A norm is positive scalable, subadditive and positive definite. e mapping ∥ ⋅∥F is not positive
scalable: ∥x a

b ∥F = ∥
xa
b ∥F = max{∣xa∣, ∣b∣} ≠ ∣x∣max{∣a∣, ∣b∣} = x∥ ab ∥F .

e Farey measure is a tool to estimate a complexity of a particular fraction arithmetic operation
applied to given fractions. Unfortunately it grows pretty much along the operations. If we assume
∣a∣ ≥ ∣b∣ ≥ ∣c∣ ≥ ∣d∣, then

∥a
b
+ c
d
∥
F
= ∥ad + bc

bd
∥
F
≤ 4∣a∣ ∥a

b
c
d
∥
F
= ∥ ac

bd
∥
F
≤ 2∣a∣. (.)

We return to fractions in Sections . and .. Before we do so, we need to discuss integer residue
classes next.

. Single Integer Residue Class

e classic residue classes, we call here single integer residue classes modulo m are integers from
to m − 1, i.e., residues of integral division by m, with corresponding mathematical operations. More
generally, such residue classes can be described as residues modulo some ideals. Considering some
ring R and an ideal m we can build a factor ring R/m. A known result is that if m is a maximal ideal¹,
then R/m is a field. Every maximal ideal is also a prime ideal [Lang, , Grove,]. Getting back
to our setting R = Z, given the residue ring Z/m, if the number m is prime, then Z/m is a field. Such
fields are oen called Galois fields. ese are named aer Évariste Galois, *.., †.., one
of the most tragic figures in the history of mathematics. Galois died with in a duel. In the night
before the duel Galois prepared the final version of the manuscript with his ideas. It was published
only in . Most known because of the Galois theory, Galois is regarded to be one of the fathers of
the group theory.

So Z/m = Z/mZ is the set of equivalence classes of residues of division by m with corresponding
operations. Clearly, this set is {0, . . . ,m−1}. But what about the arithmetic operations? We denote the
elements of the residue class with a (mod m), in a contrast to some a ∈ Z. en, let ⊚ ∈ {⊕,⊖,⊙,⊘}
be arithmetic operations inZ/m and let ○ ∈ {+,−, ⋅, /} denote arithmetic operations inZ. en (a mod
m)⊚ (b mod m) = (a ○ b) mod m holds. Let us summarise.

Definition . (Residues and division). We denote integer division with a = bm+ r as b = adivm and
r = a mod m. e latter forms a residue class for given m. We define

(Zm ,⊕,⊙) ∶= (Z,+, ⋅)/m = (Z,+, ⋅)/⟨m⟩.

It holds x ⊚ y ∶= (x ○ y) mod m for x , y ∈ Zm and ○ ∈ {+,−, ⋅, /}. An element a mod m of Zm =
{0, . . . ,m − 1} is denoted with ∣a∣m. With a small abuse of notation, we will write simply Zm for
(Zm ,⊕,⊙). A residue class modulo multiple residues β = [m1, . . . ,mn] is defined as Zβ ∶= Zm1 × ⋅ ⋅ ⋅ ×
Zmn . e corresponding arithmetic operations will be defined later.

¹See Definition A. on page in the Appendix for the definition of maximal and prime ideals. See also Section A.
for the algebraic background.

146 Chapter . Data Parallel Arithmetic

Algorithm Standard extended euclidean algorithm.

Require: A = (a1 b1
a2 b2

).

: procedure EEA(A)
: if a2 = 0 then return [a1, b1].
: else

: Let c ← a1 div a2 and B← (a2 b2
a1 − ca2 b1 − cb2

)

: return EEA(B)
: end if
: end procedure

Ensure: [a, b] with a = gcd(a1, a2).

Algorithm Rational-to-integer mapping.
Require: A fraction a/b, an integer m with a �m, b �m, a � b

: Start Algorithm with input matrix

(m 0
b a) ,

resulting in [x , y]
: if x ≠ 1 then return failure.
: else return y, the second element of the output vector.
: end if

Ensure: an integer y, representing ∣a/b∣m or a failure if gcd(b,m) ≠ 1.

Algorithm Mapping integer to Farey fraction.
Require: an integer x = a/b (mod m), m.

: Compute n from m per (.).
: Start Algorithm with seed matrix

(m 0
x 1) .

: In each call to the procedure EEA check, whether ∣a1∣ and ∣b1∣ are both ≤ N . If so, return the frac-
tion a1/b1. If Algorithm terminates without producing such a pair of numbers, return failure.

Ensure: either a Farey fraction a/b or a failure.

. Mapping a Fraction to Integer and Back

e well-known notion of an extended euclidean algorithm EEA in a matrix-vector form can be
defined as in Algorithm . e extended euclidean algorithm is the ‘normal’ euclidean algorithm
with additional columns. We implement Algorithm in Figure ., see top of the figure. e 2 × 2
matrix is represented by a nested pair of pairs. e Integral type class is a Haskell notion for ring Z,
which abstracts from the integer representation.

Definition .. We define the residue-based representation of the rationals ∣a/b∣m as elements of Îm.
e elements of Îm are integers in the residue arithmetic modulo m. e notion of ∣a/b∣m stands for
an integer modulo m, congruent to ∣a∣m ⊙ ∣b−1∣m. Here ⊙ denotes the multiplication modulo m.

e residue-based representation of a fraction in Îm for some m is an integer modulo m, see
[Gregory, , Gregory and Krishnamurthy,]. So Îm is not a field of Hensel’s p-adic numbers,
for which please refer to [Grove,] or further literature. It holds Îm ⊊ Zm, i.e., not each value
modulo m can be identified with above representation of fractions. We can compute ∣a/b∣m efficiently,
using EEA.

.. Mapping a Fraction to Integer and Back 147

eeaStep :: (Integral a) ⇒ ((a, a), (a, a)) → ((a, a), (a, a))
eeaStep ((a1, a2), (b1, b2)) = ((a2, a3), (b2, b3))

where t = a1 ‘div‘ a2
a3 = a1 ‘mod‘ a2
b3 = b1 - t∗b2

eea :: (Integral a) ⇒ ((a, a), (a, a)) → ((a, a), (a, a))
eea ((a1, a2), (b1, b2))
∣ a2 == 0 = ((a1, a2), (b1, b2))
∣ otherwise = eea $ eeaStep ((a1, a2), (b1, b2))

convertFraction :: (Integral i) ⇒ Fraction i → i → Mod i
convertFraction (F x y) p
= let ((d,_),(r,_)) = eea ((p,y),(0,x))

in if d ≠ 1 then error ”convertFraction” else makeZ r p
-- Type Mod i and function makeZ are explained in the next figure.
convertFraction’ :: (Integral i) ⇒ i → i → i → Mod i
-- uncurried version, omitted

eeaSearch :: (Integral a) ⇒ ((a, a), (a, a)) → a → Maybe (a, a)
eeaSearch ((a1, a2), (b1, b2)) n
∣ a2==0 = Nothing
∣ a2 ≠ 0 && not (criteria a2 b2 n)
= flip eeaSearch n $ eeaStep ((a1, a2), (b1, b2))
∣ otherwise = Just (a2, b2)
where criteria x y n = abs x < n && abs y < n

restoreFraction :: (Integral i) ⇒ i → i → i → Maybe (i, i)
restoreFraction a m n = eeaSearch ((m, a), (0, 1)) n

where n = nFromM m -- converts m to n per Wang

Figure .: A generic (Algorithm) and two special (Algorithms and) implementations of extended
euclidean algorithm in Haskell.

Lemma .. Algorithm does not fail, if b �m, i.e., gcd(b,m) = 1.

Proof. e only reason of failure of Algorithm is x = gcd(b,m) ≠ 1.

Algorithm returns the desired recoverable result if a bound on m and a/b holds. is recov-
ery happens in Algorithm . It is rigorously discussed [Gregory, , Wang, , Wang et al., ,
Kornerup and Gregory, , Gregory and Krishnamurthy, , Sasaki and Sasaki, , Collins and
Encarnación, , Sasaki et al., , Monagan, , Lobachev, , a]. We summarise.

eorem .. If

N ≤
√m

2
(.)

holds, it is possible to recover the original Farey fraction a/b of order N from integer ∣a/b∣m.

Note that above theorem essentially relates ∥a/b∥F and the scalem of the residue system. We want
to designate [Wang et al.,] as the first proof of eorem . known to us. We name this mapping
‘rational reconstruction’ [von zur Gathen and Gerhard,]. We have shown which criteria the input
of the algorithm needs to fulfil, for the algorithm to succeed. e correctness of Algorithm and the
uniqueness of the fraction a1/b1 are shown in the next theorem. We follow [Kornerup and Gregory,

148 Chapter . Data Parallel Arithmetic

data Mod a = Z a a

makeZ :: Integral a ⇒ a → a → Mod a
makeZ a m = ... -- essentially: apply the Z constructor

lift2z :: Integral a ⇒ (a → a → a) → Mod a → Mod a → Mod a
lift2z f (Z a p) (Z b q)
∣ p ≠ q = error ”Different residue classes!”
∣ otherwise = makeZ (f a b) p

-- P.+ denotes (+) instances for Integral type class
-- from the Prelude. It corresponds to the ring Z.
instance (Integral a) ⇒ Num (Mod a) where

(+) = lift2z (P.+)
(-) = lift2z (P.-)
(∗) = lift2z (P.∗)

instance (Integral a) ⇒ Fractional (Mod a) where
(/) (Z a p) (Z b q) = ... -- use EEA

Figure .: Required function types for single-residue arithmetic in Haskell.

, Gregory and Krishnamurthy,] and state it without a proof. e proof technique relates the
execution tableau of the EEA with convergents of continued fractions, see above citations.

eorem . (Gregory and Krishnamurthy [], eorem .). If a/b is a Farey fraction of order N
with ∣a/b∣m = ∣k∣m, k ∈ Îm and 0 < a ≤ N , 0 < ∣b∣ ≤ N , with the relation of N and m as above, then there
exists an integer i such that

(a, b) = (ai , bi),

where {(ai , bi) ∶ i ∈ {1, . . . , l}} is the sequence of the values, generated in step of Algorithm , started
with the matrix

(m 0
k 1) .

We show Haskell implementations of Algorithms and in Figure .. Further, we need a Has-
kell implementation of the single residue arithmetic in Z/m. e details are well-known, we present
the source code briefly in Figure .. A relevant optimisation, currently not implemented, is the Mont-
gomery multiplication [Montgomery,].

. An Integral Multiple-Residue Arithmetic

We should not underestimate [Qin’s] revolutionary
advance, because from [Sun Zi’s] single remainder
problem, we come at once to the general procedure
for solving the remainder problem […], and there is
not the slightest indication of gradual evolution.

Ulrich Libbrecht, Chinese mathematics in the
century, quoted by MacTutor’s History of

Mathematics on Qin Jiushao.

We have a next hurdle: the bound on the final result, and thus the size of our residue class, grows
with the problem size. Further, we want to obtain parallelism. How we master it? e centuries-old
Chinese Residue eorem, which we call CRT from now on, tells us, how to reconstruct a valuemodulo

.. An Integral Multiple-Residue Arithmetic 149

type IMods a = [Mod a]
makeIZ’ :: (Integral a, Integral b) ⇒ a → [a] → IMods b
makeIZ’ value primes = map (makeZ value) primes
instance (Integral a) ⇒ Num (IMods a) where

(+) = zipWith (+)
-- and so on...

Figure .: Implementing the multiple-residue integer arithmetic.

a large number from several values modulo smaller numbers. e CRT was discovered by Qin Jiushao
(秦九韶), *, †. He was a violent Chinese bureaucrat, his only mathematical legacy is the book
Shushu Jiuzhang (数书九章, “Mathematical Treatise inNine Sections”), published in . Still exactly it
made Qin Jiushao immortal. Chinese mathematician Sun Zi (孙子), mentioned by U. Libbrecht above,
lived between third and fih century A.D. He authored the book Sun Zi Suan Jing (孙子算经, “Sun
Zi’s Calculation Classic”), mentioning a special case of the CRT. Sun Zi is not the same person as the
famous Chinese strategist of the same name.

Let us consider a multiple-residue system Zβ with more than one residue. Hence, β is a vector.
Assuming β = [m1, . . . ,mn], we oen write M =∏ β or∏mi for the product of all mi .

eorem. (ChineseResidueeorem). Given residue representations [a1, . . . , an] of someunknown a
modulo [m1, . . . ,mn] with mi �m j for 1 ≤ i , j ≤ n, i ≠ j, we can reconstruct a mod M with M =∏mi .

ere is also a formulation of this theorem for principal ideal domains, but the integer version
suffices here. ere are various proofs to this theorem, both constructive and not, whereas the con-
structive ones state the possible implementation [Knuth, , Cohen,]. For more research on
CRT refer for instance to [Ore, , Fraenkel, , Baker and Pixley,]. But now, having the CRT,
we can map our computation onto multiple residue rings, the so called multiple residue system. e
formulation of the CRT allows us to map integers, we will come to fractions later. Known operations
over a single residue ring are performed independently at each element of the system. us, we have
an approach for the data parallelism. More technical details on this are in Section .. We can scat-
ter our system along the PEs and let them do the whole lengthy computation separately. At the end
we only need to collect the result and to convert it back with the CRT. is method is widely used,
von zur Gathen and Gerhard [] call it the ‘small primes’ approach and use it to drastically reduce
the complexity of Gaußian elimination and of polynomial GCD computation. Note that all a1, . . . , an
represent the same value a.

Let us take a more abstract view. For the sake of simplicity we consider elements of β to be prime
numbers. en for β = [m1, . . . ,mn] the single residue classes are Zm1 , . . . ,Zmn . With M = ∏mi , it
holds that

Zm1 × ⋅ ⋅ ⋅ ×Zmn = Zβ ≅ ZM . (.)

e equation (.), read from le to right, is the CRT, i.e., eorem .. Some of the constructive
proofs of this theorem allow the algorithmic construction of the ‘large’ residue. We call such proofs
implementations of CRT, the other name in the literature is ‘Chinese Residue Algorithm’, cf. [von zur
Gathen and Gerhard,]. We show a known approach to it below.

Further, equation (.) facilitates a background for forth and backwards mappings between Zβ
and ZM as well as for defining the arithmetic. We will present this known result with a notion from
functional programming. Recapitulate the following definition.

Definition . (Map function). For all functions operating on single elements: f :: a → b, we
define a function map, which takes as its arguments such f and a collection of type [a] of elements
of type a. e function map applies f to each element of its input collection and combines the results
of each such application to its output collection of type [b]. Hence, map has the type (a → b) →
[a] → [b] and a partial application map f has the type [a] → [b]. So we write

150 Chapter . Data Parallel Arithmetic

Algorithm Mapping an integer to integral multiple-residue.
Require: a vector of primes β, integer x with no common factors with elements of β.

: Compute ∣x∣m i for all elements mi of β.
: return [∣x∣m i ∶ i ∈ {1, . . . , #β}].

Ensure: ∣x∣β

Algorithm From integral multiple-residue to an integer. Part : convert an integer multiple-residue
value to mixed-radix representation.
Require: ∣x∣β.

: procedure M R(∣x∣β)
: Set t(1) ← ∣x∣β and i ← 1.
: Let d0 ← t(1)1 and n is the length of β.
: for 1 < i < n do
: let

t(i+1) ←
RRRRRRRRRRRR

t(i) − ∣di−1∣β{i+1, . . . ,n}
mi

RRRRRRRRRRRRβ{i+1, . . . ,n}
di ← t(i+1)i+1
i ← i + 1

: end for
: return ⟨d0, . . . , dn−1⟩β
: end procedure

Ensure: ⟨x⟩β = ⟨d0, . . . , dn−1⟩β.

map :: (a → b) → [a] → [b]
map f xs = [f x ∣ x ∈ xs]

Corollary . (ZipWith function). We define a binary version of map.

zipWith :: (a → b → c) → [a] → [b] → [c]
zipWith f xs ys = [f x y ∣ x ∈ xs ∣ y ∈ ys]

Now we can define all four integral multiple-residue arithmetic operation on Zβ as a kind of map
of their single-residue counterparts. Because map applies f to each single element in an independent
manner, such definition of a multiple-residue arithmetic underlines its strength for vectorisation. All
of the computation within a single ‘residue element’ can be done independently from other residue
elements. is will be the basis for the parallel implementation in Section .. e implementation
of the arithmetic falls back to zipWith—a variant of map for binary functions. Hence, the type for the
multiple-residue system is just a list of single-residues. Nowwe can sketchAlgorithm . See Figure .
for implementation details.

Mixed-Radix Representation. Weuse themixed-radix representation to convert the entries fromZβ
to theZM . is approach is described in detail in [Gregory andKrishnamurthy,]. Also see [Szabo
and Tanaka, , Fraenkel,], a parallelisation of this algorithm is described in [Huang,].

Definition . (Mixed-radix representation). For a representation of an integer x w.r.t. a base vector
ρ = [r1, . . . , rk−1]wewrite ⟨x⟩ρ = [d0, . . . , dk−1]with x = d0+d1r1+d2r1r2+⋅ ⋅ ⋅+dk−1r1⋯rk−1. Naturally,
0 ≤ di < ri+1.

It is immediately clear how to compute s = ∣x∣M from ⟨x⟩β. It is easy to prove that a mixed-

.. Rational Multiple-Residue System 151

Algorithm From integral multiple-residue to an integer. Part : from mixed-radix representation
to an integer.
Require: ⟨x⟩β
: procedure C M R(⟨x⟩β)
: Set s1 ← dn−1.
: Compute the list S ← [si ← dn−i + si−1mn−i+1 ∶ with i ∈ {2, . . . , n}].
: return the last element of the list S.
: end procedure
Ensure: ∣x∣M = sn.

Algorithm From integral multiple-residue to an integer. Final part.
Require: ∣x∣β.
: Let ⟨x⟩β ←M R(∣x∣β). // Compute ⟨x⟩β with Algorithm .
: Let M ←∏ β.
: Let ∣x∣M ← C M R(⟨x⟩β) // Compute ∣x∣M from ⟨x⟩β with Algorithm .
: return ∣x∣M .
Ensure: ∣x∣M , the integer representation of ∣x∣β modulo M.

radix representation is unique using repeated division with a remainder. e intriguing case is of
course ρ = β. We can obtain a mixed-radix representation ⟨x⟩β from a given multiple-residue rep-
resentation ∣x∣β with Algorithm . en we can convert the mixed-radix representation to ∣x∣M with
M = ∏ β with Algorithm . Combined, we come from ∣x∣β to ∣x∣M in Algorithm . But we need to
find the mixed-radix representation first. Algorithm shows how to do it. Denote with β{i ,...,n} a re-
duced vector [mi , . . . ,mn], when originally β = [m1, . . . ,mn]. Further notation: tk is the k element
of the vector t, in a contrast t(k) is the whole k vector t, hence t(k)k is the k element of the vector t(k).
e length of t(i) is reducing in each iteration step. Our implementation is presented in Figure ..
Algorithm is a proof of the CRT. With it we can convert integer multiple-residue values to a mixed-
radix representation of a single integer. is value, recovered to its standard integer representation,
is the desired result of the constructive CRT proof: the reconstructed value. Other implementations
of the CRT are widely known and can be found in [Knuth, , Cohen, , von zur Gathen and
Gerhard,].

. Rational Multiple-Residue System

Before we begin with the actual content of this section, we would like to clarify some wording. In
further we would write something like ‘a fraction a/b has (no) common factors with an integer m’.
is a bit cryptic message is an abbreviation of ‘a numerator a or a denominator b of the reduced
fraction a/b has common factors with the integer m’, or, in a negative case: ‘neither numerator a nor
denominator b of the same fraction have common factors with an integer m’.

Note that for more than two rational residues modulo m1,m2, . . . , obeying (.), the smallest in-
teger m1 will be smaller than the size of the maximal fitting Farey fraction N , cf. [Gregory and Krish-
namurthy, , eorem .]. is means, that there are fractions, fulfilling the bound (.), but
having a common factor with at least m1 in numerator or denominator.

Such common factors cause the computation of the inverse to fail or lead to zeros found in wrong
places. is happens, if a common factor occurs in denominator or numerator appropriately. Clearly,
we need to deal with this ‘common factor’ problem. It is related to the ‘unlucky primes’ problematics.
e latter occurs, e.g., in the modular Gröbner bases computation [Ebert, , Arnold, , Idrees
et al.,]. is problem was considered from the workpool perspective in [Loidl,].

152 Chapter . Data Parallel Arithmetic

data SingleRadix a = MR a a
deriving Eq

type MixedRadix a = [SingleRadix a]

-- omitted because of simplicity
valuesPrimes :: Integral a ⇒ IMods a → [(a, a)]
valuesRadices :: Integral a ⇒ MixedRadix a → [(a, a)]
getPrimes :: Integral a ⇒ IMods a → [a]
takeFirstValue :: (Integral a) ⇒ IMods a → a

restoreIZ :: Integral a ⇒ IMods a → Z a
-- Wrapper around restoreIZ’. In fact we restore Z a!
restoreIZ’ :: Integral a ⇒ IMods a → a
restoreIZ’ input = let (values, primes) = unzip $ valuesPrimes input

in convertMixedRadix $ mixedRadix input

inverses :: (Integral i) ⇒ i → [i] → IMods i
inverses k ps = flip makeIZ ps $ map (inverse k) ps

-- a single step of mixed radix algorithm
mixedRadixStep :: Integral a ⇒ IMods a → IMods a
mixedRadixStep input
= let (values, primes) = unzip $ valuesPrimes input

h = head values
diffs = (tail input) - (makeIZ’ h $ tail primes)
lagrangians = inverses (head primes) (tail primes)

in diffs ∗ lagrangians

mixedRadix :: Integral a ⇒ IMods a → MixedRadix a
mixedRadix input = zipWith (flip MR) (getPrimes input)

$ map takeFirstValue
$ takeWhile (λx → length x > 0)
$ iterate mixedRadixStep input

convertMixedRadix :: Integral a ⇒ MixedRadix a → Mod a
convertMixedRadix mixed
= let residue = product primes

(values, primes) = unzip $ valuesRadices mixed
primes’ = 1:primes
-- (P.+) is (+) from standard Prelude, same with (∗)
conv (v, p) acc = (P.∗) ((P.+) acc v) p -- (acc + v) ∗ p

in flip makeZ residue $ foldr conv 0 $ zip values primes’

Figure .: Converting from Zβ to ZM with mixed-radix algorithm.

.. e Mappings

Definition . (Elements). We define an element of a rational multiple-residue systemWβ as follows.
Let n be the length of prime list β. en such element is a list of pairs

[(ui , vi) ∶ i = 1, . . . , n] .

Here the components ui are the residues and vi are the powers of corresponding elements of β.

e implementation is in Figure .. Gregory and Krishnamurthy [] define a similar residue sys-

.. Rational Multiple-Residue System 153

data FSingleMod a = FM (Mod a) a
type FMods a = [FSingleMod a]

nFromM, mFromN :: Integral i ⇒ i → i
-- convert M to N
makeFZ :: Integral i ⇒ Fraction i → FMods i
-- forth mapping, see next figure
restoreFZ :: Integral i ⇒ FMods i → Maybe (Fraction i)
-- backwards mapping, see second next figure

Figure .: Basic outline of rational multiple-residue implementation in Haskell.

Algorithm Common outline of forth rational multiple-residue mapping.
Require: a fraction a/b, residues β = [m1, . . . ,mn].

: Extract common factors vi of all mi and a/b. Remember v1, . . . , vn.
: Convert the resulting fraction to an integer modulo M =∏ β with Algorithm .
: Convert the resulting integer to a multiple-residue system modulo β with Algorithm .

Store the results in a list [u1, . . . , un].
: return list of pairs [(u1, v1), . . . , (un , vn)].

Ensure: rational multiple-residue representation of a/b being [(u1, v1), . . . , (un , vn)].

tem, we call Mβ here. Its elements are similar to those of Wβ, and the arithmetical operations defini-
tions coincide. e major difference lies in how the forth and backwards mappings are defined. Note-
worthy, [Gregory, , Kornerup andGregory,] define a yet another residue system, which differs
from both Mβ and Wβ in not separating out the powers of primes vi from the residues ui . It is the
predecessor of Mβ. We focus here on Wβ and handle Mβ in a more detail in Section ..

Forth mapping. Given a fraction a/b and β = [m1,m2, . . . ,mn], satisfying (.) with some N ∈
N such that a/b ∈ FN (see Definition .), we define iteratively a(i)/b(i) and v1, . . . , vn as shown in
Algorithm . We assume mi �m j for all pairs (mi ,m j) from β with i ≠ j. Said Algorithm consists
of ϕ1 ○ ϕ2 ○ ϕ3, where ϕi is essentially the i step of the algorithm. We need to be careful of ϕ1, the
common factor extraction. Exactly the difference between (. WRONG) and (. RIGHT) is the
difference between the approach from [Gregory and Krishnamurthy,] and our approach.

a(1)

b(1)
= a
b
mv1

1

a(2)

b(2)
= a(1)

b(1)
mv2

2

⋮
a(n)

b(n)
= a(n−1)

b(n−1)
mvn

n

(. WRONG)

e forth mapping for Mβ, defined in [Gregory and Krishnamurthy,], takes in step of Al-
gorithm the value a(n)/b(n) from (. WRONG) for all residue classes in the system. Our approach,
following [Lobachev, , a], is to remove each time only the factors, we need to remove. With
the following equation, the forth mapping for Wβ takes in the same step the value a(i)/b(i) for i
residue class in the system from (. RIGHT). Hence, the key difference between our approach and

154 Chapter . Data Parallel Arithmetic

Algorithm Forth rational multiple-residue mapping to Wβ.
Require: fraction a/b, residues β = [m1, . . . ,mn].

: Extract common factors vi from a/b per (. RIGHT).
is results in lists [v1, . . . , vn] and [a(1)/b(1), . . . , a(n)/b(n)].

: Convert each a(i)/b(i) to a value ui modulo mi with Algorithm for all i ∈ {1, . . . , n}. // i.e.,
assign to [u1, . . . , un] the result of zipWith with Algorithm of the lists [a(1)/b(1), . . . , a(n)/b(n)]
and β.

: return an element [(u1, v1), . . . , (un , vn)] of Wβ
Ensure: a rational multiple-residue representation of a/b.

Algorithm Backward mapping from Wβ to Q.
Require: [(u1, v1), . . . , (un , vn)] ∈Wβ, β = [m1, . . . ,mn]

: Compute M =∏ β and N =
√
M/2. // Can be precomputed.

: Compute a′/b′ = mv1
1 ⋯m

vn
n .

: For each i ∈ {1, . . . , n} distort the values of ui . Let

ûi ← ui/∏
j≠i

mv j
j .

: Consider [û1, . . . , ûn] as an integer multiple-residue value in Zβ. Find its representation q in ZM
with an implementation of CRT (e.g., with Algorithm).

: Find a Farey fraction a/b of order N , such that ∣a/b∣M ≡ q (mod M) with Algorithm . If this
does not succeed return a failure.

: return the fraction aa′/bb′.
Ensure: recovered fraction aa′/bb′ or a failure.

Mβ is in

a(1)

b(1)
= a
b
mv1

1

a(2)

b(2)
= a
b
mv2

2

⋮
a(n)

b(n)
= a
b
mvn

n

(. RIGHT)

With these equations, the forth mapping forWβ takes in step of Algorithm the value a(i)/b(i) for
i residue class in the system. e forthmapping forMβ extracts all factors from the input fraction for
all residue classes. Unfortunately, this leads to an instable addition. Our approach does not have such
a problem. We will show an example, underlining the difference of both approaches in Section .,
aer the definition of arithmetic operations.

e idea of the forth mapping algorithm for Wβ is to take a fraction a/b and a list of primes
β = [m1, . . . ,mn]; then to execute Algorithm with (. RIGHT) in step . e result is the rational
multiple-residue representation of a/b as an element ofWβ. Algorithm shows the forwardmapping
in full detail. e implementation of this algorithm is in Figure .. Note that Algorithm converts
each fraction a(i)/b(i) separately, resulting in n calls of Algorithm . us, among u1, . . . , un some
represent different values in Q if at least one vi ≠ 0 for some i ∈ {1, . . . , n}.

Backward mapping. e backward mapping is defined in Algorithm . Denoting ψI for multiple-
residue integer reconstruction,ψR for fraction reconstruction,ψ1 for factoring out, andψ2 for restoring
the factored out values, Algorithm is essentially ψ1 ○ψI ○ψR ○ψ2. e implementation of the latter

.. Rational Multiple-Residue System 155

detectPower :: (Integral i, Num n) ⇒ i → i → (n, i)
-- Code omitted. Example: detectPower 40 2 = (3, 5)

convertFraction’ :: (Integral i) ⇒ i → i → i → Mod i
-- uncurried EEA implementation from above

extractFactors :: (Integral i, Num n) ⇒ i → [i] → [(n, i)]
extractFactors x ps = map (detectPower x) ps

makeFZ’ :: Integral i ⇒ i → i → [i] → FMods i
makeFZ’ a b ps ∣ gcd a b == 1 = let (ws, ys) = unzip $ extractFactors a ps

(qs, zs) = unzip $ extractFactors b ps
vs = zipWith (-) ws qs -- well-defined
cs = zipWith3 convertFraction’ ys zs ps

in zipWith FM cs vs
∣ otherwise = ... -- recursive call

makeFZ :: Integral i ⇒ Fraction i → FMods i
makeFZ = ... -- a trivial constructor expansion

Figure .: Forward mapping (Algorithm).

getM :: Integral i ⇒ FMods i → Integer
-- returns the product of all primes in the system

stripPowers :: Integral i ⇒ FMods i → (i, i, FMods i)
-- set v_i = 0 for all i and compensate

restoreFZ’ :: Integral i ⇒ FMods i → (Maybe (i,i), (i,i))
restoreFZ’ x = let m = getM x

n = nFromM m
(nom, denom, hatUs) = stripPowers x
z = convertToIntResidues hatUs
r = toIntegral $ restoreIZ’ z
e = restoreFraction r m n

in (e, (nom, denom))

restoreFZ :: Integral i ⇒ FMods i → Maybe (Fraction i)
restoreFZ = ... -- compute in Maybe monad the product of fraction e with nom/denom

Figure .: e outline of an implementation of the backwards mapping (Algorithm).

algorithm is presented in Figure .. We show the correctness of Algorithms and in Section .,
basing on [Lobachev, , a, Lobachev and Loogen, b].

Image of ψ. How does the image set of Algorithm look like? is set consists of Farey fractions
of corresponding order N and their products with powers v1, . . . , vn of m1, . . . ,mn. For the restricted
values of vi the shape of this set is shortly discussed in [Lobachev,]. Figure . on the next page
gives an intuition. Its top part depicts all Farey fractions of order four. e middle and bottom parts
of Figure . show the very same Farey fractions, combined with small powers of and . Note the
different scale of these two plots. If we do not restrict the values of vi , then the said set is infinite.
Further questions on the shape of this set are open.

156 Chapter . Data Parallel Arithmetic

-4 -2 0 2 4

Farey fractons of order 4

v=
0

-4 -2 0 2 4

Farey fractons of order 4 trunc

|v
|<
=2

-4 -2 0 2 4

Farey fractons of order 4 trunc

|v
|<
=2

-100 -50 0 50 100

Farey fractons of order 4

|v
|<
=2

-100 -50 0 50 100

Farey fractons of order 4

|v
|<
=2

Figure .: Farey fractions with powers of small integers. Top: Farey fractions of order . Middle and
bottom: Farey fractions of order multiplied with fitting powers of 3 and 5 such that vi ∈ {−2,−1, 0, 1, 2}.
Note, this includes the factors of 3, already present in numerator or denominator of fractions in F4. In the
middle we show only the values between −3 and 3. e bottom plot shows the complete set.

Our implementation defines vi as types of an Integral type class. Hence, it is possible to use both
hardware integers and arbitrary precision integers. e choice of the first should increase the speed of
the computation. It limits the absolute size of vi to 263 on a bit machine. is should be not an issue
for any reasonable input sizes, as we discuss the powers of primes, which itself have the magnitude
of 264. Still for the theoretical purposes it is possible to use arbitrary precision integers for values vi .
Combined with arbitrary precision integers for Îm i , this makes the set Wβ capable of representing
any fractions, which will fit into the memory of a machine. We can also achieve very good scaling of
our methods with hardware integers in both components by simply increasing the number of residue
classes.

.. e Arithmetic

We need to define the actual arithmetic on Wβ. We stress again that all arithmetic operations are
independent in separate components. Each operation is defined for a single residue (use zipWith!).
ese definitions coincide with ones for Mβ from [Gregory and Krishnamurthy,], but not with
those from [Gregory,]. We begin with the definition of multiplication, since it is the simplest
operation in the system.

Definition .. e product of (u, v) and (µ, υ)modulo m is defined as (∣uµ∣m , v + υ).

e implementation is straightforward: (FM u1 v1) ∗ (FM u2 v2) = FM (u1∗u2) (v1+v2).

Definition . (Multiplicative Inverse). e inverse of (u, v) is (∣u−1∣m ,−v).

Note, it is easy and well-known, how to compute ∣u−1∣m, the multiplicative inverse of u modulom with
EEA, Algorithm , for such u andm, that u �m [Knuth,]. It coincides with computing an integer
representation of a fraction 1/u with Algorithm , a standard approach in residue rings.

e sum of (u, v) and (µ, υ)modulo m is (∣u + µ∣m , v) if v = υ and just (u, v) for ∣v∣ < ∣υ∣ with a
single exception for sum of something with zero being the non-zero summand, regardless of the power
of m. A more formal definition follows.

.. Counterexample for Mβ 157

instance (Integral a) ⇒ Num (FMods a) where
(+) = zipWith (+)
(-) = zipWith (-)
(∗) = zipWith (∗)

instance (Integral a) ⇒ Fractional (FMods a) where
(/) = zipWith (/)

Figure .: Instances of Num and Fractional for Wβ.

Definition . (Addition). e sum of (u, v) and (µ, υ)modulo m is defined as follows. Recall that
u ⊕ µ = ∣u + µ∣m. We write in this table v for positive values, −v for negative and 0 for zero.

+ (0, z) (u, v) (u, 0) (u,−v)

(0, ζ) (0, 0) (u, v) (u, 0) (u,−v)
(µ, υ) (µ, υ) A (u, 0) (u,−v)
(µ, 0) (µ, 0) (µ, 0) (u ⊕ µ, 0) (u,−v)
(µ,−υ) (µ,−υ) (µ,−υ) (µ,−υ) B

e two subcases are:

A =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(u, v) if v < υ
(u ⊕ µ, v) if v = υ
(µ, υ) if v > υ

B =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(u,−v) if − v < −υ
(u ⊕ µ, v) if v = υ
(µ, υ) if − v > −υ

Further, z and ζ are in Z. e zero element is not unique because of (0, z) with z ≠ 0, but we norm it
to the standard representation (0, 0).

Definition . (Additive Inverse). e additive inverse of (u, v)modulo m is (∣ − u∣m , v).

e actual arithmetic operations onWβ are defined by liing the above single-element operations
with zipWith to lists, as shown in Figure .. e code for addition, the most complicated operation
even for single-element inputs, is presented in Figure ..

. Counterexample forMβ

Now, having the definition of the arithmetic operations, we can show that our approach is better
thanMβ from [Gregory andKrishnamurthy,]. e arithmetic operations coincide withWβ. Con-
sider an example computation [Lobachev,]. Let a = 1/21 and b = 1/3. We compute the sum a + b
in Mβ modulo β = [5, 7, 11, 13]. Per (.), all fractions a/b with ∥a/b∥F ≤ 50 are on the safe side, as
N = 50 = ⌊

√
M/2⌋ = ⌊

√
∏ β/2⌋.

Constructing the inputs inMβ. AsMβ needs to extract all factors of elements of β from all elements
of the residue system, we obtain the following representations. e value a = 1/21 has a common
factor with 7 in its denominator. So, we need to extract it: v2 = −1. All other vi are zero. e result-
ing value is 1/3, which luckily coincides with b. e latter has no common factors with any mi . We
map b modulo β. e inverses of 3 modulo [5, 7, 11, 13] are respectively [2, 5, 4, 9]. So, the result is
[(2, 0), (5,−1), (4, 0), (9, 0)] for a and [(2, 0), (5, 0), (4, 0), (9, 0)] for b.

Mapping back fromMβ. e sum of a and b is c ∶= [(4, 0), (5,−1), (8, 0), (5, 0)], we simply add the
components in the case ‘v = υ’, which occurs always up to m2 = 7. Here we need to add (5,−1) and
(5, 0). From the definition of the addition (5,−1) ensues.

158 Chapter . Data Parallel Arithmetic

instance (Integral a) ⇒ Num (FSingleMod a) where
(+) x y = addSingle x y
(-) x y = x + (additiveInverseSingle y)
-- etc.

addSingle :: (Integral a) ⇒ FSingleMod a → FSingleMod a → FSingleMod a
addSingle (FM (Z 0 p) _) (FM (Z 0 p’) _) ∣ p==p’ = FM (Z 0 p) 0
addSingle (FM (Z 0 _) _) y = y
addSingle x (FM (Z 0 _) _) = x
addSingle (FM u 0) (FM u’ 0) = FM (u+u’) 0
addSingle (FM u v) (FM u’ 0) ∣ v >0 = FM u’ 0

∣ v <0 = FM u v
addSingle (FM u 0) (FM u’ v’) ∣ v’>0 = FM u 0

∣ v’<0 = FM u’ v’
addSingle (FM u v) (FM u’ v’) ∣ v<v’ = FM u v

∣ v>v’ = FM u’ v’
∣ v==v’ = FM (u+u’) v

addSingle _ _ = error ”Bad case!” -- never happened

additiveInverseSingle (FM (Z u p) v) = FM (Z (p-u) p) v

Figure .: Additive operations in a single fractional residue class.

β 5 7 11 13

∣t(1)∣β{1, . . . ,4} = ∣ĉ∣β 4 5 8 5
∣d0∣β{1, . . . ,4} 4 4 4 4

∣t(1) − d0∣β{2,. . . ,4} 1 4 1
m−11 (mod β{2,...,4}) 3 9 8

∣t(2)∣β{2,. . . ,4} 3 3 8
∣d1∣β{2,. . . ,4} 3 3 3
∣t(2) − d0∣β{3,4} 0 5

m−12 (mod β{3,4}) 8 2

∣t(3)∣β{3,4} 0 10
∣d2∣β{3,4} 0 0

∣t(3) − d2∣β{4} 10
m−13 (mod β{4}) 6

∣t(4)∣β = ∣d3∣β{4} 8

Table .: e execution of Algorithm for the Mβ counterexample.

Let us map this result back to Q. Using the backward mapping for Mβ from [Gregory and Krish-
namurthy,], we extract the factor, residing in v ≠ 0. Sowemapback ĉ = [(4, 0), (5, 0), (8, 0), (5, 0)]
and remember the factor 1/7. e tableau of the execution of the mixed-radix algorithm (i.e., Al-
gorithm) is in Table .. e boxed values are the results of the algorithm execution. As before,
β{i ,...,n} denotes a reduced vector [mi , . . . ,mn], for β = [m1, . . . ,mn]. We see, ⟨4, 3, 0, 8⟩β is themixed-
radix representation of the integer multiple-residue value [4, 5, 8, 5] ∈ Zβ. We can easily recover the
value in ZM , namely ∣ĉ∣M = 4+ 3 ⋅ 5+ 0 ⋅ 5 ⋅ 7+ 8 ⋅ 5 ⋅ 7 ⋅ 11 = 3099, from the mixed-radix representation.

Next we need to map 3099 (mod M) to a fraction. We do it with Algorithm , its execution

.. Correctness of Wβ 159

5005 0
3099 1

1906 −1
1193 2
713 −3
480 5
233 −8
14 21
9 −344
5 365
4 −709
1 1074
0 −5005

Table .: Execution tableau of Algorithm for the Mβ counterexample.

5005 0
1671 1

1663 −2
8 3
7 −623
1 626
0 −5005

Table .: Execution tableau of Algorithm for the Wβ example.

tableau is in Table .. e framed values represent the only possible result. e recovered fraction
for ĉ is 14/21, which is 2/3 in a reduced form. We need to mix 1/7 in, which we removed earlier. So, we
obtain 2/21 as the result, contrary to the correct result a + b = 8/21. ☇

e same withWβ. e same example with Wβ of the same scale results in the following. We map
forth with Algorithm . We do not extract the factor 1/7 where it does no harm. So, 1/21 is mapped
‘as is’ modulo 5, 11 and 13: ∣21−1∣[5,11,13] = [1, 10, 5]. As has common factors with , this residue needs
a special treatment: we extract 1/7 from a, remember it as v2 = −1, and map ∣1/3∣7 to ∣5∣7. We obtain
the representation [(1, 0), (5,−1), (10, 0), (5, 0)] for a. Similarly, [(2, 0), (5, 0), (4, 0), (9, 0)] stands
in Wβ for b.

e sum is [(3, 0), (5,−1), (3, 0), (1, 0)] per Definition ., we need to map it back. We follow
closelyAlgorithm . e fraction a′/b′ is quite obviously 1/7. e distorted values [ûi ∶ i ∈ {1, . . . , 4}]
are [1, 5, 10, 7]. We consider these as elements of Zβ. e corresponding mixed-radix representation
is ⟨1, 5, 3, 4⟩, which corresponds to ∣1671∣M . We found these values with an implementation of Al-
gorithm , similar to Table .. Now we need to restore the fraction from the value in ZM . Again, we
execute Algorithm , the execution tableau is in Table .. e only result below the bound N = 50
is 8/3. Finally, we need to multiply 8/3 with 1/7, yielding 8/21. is is the correct result. ✓

. Correctness ofWβ

In this section we show two statements on the behaviour of the arithmetic inWβ and of the mappings
to and from Wβ.

eorem . (Well-definiteness). e arithmetic operations in Wβ produce correct results.

160 Chapter . Data Parallel Arithmetic

Proof. We consider the element-wise operations modulo a single m.

. e addition works, despite looking somewhat strange. Let (∣p/q∣m , v) and (∣r/s∣m , υ) be the
summands. e trivial case for summation with zero is clear. e case of v = υ is also not
endearing. All le is the complicated case v ≠ υ. Without loss of generality, let v > υ. Now we
have three non-trivial sub-cases for different signs of v and υ, all other cases can be seen as one
of those with places swapped. Let us consider all of them.

Case ‘v > υ > 0’. It holds

pmv

q
+ rmυ

s
= psmv + qrmυ

qs
= psmv−υ + qr

qs
mυ .

We can factor out mυ. Now with ∣(psmv−υ + qr)(qs)−1∣m = ∣qr(qs)−1∣m = ∣rs−1∣m and the
separated factor mυ we obtain exactly (∣r/s∣m , υ).

Case ‘v > 0, υ < 0’. It is

pmv

q
+ r
sm−υ

= psmv−υ + rq
qsm−υ

= psmv−υ + rq
qs

mυ .

We separate mυ and look at the remaining part: ∣(psmv−υ + rq)(qs)−1∣m = ∣rq(qs)−1∣m =
∣rs−1∣m. As we remember the factor mυ, the final result is (∣r/s∣m , υ).

Case ‘υ < v < 0’. In this case holds

p
qm−v

+ r
sm−υ

= psm−υ + rqm−v

qsm−v−υ
= psm−υ+v + rq

sqm−υ
= psm−υ+v + rq

sq
mυ ,

so both numerator anddenominator have the common factormv . We separate the factormυ,
yielding ∣(psm−υ+v + rq)(sq)−1∣m = ∣rq(sq)−1∣m = ∣rs−1∣m. Combined with mυ we obtain
(∣r/s∣m , υ).

. e additive inverse is correct. Changing the sign does not change the factors, thus no change
at v. e addition of (u, v) and (∣ − u∣m , v) returns (0, v), which is zero.

. e multiplication is straightforward. For the product of (∣p/q∣m , v). and (∣r/s∣m , υ). It follows

p
q
mv ⋅ r

s
mυ = pr

qs
mv+υ ,

which is exactly what we see.

. e multiplicative inverse is also correct. For some (u, v) and its inverse (∣u−1∣m ,−v) holds

(u, v) ⋅ (∣u−1∣m ,−v) = (∣u ⋅ u−1∣m , v − v) = (1, 0).

Remark. Note thatWβ does not give any guaranties on the correctness of the result, if the latter does not
satisfy the bound (.). eorem . shows that the representation of the result in Wβ is correct, but
this does not mean we can always map this result correctly to Q. is issue is tackled in eorem ..

Corollary .. e algorithm is correct.

Sketch of the proof. Call ϕ themapping, defined by Algorithm . Let FN be Farey fractions of orderN ,
let X ⊂ Q be the domain of ϕ with codomain Wβ. It holds FN ⊂ X, if (.) holds for N and M =∏ β.
eorem . essentially shows ϕ(a ○ b) = ϕ(a) ○ ϕ(b) for ○ ∈ {+,−, ⋅, /}. It is easy to show that zero
and unity are preserved. Hence, ϕ is a homomorphism. †

.. Correctness of Wβ 161

..

all the same

.

some different

.Q. (Qn ,Q).

Wβ

.

(Înm i
,Q)

.

= (Îm i ,Z)n

. ϕ1.

ϕ2 ○ zip

.

ψ1

.

ψI ○ ψR ○ ψ2

Figure .: Visualising ϕ1 and ψ1.

eorem .. Let ϕ be the mapping, defined by Algorithm and ψ be the mapping, defined by Al-
gorithm . Let β = [m1, . . . ,mn] for some n ∈ N. It holds M = ∏ β and N is the order of Farey
fractions, which can be represented inWβ, per (.). en ϕ ○ψ = id on the set of the Farey fractions FN .

Proof. We see ϕ as ϕ1○ϕ2○zipwith ϕ1 ∶ Q→ (Qn ,Zn), ϕ2 ∶ (Qn ,Zn)→ (Îm1×⋅ ⋅ ⋅× Îmn ,Zn) and zip in
this case is (Îm1 × ⋅ ⋅ ⋅ × Îmn ,Zn)→ ((Îm1 ,Z)× ⋅ ⋅ ⋅ × (Îmn ,Z)) =Wβ for someZ ⊂ Z. ese functions
correspond to the steps of the Algorithm . Recall that ÎM ⊂ ZM holds. Note that our usual pairs
(ui , vi) are elements of (Îm i ,Z) for i ∈ {1, . . . , n}. It is essential for the functionality of Wβ that the
values Îm i for i ∈ {1, . . . , n} represent different values in Q. is can be easily seen in corresponding
values in Z . It holds that all ui for [(u1, v1), . . . , (un , vn)] ∈Wβ represent the same value in Q if and
only if all vi for i ∈ {1, . . . , n} are zero. However, all ui for i ∈ {1, . . . , n} always need to represent the
same value, if we want to apply the CRT in the backwards mapping. is explains the ‘distortion’ step
in Algorithm .: it is rather the ‘correction’ step.

Similarly to ϕ, let ψ = ψ1 ○ ψI ○ ψR ○ ψ2 be the mapping, defined by Algorithm . It holds ψ1 ∶
Wβ = (Îm1 ,Z)× ⋅ ⋅ ⋅ × (Îmn ,Z)→ (Îm1 × ⋅ ⋅ ⋅ × Îmn ,Q). It is more than unzip! e function ψ1 ‘corrects’
the values in Îm i for i ∈ {1, . . . , n} as encoded in corresponding values in Z . e resulting values in
Îm1 × ⋅ ⋅ ⋅ × Îmn would have zeros in all vi values, if we would construct them. e values in Z in the
input pairs are the powers of mi for i ∈ {1, . . . , n}. We can convert them to Q. is is the second
component of the target set of ψ1. At this point we have the uniformity back: the values in Îm i for all
i ∈ {1, . . . , n} represent the same value. is means, we can use the CRT, i.e., eorem .. We denote
it as ψI ∶ (Zm1 × ⋅ ⋅ ⋅ × Zmn ,Q) → (ZM ,Q). Both ψ1 and ψI are total, they never fail. e function ψI
does not change the value inQ of its second component, it merely passes it through for the functionψ2.
A visualisation of the ‘uniformity’ issue is in Figure .. Note that in our case the input of the CRT is
a subset of Zm1 × ⋅ ⋅ ⋅ ×Zmn , namely Îm1 × ⋅ ⋅ ⋅ × Îmn .

We need to show that ψI(Îm1 × ⋅ ⋅ ⋅ × Îmn ,Q) = (ÎM ,Q), i.e., that the first component of the result
is not in ZM ∖ ÎM . Let a/b ∈ FN with a � b and a �mi , b �mi for all i ∈ {1, . . . , n}. We denote with
eeaM(a/b) the call of Algorithm with the fraction a/b and integer M. en we can obtain a value
x ∶= eeaM(a/b) in ÎM , as M = ∏mi . Similarly, [y1, . . . , yn] ∶= [eeam i(a/b) ∶ i ∈ {1, . . . , n}] in
Îm1 × ⋅ ⋅ ⋅ × Îmn . We can map from x to [y1, . . . , yn] with the CRT, i.e., with ∣ ⋅ ∣β. But the CRT is an
isomorphism on Zβ. e inverse mapping is exactly the projection of ψI to the first component. e
second component is trivial.

e next step is ψR, the rational reconstruction with the extended euclidean algorithm. is map-
ping is partial! It holds ψR ∶ (ÎM ,Q) ⇢ (Q,Q). Again, the second component is passed through. We
will show below that ψR is total on the target set of ϕ ○ ψ1 ○ ψI . Assuming, ψR provides the result, the
last component of ψ is ψ2. It has the type ψ2 ∶ (Q,Q)→ Q and is essentially uncurry(∗). It multiplies
the result of the rational reconstruction (the ‘first’ Q) with the passed through product of powers of
mi for i ∈ {1, . . . , n} (that is: the ‘second’ Q). Combined, the type ψ ∶Wβ ⇢ Q emerges.

We need to show that ψR does not fail on the image of ϕ○ψ1 ○ψI . For (ϕ○ψ1 ○ψI)(FN) this is quite
trivial. All the factor extraction will never increase the order of a Farey fraction. Hence, ϕ1 results in
n Farey fractions of order N and some powers of factors vi ∈ Z for i ∈ {1, . . . , n}. Each of the Farey
fractions is mapped to an integer modulo mi with ϕ2. ese values are changed to represent the same

162 Chapter . Data Parallel Arithmetic

value with ψ1 and converted to ÎM with ψI . We claim that (ϕ ○ ψ1 ○ ψI)(a/b) = eeaM(a/b) for a �M,
b �M, a � b and a/b ∈ FN . Now, eeaM(a/b) results in ∣a/b∣M ∈ ÎM .

Let F̂β
N ∶= {a/b ∈ FN ∶ a �m, b �m, a � b for all m ∈ β}. We consider (ϕ ○ ψ1 ○ ψI)(a/b) for

a/b ∈ F̂β
N in a more detail. e mapping ϕ1, applied to a/b results in ([a/b, . . . , a/b], [0, . . . , 0]).

en, ϕ2(ϕ1(a/b)) = ([eeam1(a/b), . . . , eeamn(a/b)], [0, . . . , 0]) =∶ (eeaβ(a/b), 0n). Now, ψ1 has no
factors to extract and correct. If ψI maps (eeaβ(a/b), 1) to (eeaM(a/b), 1) for some a/b ∈ F̂β

N , we are
on the safe side. In other words, the first ÎM component of the domain of ψR contains the mapped-to-
integer value of some a/b ∈ F̂β

N . Pereorem.ψR is total in this case. If the input fraction a/b ∈ FN of
ϕ1 has some common factors with mi , then these are extracted and ϕ results in mappings of different
fractions modulo β. e function ψ1 makes then the representations of (different) values a(i)/b(i)
from equation (. RIGHT) to a(n)/b(n) with a/b = a(n)/b(n)∏mv i

i . us, the first component of the
argument ofψI contains n representations of the same value, namely a(n)/b(n). e second component
is the fraction∏mv i

i . It will be used by ψ2 to restore original value a/b.
In fact, ψR also does not fail on all products of the Farey fractions of order N with powers vi

of mi , for vi ∈ Z and i ∈ {1, . . . , n}. In this case, just as in the above case with common factors, the
aforementioned powers would be extracted in ϕ1 and saved in theZn component ofWβ. e function
ψ1 would convert all vi for i ∈ {1, . . . , n} to the ‘second’ Q in the pair, which is not considered by ψR.
e value in ÎM , the function ψR would operate on, is the encoded Farey fraction from F̂β

N . We have
already shown that ψR is total on such inputs.

. Parallelism

Multiple-residue arithmetic approaches are known for their data parallelism potential. We compute
with different residues in a fully independent manner, without a need for the communication in-
between. As our implementation of rational multiple-residue arithmetic conforms to this principle,
we can immediately make a step from a (sequential) Haskell implementation to the (parallel) Eden
code. Suppose, we have some function f :: FMods Int → FMods Int. is function could be im-
plemented in Haskell as f = map g, where g :: FSingleMod Int → FSingleMod Int. It suffices to
write f = farm g to obtain a parallel Eden implementation.

A further advantage is provided by Haskell type system. As both FMods and FSingleMod are in-
stances of the standard Num and Fractional type classes, we could use the standard arithmetical nota-
tion of +,−, ⋅, / in the implementation of the function g from above. Even more: the generalised type
of g is g :: (Num a, Fractional a) ⇒ a → a. is means, that we can use g for any arithmetic of
our choice: be it the standard one, or the one presented above. In terms of computer algebra, one says
that g is symbolic.

In order to have a large enough task, we use matrix computations for testing the arithmetic. We
choose the LU decomposition of matrices as our test problem. It is also known as Gauß elimination.
Wewill discuss it next. e sequential implementation is shown in Figure . on page . To obtain a
parallel implementation, we use the higher-order function lift1, described below in Section ... e
actual parallel implementation of the Gauß elimination and a subsequent determinant computation
is presented in Figure . on page . We present the Gauß elimination first and then handle the
determinant computation.

.. Gauß Elimination

A quite common problem in linear algebra is the solution of the systems of linear equations. From
input of the form

Ax = b

we need to obtain the vector x. A naive way to do it is to invert the matrixA. e more specific, robust
and classical approach is not a direct inversion, but a method called Gauß elimination. Figure .

.. Parallelism 163

Gauß elimination
Wβ

farm
parMap
spawn
Eden

Figure .: Implementation hierarchy of the residue arithmetic example.

visualises the relation of Gauß elimination, Wβ and Eden skeletons. Our parallel implementation of
the Gauß eliminationdepends on Wβ, which depends on the farm skeleton.

e theory. is method lies in successive multiplication of the input matrix A by so called trans-
formation matrices Yi, each time eliminating all the entries in the matrix column below the diagonal,
hence the name: Gauß elimination. is method is also called LU factorisation. e elimination is
done for each column of the matrix, resulting an upper triagonal matrix U as the output. e product
of all matrices Yi results in a lower triagonal matrix L. It holds

A = LU.

Now with simple techniques like backward substitution we can obtain the solution of the initial equa-
tion Ax = b. Our sources on Gauß elimination are [Golub and Van Loan, , Sauer, , Cheney
and Kincaid, , Quarteroni et al.,]. However, while the method and presentation are the same,
our goals and arithmetic differ. Golub and Van Loan present a classic work in numerical linear algebra.
ey compute in floating point arithmetic, which is inexact. Our approach is to use a residue class
arithmetic. It is exact—up to a certain bound. (e bound is not a problem, if we can estimate it
a priori and scale the arithmetic accordingly.) Hence, the theory of numerical computing, like error
analysis for floating point arithmetic, is not applicable here. Even the complexity analysis is different
andmore complicated, as we infer from [von zur Gathen and Gerhard,]. eGauß elimination is
cubic in its elementary operations. Unfortunately, it is not given, that the complexity of an elementary
operation is constant in time.

e implementation idea of Gauß elimination is simple: we subtract multiples of one matrix
column from another one to obtain zeroes beneath the matrix diagonal. We use determinant com-
putation via Gauß elimination as a test for our arithmetic. However, contrary to common approaches,
we perform the exact computation. e input matrix is filled with fractions, the determinant is also
fractional.

e implementation. We implement Gauß elimination in pure Haskell, without any parallel con-
structs. It is implemented symbolically, using Haskell type classes, as

gauss :: (Num a, Fractional a) ⇒ MatArr Int a → MatArr Int a

Recapitulate from Chapter that MatArr i x is the array-based matrix representation with indices of
type i and matrix elements of type x. With such implementation, it is completely irrelevant over what
the matrix operates, as long as we can perform divisions in x plausibly. We show the full source code
of the sequential Gauß elimination in Figure ..

We need to use some kind of a residue arithmetic anyway. e problem of the symbolical Gauß
elimination is the intermediate expression swell [von zur Gathen and Gerhard,]. Imagine, we
transform a matrix A. We are in i step and process currently the j row. So, we divide ai j by aii .
Let the former be x/y and the latter z/t. en the new value at ai j is a′i j =

xt
yz . e Farey measure

(cf. Definition .) of the new value can be larger, than the sumof themeasures for both input elements.

164 Chapter . Data Parallel Arithmetic

e actual growth of the intermediate expressions is polynomial [Edmonds, , Bareiss,], but
still quite large, see, e.g., [Lobachev, a] for some numeric examples.

e parallelism arises through the usage of multiple-residue arithmetic. Gauß elimination as such
is quite indifferent towhetherwe use one residue class, ormultiple. e only change is in the complexity.
Von zur Gathen and Gerhard [] state the complexity of the determinant computation for n × n
integer matrix with largest entry ≤ B using correspondingly prescaled single-residue class as O(n3 ⋅
n2(log n + logB)2). With the fast integer multiplication (see Chapter) this bound can be relaxed to
power of four with some logarithmic factors. ese results differ from our customary O(n3) for the
constant-time arithmetic! e authors ofModern Computer Algebra imply here the case, where a single
operation in the arithmetic is more complex than that—as the ‘big’ residue class’ implementation has
to deal with arbitrary precision integers. e complexity is also different formultiple larger primes, see
[von zur Gathen and Gerhard,]. However, for p ‘small’ primes, fitting in the hardware integers,
the single operation complexity is constant, because the hardware integers are bounded by 264 for
bit hardware. With this approach the complexity is reduced toO(pn3).

Summarising, p residue classes need to work simultaneously. ey do not depend on each other,
until the computation is finished. So, we can just use a parMap to obtain a parallel version of the same
computation.

.. Determinant Computation

Definition. Aside from solving linear equation systems, themost prominent use ofGauß elimination
is the computation of the determinant. Such computation can be seen as a mapping det ∶ Rn×n → R,
for some commutative ring with unity R. We call the result of applying det to some matrix A the
determinant of A, in sign detA. e determinant can be defined basing on its properties, see e.g.,
[Lang, , Cullen,]. We embark the other way and present a recursive definition. It is called
Laplace’s determinant expansion by minors, aer Pierre-Simon de Laplace, *.., †... e
i minor of a square matrix A is a submatrix, consisting of all rows of A except the first one and all
columns of A except the i. To be more precise, for the n × n matrix

A =
⎛
⎜⎜⎜
⎝

a11 a12 . . . a1i . . . a1n
a21 a22 . . . a2i . . . a2n
⋮ ⋱ ⋱ ⋮
an1 an2 . . . ani . . . ann

⎞
⎟⎟⎟
⎠
,

the i minor, in sign: A(i), is

A(i) =
⎛
⎜
⎝

a21 a22 . . . a2,i−1 a2,i+1 . . . a2n
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
an1 an2 . . . an,i−1 an,i+1 . . . ann

⎞
⎟
⎠
.

Now, we can write

detA =
n
∑
i=1
(−1)i−1 detA(i).

With the determinant of 1 × 1 matrix being its sole element, we have obtained the recursive definition
of the determinant.

Special names. A square matrix with integer elements is called unimodular if its determinant is ±1.
An example with especially small entries would be

⎛
⎜
⎝

2 3 2
4 2 3
9 7 7

⎞
⎟
⎠
,

see [Guy,]. Any square matrix is called singular if its determinant is zero and non-singular oth-
erwise.

.. Parallelism 165

-- matrix!(j, k) selects a single element of the matrix

type Bound = ((Int, Int), (Int, Int))
gaussWorker :: (Num x, Fractional x)

⇒ (Int, Bound, MatArr Int x)
→ (Int, Bound, MatArr Int x)

gaussWorker (i, bound, matrix)
= let ((ln, lm), (n, m)) = bound

zs = [((j, k), makeEl i j k) ∣ j ∈ [i+1..n], k ∈ [i..n]]
makeY (i, j) = matrix!(j, i) / matrix!(i, i)
makeEl i j k = matrix!(j, k) - makeY(i, j) ∗ matrix!(i, k)

in (i+1, bound, matrix//zs)

gauss :: (Num x, Fractional x) ⇒ MatArr Int x → MatArr Int x
gauss matrix
= let b@((ln, lm), (n, m)) = bounds matrix

(_, _, result) = last $ take (n-ln+1)
$ iterate gaussWorker (ln, b, matrix)

in result

Figure .: Gauß elimination in Haskell.

Computing the determinant. Because of complexity issues, the determinants of larger matrices are
computed with a different method, namely with Gauß elimination. It produces two triagonal matrices
L and U, we can require the diagonal of L to consist of unities. It suffices to show two facts. Firstly,
the determinant of a product of the two compatible matrices is the product of their determinants.
Secondly, the determinant of a triagonal matrix is the product of its diagonal elements. We do not go
into detail here, but refer to [Lang, , Cullen,]. e first is connected to the multilinearity of
the determinant, one of its basic properties. We show a special version of the second fact below.

Lemma .. e determinant of an upper triagonal matrix U is the product of its diagonal elements.

Proof. e Laplace expansion produces the product in question already in the first term. All other
terms in the sum are products with determinants of singular matrices.

us, it suffices to compute the Gauß elimination and to multiply the diagonal elements of the U
matrix, to compute the determinant of the initial input. e sequential determinant computation can
be written as

det :: (Num x, Fractional x) ⇒ MatArr Int x → x
det = product ○ diag ○ gauss

with a trivial implementation of diag :: (Ix a, Num b) ⇒ MatArr a b → [b]. Our implement-
ation of gauss is depicted in Figure ., it is really straightforward. e function gauss has the type
(Num x, Fractional x) ⇒ MatArr Int x → MatArr Int x. In the definition of gaussWorker, the
binding zs is defined with a list comprehension. Basically, it can be read as a corresponding mathem-
atical set notation: ‘the list of pairs of a pair (j,k) and makeEl i j k for all i ∈ {i + 1, . . . , n} and
k ∈ {i , . . . , n}’. e library function iterate of type (a → a) → a → [a] produces lazily an infin-
ite list of applications of its parameter function to the previous result. In other words, iterate f x
results in [x, f x, f (f x), f (f (f x)),...]. We do not use pivoting in our implementation of
Gauß elimination.

Residue arithmetic and intermediate expression swell. e residue arithmetic fits our needs. If we
can supply an a priori bound on our final result, we can scale the residue size to be larger then the

166 Chapter . Data Parallel Arithmetic

gaussResidue :: (Integral a, Integral b)
⇒ Map a b -- ^ a map implementation
→ [a] -- ^ list of primes
→ MatArr Int (Fraction a) -- ^ input
→ MatArr Int (Maybe (Fraction a)) -- ^ output

gaussResidue myMap = lift1 myMap gauss
detResidue = product ○ diag ○ gaussResidue -- simplified

gaussResidueDiag :: (Integral a, Integral b)
⇒ Map a b -- ^ a map implementation
→ [a] -- ^ list of primes
→ MatArr Int (Fraction a) -- ^ input
→ [Maybe (Fraction a)] -- ^ diagonal of output

gaussResidueDiag myMap = lift1’ myMap gauss
-- this is a more complex implementation with even more lift1 magic

-- parallel implementation, two parallel invocations
detParMap, detFarm :: (Trans a, Trans b, Integral a, Integral b)

⇒ [a] -- ^ list of primes
→ MatArr Int (Fraction a) -- ^ input
→ [Maybe (Fraction a)] -- ^ diagonal of output

-- the instantiation is simple
detParMap = detResidueDiag parMap
detFarm = detResidueDiag farm

Figure .: Residue-based invocation of parallel Gauß elimination. Implementation of detResidue is
slightly simplified.

bound. us we guarantee our result to be exact. In many cases we can indeed supply such a bound.
An example is the determinant computation of a matrix. Looking at determinant computation via
Gauß elimination, we observe that the intermediate results grow faster, than the bound on the final
result does. Such growth is precisely the intermediate expression swell. A bound is provided by the
Hadamard inequality [Hadamard, , Brenner and Cummings,] for the matrices in Rn×n and
Zn×n. So, we can scale the arithmetic to compute the final result in an exact manner and do not care
that the intermediate results, which cannot be represented exactly.

In special cases, almost all of the intermediate results might be in the overflow zone. For instance,
if we test whether a matrix is not unimodular, we compute the determinant modulo 2. All unimod-
ular matrices have determinant of 1. But of course not every integer matrix with odd determinant is
unimodular! So, if the result is 0 mod 2, then the matrix is for sure not unimodular. If it is 1 mod 2,
we don’t know. So, we have obtained a correct result in a not unimodular case, without computing
exact (i.e., possibly large) values for any of the intermediate results absolutely larger than 1.

As for matrices over Q, we use here some special matrices with known values of the determinant.

.. Technical Details of Implementation

In order to be able to distribute the data parallel tasks across the PEs, we need to rotate the hypercube,
being matrix over a list of the fractional residue classes—we need a list of matrices. Another issue,
arising in the actual implementation was connected with arrays. ey are not very suitable for data
transmission in the current Eden implementation. us, we needed to convert all matrices to a special
transport type TransMat, being essentially a stream. Future Eden implementations might enable this
by allowing special, user-craed instances of Trans type class. en we would specify the ‘send’ and
‘receive’ operations there and the transformations of a matrix to a stream and vice versa would be
hidden from the application programmer. Currently we base our work on a more stable specification

.. Parallelism 167

type TransMat i n = ((i, i), [n])
type SparseDiagMat i n = ((i, i), [((i, i), n)])

toL :: (Ix i, Num n) ⇒ MatArr i n → TransMat i n
fromL :: (Ix i, Num i, Num n) ⇒ TransMat i n → MatArr i n

toSD :: (Ix i, Num n) ⇒ MatArr i n → SparseDiagMat i n
fromSD :: (Ix i, Num i, Num n) ⇒ SparseDiagMat i n → MatArr i (Maybe n)

liftL :: (Ix i, Num i, Num n)
⇒ (MatArr i n → MatArr i n) → TransMat i n → TransMat i n

liftL f = toL ○ f ○ fromL

liftLS :: (Ix i, Num i, Num n)
⇒ (MatArr i n → MatArr i n) → TransMat i n → SparseDiagMat i n

liftLS = toSD ○ f ○ fromL

toResiduePrimes :: (Ix i, Integral n)
⇒ [n] → MatArr i (Fraction n) → [MatArr i (FSingleMod n)]

fromResidueMaybe :: (Ix i, Integral n)
⇒ [MatArr i (FSingleMod n)] → MatArr i (Maybe (Fraction n))

-- a map implementation / working function / primes / input value
-- lift1 :: Map a b → (c → d) → [n] → m1 → m2
lift1 mymap f = fromResidueMaybe ○ map fromL ○ mymap (liftL f)

○ map toL ○ toResiduePrimes

Figure .: e function lift1 and supporting code signatures. We omit technical details here.

of Trans (cf. Figure . on page), which firstly, makes the definition of receive quite cumbersome,
and secondly effectively disallows definitions of user Trans instances, i.e., of Trans instances outside
Eden module. Hence, we stick with the older approach here. ese are the main reasons to designate
the function lift1 and its derivatives. As we would like to specify different parallel map implement-
ations as a parameter, the same higher-order function lift1 is used also for this purpose. A quite
performance boost resulted from the two following design decisions.

• Do not send unneeded data. We have implemented a special transmission data type for diagonal
matrices. We take the diagonal of the transformed matrix before the communication takes place,
thus majorly reducing communication bottleneck in the direction ‘workers to master’.

• List chunking. is issue is very technical. Supporting Eden library defines list communication
in form of streams, where each list element is sent separately. is is inefficient for large lists. A
common solution to this problem is list chunking—we reduce a list to a nested list for the sake
of communication, thus we send multiple list elements in a single message. Our experiments
have shown that chunking size of elements provides best results in this particular case.

We have implemented the higher-order function lift1’, an improved version of lift1 with these
requirements in mind. We show an abridged implementation of lift1 in Figure .. e full imple-
mentation of lift1’ is is theAppendix, see Section B.. e special transport type TransMat serves the
transport issue of arrays, discussed above. e type SparseDiagMat is a special type for transmitting
only a diagonal of a matrix as a sparse list. e function lift1’ uses the latter type. e parallelisation
of Zβ is similar. It is just as data parallel as Wβ is.

168 Chapter . Data Parallel Arithmetic

Figure .: Plot of the 20 × 20 permutation matrix.

0.5 1.0 1.5 2.0 2.5 3.0 3.5

P8:1
P7:1
P6:1
P5:1
P4:1
P3:1
P2:1
P1:2
P1:1

Figure .: e trace diagram for Gauß elimination.

.. Test Results

An n Pascal matrix P of dimension n × n is defined as a pi j = (i+ ji) for 1 ≤ i , j ≤ n. We have imple-
mented distributed determinant computation of permuted, scaled with 1⁄3 Pascal matrices, using the
above approach. e permutation matrix is shown in Figure . for n = 20. A black pixel represents
a unity, a white pixel represents zero. e determinant of a permutation matrix is ±1, a Pascal matrix
is unimodular. us the final result of the computation is always known: ±1/3n. e arithmetic of
a right scale always performed correctly in our tests. e visualisation of the parallel program execu-
tion trace is depicted in Figure .. e program was run on sakania, it was compiled with GHC
.. e input was the 100 × 100 permuted scaled Pascal matrix, as discussed above. We used an
optimised lift1’ implementation, sending back only a diagonal. Eight primes of size 104 were used.
e chunking size was , i.e., the size of a matrix side. e first . seconds of the program execu-
tion are taken for the generation of the input matrix. We do not consider this time in our speedup
measurements, as we assume the matrix as given in our tests. We see that processes are created at the
same time, but the processes begin working at slightly different times: .–. seconds. e reason is
the communication overhead. We need to communicate ten thousand matrix elements to each of the
workers. Even in chunks of , this counts up to messages to be sent from the master. anks to
the residue arithmetic, each process has to perform roughly the same amount of work. But because of
some inconsistency with startup time, the workers have the same inconsistency with termination time.
is unsteadiness is seen at .–. seconds. Overall we see a typical data parallel computing pattern.
e data communication is quite a bottleneck, especially the input part. However, when having all the
data, the processes work steadily and independently, until done.

.. Performance Estimation

Basing on our approach from Chapter , we perform an estimation of the execution times of our paral-
lel residual implementation of Gauß elimination. is is similar to what we have shown in [Lobachev
and Loogen, c] for an earlier version of the implementation. One of themajor differences between
the following and said work is that current implementation uses a new bit Eden compiler.

We measure the time needed to compute the LU decomposition of a permuted scaled n× n Pascal
matrix modulo r primes. e program has been parallelised using the simple farm skeleton with the

.. Parallelism 169

n 10 20 30 40 50 60 70 80 90 100 120 150

T(n) 0.02 0.13 0.39 0.82 1.48 2.44 3.76 5.50 8.07 11.03 19.14 38.36
T(n, 8) 0.02 0.06 0.14 0.29 0.51 0.79 1.18 1.75 2.39 3.48 5.74 10.55

Table .: Execution times for Gauß elimination of n × n permuted scaled Pascal matrices on sakania.
e bold values will be estimated w.r.t. input size n, the framed value will be estimated w.r.t. number
of PE p.

20 40 60 80 100 120 140

0
10

20
30

40

Predicting sequential time

Input size

Ti
m

e,
 s

ec
on

ds

observed values
spline
loess
lm(poly)
lm(poly) up to n=90

20 40 60 80 100 120 140

0
1

2
3

4
5

Predicting parallel overhead

Input size

B
(n
,p
)

observed values
spline
loess
lm(poly)
lm(poly) up to n=90
mean

Rel. error for n = 120
Method Rel. err., %

spline −14.71
loess −1.90

lm(poly) 1.28
lm(poly) w. 2.13n ≤ 90

Rel. error for n = 120
Method Rel. err., %

spline 99.38
loess 10.52

lm(poly) 9.88
mean −1.13

lm(poly) w. −12.14n ≤ 90

Figure .: Gauß elimination. Predicting sequential run time (top le) and parallel penalty values w.
r.t. n (top right) for n = 120, 150. e bottom parts show the corresponding relative errors.

input list of size r, as themap is done over the different residue classes [Lobachev and Loogen, a,b].
is means #β = r.

In our setting, r corresponds to the total number of PEs, here: r = 8. Note that this is not the
optimal way to parallelise this program for p < 8. When we have more processes than PEs, multiple
processes will be executed by the same PE. is causes an imbalance when the processes cannot be
evenly distributed to PEs, i.e., when is not a multiple of the number of PEs. us, the , and
 PE configurations should perform best. In this and next section we will see more details on this,
including how to obtain the same information with our approach.

Estimating the execution time w.r.t. n. Table . shows the measured times. e values are stated
in seconds, rounded up to two digits aer decimal dot. We have measured the execution times on
eight PE and estimate the parallel time also on eight PE, but for larger input sizes. e data points for
n = 120 and 150 are not known to the estimation routines. Figure ., le, shows the estimation of the
sequential runtime T(n). e same figure, right, shows the estimation of B(n, p) w.r.t. n. With mean
we denote the mean of lm(poly) and of lm(poly), restricted to n ≤ 90. e reason for this decision is a

170 Chapter . Data Parallel Arithmetic

PEs, p 1 2 3 4 5 6 7 8

Full rounds 8 4 2 2 1 1 1 1
Remaining tasks 0 0 2 0 3 2 1 0

Total rounds 8 4 3 2 2 2 2 1
Unused PEs 0 0 1 0 2 4 6 0
Slack-off, % 0 0 33.3 0 40 66.6 85.7 0

Table .: Task distribution in the discussed implementation of Gauß elimination.

small increase of B(n, p) at n = 100, which misleads multiple methods. We also used the restricted
version of lm(poly) for T(n), but with no reassuring result.

Now, as can be seen in the figures, we have the best method for estimating B—mean—and the best
method for estimating T(n)—lm(poly). Note that we can disregard spline in both cases for its very
poor performance. Combined, we can apply equation (.) and obtain the complete time estimation.
We obtain an estimate T(120, 8) = 5.736 seconds, which corresponds to the appropriate value 5.743
up to the relative error −0.125%.

Estimating the execution time w.r.t. p. In the previous example we have assumed, there was the
possibility to measure time on a eight PE machine, but no one had run the test program for the input
size or . Now we do the converse: assume, we have measurements for task size on smaller
PE numbers, but do not have a machine with seven PEs to measure time there. We choose , not
 PE because of the task distribution issues in our program. We have tasks, which are distributed
evenly to PEs. For p = 8 this special case is not connected with and PE configurations. We could
use only the special cases, but then we would not have enough data points for most of our methods, as
we perform our measurements on an PE machine. Still, see ‘lm w. special’ estimation in Figure .
for this approach.

All other approaches target p = 7. In Figure . we see, that it is quite hard to predict B(n, p) w.
r.t. p correctly. To enable a better insight, we have separated the available values (p ≤ 6) from values-
to-estimate (p = 7, 8) with a straight line. Somewhat bearable results were produced by loess. e best
method was lm. We used it with all the values from to as ‘lm w. all’. So we use these data from
the estimation of B(n, p) w.r.t. p and the already measured T(100) to predict the parallel execution
time. We obtain an estimate T̂(100, 7) = 4.369 seconds, which is 1.838% accurate. e measured
value is 4.290. Now, using lm for B̂(100, 8), based only on data for p = 2, 4 (‘lm w. special’), we obtain
T̂(100, 8) = 3.531. is result shows 1.361% relative error, compared to the measured value.

We see, that it is possible to estimate the parallel runtime both w.r.t. task size andw.r.t. the number
of PEs with significant accuracy.

.. Parallelisation Quality

e plot of B(n, p) w.r.t. p in Figure . reveals some information on the performance quality of
our implementation. We demand eight residue classes, regardless the number of PEs. us, some
task imbalance ensues. To see it more clearly, we plot B(n, p) w.r.t. p alongside with serial fraction
f (n, p), w.r. t. p in Figure .. e corresponding speedup graph (not the best speedup!) is shown in
Figure . e latter plot displays speedup for n = 100, while best measured speedup of . was for
n = 150 on PEs.

Let us discuss the both quality measures in Figure .. e corresponding speedup plot is in
Figure .. We see that both the parallel penalty w.r.t. number of processors (in the top part of the
figure) and the serial fraction (bottom part) decrease at four and eight PE. Both approaches agree at
– PE: these configurations are regarded as quite bad. A quick glimpse on the speedup in Figure .
confirms this. However, parallel overhead graph deems seven PE version as worst, while serial fraction
shows the PE version as such. Also, the value of the serial fraction is large at two PE, but this is a

.. Parallelism 171

1 2 3 4 5 6 7 8

1.
5

2.
0

2.
5

3.
0

PEs

B
(n
,p
)

observed values
special values
spline
loess
lm(poly)
lm
lm for special values

Relative error
Method spline loess lm(poly) lm w. all lm w. special
PEs, p 7 7 7 7 8

Rel. err., % −28.64 5.78 30.24 2.90 2.25

Figure .: Gauß elimination. Estimation of penalty values w.r.t. p. We fix n = 100 and predict the
values for p = 7, 8 using the values for p ≤ 6.

1 2 3 4 5 6 7 8

1.
4
1.
8
2.
2
2.
6

B
(n
,p
)

parallel pentalty
special cases

1 2 3 4 5 6 7 8

0.
22

0.
26

PEs

f(n
,p
)

serial fraction

Figure .: Parallel penalty (top) and serial fraction (bottom) for Gauß elimination.

borderline effect, as serial fraction is not defined for a single PE. Continuing with the serial fraction:
it decreases between and PE, which would be a sign for a bad sequential version, but the function
increases again between and PE. is means that serial fraction designates the four PE version as
preferable for a particular reason. We see the same for eight PE. As for the parallel penalty, it shows the
same issues for and PE, but in the range between one and four PE the shape of this function is very
different from serial fraction. e parallel overhead increases slightly in said interval, but it decreases
again at four PE. Our interpretation: and PE versions are better than the PE version. From to
 PE, the shape of parallel penalty function is similar to the serial fraction, with the exception of the
maximum, which is here at seven PE. Note, however, that the values for , and PE are almost on a
straight line. is can also be confirmed by ‘lm w. special’ estimation in Figure ..

172 Chapter . Data Parallel Arithmetic

1 2 3 4 5 6 7 8

1.
0

1.
5

2.
0

2.
5

3.
0

PEs

S
pe
ed
up

observed speedup
linear speedup

Figure .: A corresponding speedup plot for Figure ..

Some reasons for the shape of the curves in Figure . are uncovered in Table .. As we already
did before, we compute the task distribution across the PEs. Important for us here is the last row of
the table. e ‘slack-off ’ is the coefficient of unused PEs in the last round and total number of PEs.
Note that this table is similar to Table ., as we have here equal tasks on the same number of PE.
We see that for , , and PE the task balancing is perfect. is was the reason in separating them,
with the exception of the single PE case, as ‘special cases’. As Figure . reveals, these data points
are too few for a non-linear estimation, but provide a good result (.% relative error) when using
lm estimation method. Further, ‘slack-offs’ for and PE are especially high, with PE having the
maximal ‘slack-off ’. is corresponds to our interpretation of Figure .. Note that only the parallel
penalty correctly identified the configuration with maximal ‘slack-off ’. e serial fraction pointed out
the wrong configuration. For p > 2 the configurations with minimal ‘slack-off ’ values were clearly
visible with both performance measures. e fact, that two PE version also has zero ‘slack-off ’, was not
visible, when using serial fraction, because of the construction properties of the latter. Additionally,
another reason for bad parallel performance is the communication overhead from master to workers.
It is quite high: we need to communicate 104 matrix elements to each worker.

We conclude that in this case our ‘parallel penalty’ approach was more exact and informative than
the serial fraction.

. Related Work

.. Comparison with Maple

We compare our parallel implementation from above with the reference soware: Maple [Redfern,
, Monagan et al.,]. We neither implemented a rational single- or multiple-residue arithmetic
inMaple, nor arewe aware of a such implementation. Instead, we compute the determinant of the same
matrix using exact rational arithmetic and the determinant of the unscaled² integer matrix using small
single-residue arithmetic, available inMaple. is is actually very helpful forMaple, as the integer case
is much ‘easier’. We will return to the computational difference between the determinant of matrices
over integers and over fractions in the next section. Like in the Eden case, the time measurement is
incorporated in the soware itself, we do not measure the time to generate the matrix. We run all
applications on the same hardware, namely sakania.

²e reason to scale the input matrix with 1⁄3 was to obtain a matrix over fractions with sustainably large known determ-
inant. Lacking a rational residual implementation in Maple, we use an integer matrix for our tests. Still, up to the scaling it
is the same matrix.

.. Related Work 173

n 10 50 70 100

our approach, Wβ 0.02 0.51 1.18 3.48
Maple, Q 0.002 0.175 0.60 2.0

Table .: Comparison of our approach with Maple using permuted Pascal matrices. e computation
in Wβ uses scaled matrices for the input to be rational. Time is in seconds.

In
te
ge

rs
Maple method

n default Q Zm

100 0.07 4.9 0.012
300 2.2 494 0.018

1000 325 – 0.75

Speedup
n s̄ ŝ

100 5.8 408
300 122 27 378

1000 433 –

Table .: Determinants of integer random sparsematrices. ComparingMaplemethods and stating upper
bound on the speedups. Time is in seconds.

e results are depicted in Table .. We see that our Eden implementation is less than a factor
of two slower than optimised Maple implementation with standard fractions. Still, we would like
to emphasise further qualities of our implementation. We implemented LU factorisation in a very
straightforward manner. e high-level features of Haskell allowed us to write down an implementa-
tion, which is quite similar to the algorithmic definition of the LU factorisation. It was quite efficient.
us we see, that high-level programming is a reasonable engineering technique. It is still possible to
tune and to improve our implementation. In a contrast, Maple implementation is highly optimised.
e linear algebra package in Maple was recently completely re-engineered. It is not possible to us to
‘look inside’ the closed-sourced implementation. Despite all the community efforts, e.g., [Siegl, ,
Martínez and Peña, , SCIEnce,], it is very hard to utilise many cores for such tasks in Maple.
eMaple implementation, available to us, used only one core for the determinant computation. Note
that the time for the single residue-based computation in Maple is very low. Hence, solely the ability
to compute the same result with a residue arithmetic would be a major advantage for Maple. is
issue, combined with a possibility to execute the arithmetic in parallel on many cores, would produce
very high speedups, compared with the traditional implementations of the rational arithmetic. e
reason for such improvement is reduced computational complexity, as described in [von zur Gathen
and Gerhard,]. We consider this issue next.

.. Speedups

For the current Eden implementationwe obtain absolute speedup of . on sakania, using eight cores
and n = 150. e previous, bit version, described in [Lobachev and Loogen, a,b], resulted in the
relative speedup of . and the absolute speedup . on the same machine. A parallel sparse Gauß
elimination with parallel pivoting [Demmel et al.,] produces for dense matrix input the speedup
of ≈ 3.5 on PE Cray C and ≈ 5 on PE DEC AlphaServer . Still for special sparse inputs
the same algorithm on the latter machine achieves speedup of ≈ 7. Noteworthy, Demmel et al. []
describe an SMP implementation. Our approach works in a distributed memory setting.

As a further indicator of possible benefit, we compute in Maple

• Determinants of larger sparse random-generated matrices with density 1⁄2 over small (absolute
value < 1000) integers using default, rational and residue-based implementations of built-in
Maple function Determinant. We show the result in Table ..

• Determinants of middle-sized dense random-generated matrices over small fractions. e max-
imal absolute value of numerator and denominator is < 100. Again, we used the methods of the

174 Chapter . Data Parallel Arithmetic

Fr
ac

tio
ns

Maple method
n default (Q) algnum Zm float

50 2.03 5.98 – 0.001
100 84.66 98.38 0.002 0.003
120 176.21 229.19 0.004 0.004

Speedup
n s̄ s̃

50 – –
100 42 330 49 190
120 44 052 57 297

Table .: Determinants of rational random dense matrices. Comparing Maple methods and stating
upper bound on the speedups. Time is in seconds.

Determinant function. We show the result in Table .. We have shown this experiment for
n = 100 in the introduction.

e residue-based approach measures time for one residue class at m = 1013. Note that the timings for
the same matrix size differ for vulgar fraction computation in Tables ., . and .. e reason is: we
compute over different rings with different matrices. Table . features permuted Pascal matrices, they
are dense, in theMaple version thesematrices are over integers. Maple seems to figure out the structure
of thesematrices. In Table .we present timings for random sparse integermatrices. Table . features
dense random rational matrices. e method algnum computes over the field of algebraic numbers.
e method float uses floating point approximations to the rationals. Contrarily to the methods, we
present here, the float method is the classical result from numeric computing. It does not provide
exact results. We see its performance is comparable with the performance of the residue-basedmethod.
e values at s̄ are the best possible speedup of default method, values at ŝ show the best possible
speedup of the rational method for integer matrices, and values at s̃ show the best possible speedup
of the algnum method for the rational matrices, all provided ideal scalability of the multiple-residue
arithmetic. Note that residue-based computation promises exceptional speedup values! ese values
assume that computing p residues at p PEs takes as long as computing one residue at a single PE and
thatwe have asmany PEs aswe need. Hence, this is themaximal possible speedup in the particular case.
e enormous speedups of the rational determinant computation (Table .) are explained with the
intermediate expression swell. Of course, practically measured values may and will vary. We have only
modelled a proper multiple-residue rational arithmetic with its single-residue integral counterpart.
Still, we see a huge potential for using a multiple-residue arithmetic for rational computations.

.. Further Related Work

Any decent computer algebra system implements residue-based approach for reducing the interme-
diate expression swell. A lot of work on rational residue systems was done in [Gregory and Krish-
namurthy,] and preceding papers [Gregory, , Wang, , Wang et al., , Kornerup and
Gregory, , Rao et al.,]. Another proof of eorem . is in [Sasaki and Sasaki,], Sa-
saki et al. [] state an alternative divide and conquer algorithm. e earliest approaches to rational
residues known to us are [Svoboda andValach,] and [Borosh and Fraenkel,]. Our ownworks
on this topic are [Lobachev, , a, Lobachev and Loogen, a,b]. We discussed [Kornerup and
Matula,] in the introduction to this chapter. It is a new book, mentioning the topic of this chapter
among others. e connections of the integer case with polynomials are shown in [von zur Gathen
and Gerhard,]. ese include the link between rational reconstruction and Padè approximation
and the correspondence of CRT and polynomial interpolation. e latter leads to a further proof of the
CRT, which we learnt in [Sauer,]. A parallel Haskell implementation of integer multiple-residue
arithmetic is [Loidl,].

Another approach to the same goal is the residual representation of rational numbers with Hensel
codes, see, e.g., [Kornerup and Gregory, , Rao et al., , Koblitz, , Buchberger et al., ,
Zarowski and Card, , Limongelli,]. Morrison [] features a parallel rational arithmetic
based on Hensel codes. For Hensel liing of polynomial equations, where representations modulo
pk , for prime p, are used, see [Koblitz, , von zur Gathen and Gerhard, , Grabmeier et al.,

.. Conclusions and Future Work 175

]. It is oen called the ‘p-adic Newton lemma’. Contrary to this approach, we remain in multiple
representationsmodulo several distinctmi and do not compute in residual powers. BothHensel codes
and Hensel liing are called so aer Kurt Hensel, *.., †...

. Conclusions and Future Work

We have presented an integer and a rational multiple-residue arithmetic approaches and their parallel
implementation in Eden. We constructed a test case, provided the visualisation and the performance
estimation of the test program execution. We have presented concise source code for almost all oper-
ations. e omitted parts are straightforward.

Our approach to the rational multiple-residue arithmetic removes in an innovative manner the
common factors of input fraction’s numerator and denominator with the moduli, i.e., the primes,
modulo which the computation is performed. We deduced this method in and presented it in
[Lobachev,], See [Lobachev and Loogen, a,b, Lobachev, a] for details.

e transformations to the integral and rational data parallel arithmetic were deduced mathemat-
ically. e presented methods form a generic data parallelisation scheme, suitable for symbolic com-
puting algorithms. e only additional requirement is an a priori upper bound on the final result.
e presented scheme can be applied to an arbitrary method, requiring an exact computation with a
known bound on the final result, be it with integers or with fractions. In other words: we provided an
alternative high-level approach to parallelism.

Possible future work would be an attempt for an adaptive computation. It would be interesting
to see a Maple implementation of our approach. Another research direction would be to optimise
the hypercube rotation from Section ... A distributed implementation, based on the remote data
concept [Dieterle et al., b] should improve the speedup values of our implementation. Although
it is possible to parallelise Algorithm , we currently refrain from doing so. e reconstruction of
integer values modulo M occupies only a tiny fraction of the execution time in our setting.

It would be interesting to apply the parallelisation approach of this chapter to further algorithms
of computer algebra. As we already know, the GCD computation for particular polynomials can be
heavily optimised with multiple-residue integer arithmetic, see, e.g., [von zur Gathen and Gerhard,
]. We plan to apply this scheme to Gröbner bases computation, related approaches are [Ebert,
, Buchberger et al., , Winkler, , Arnold, , Idrees et al.,].

C

CONCLUS IONS , FUTURE , AND RELATED WORK

L
 close this work with some final remarks. We begin with enumerating our contri-
butions. Below we will also present the related and future work. Computer algebra is a
relatively new field of computational mathematics. It utilises computationally intensive
algorithms that benefit greatly from parallelisation. We performed high-level parallelisa-

tion with algorithmic skeletons and transformations to data parallel algorithms, and we parallelised
a meaningful selection of computer algebra algorithms. We chose the Eden language for the parallel
implementation. We focused on core algorithms of symbolic computation. We have presented suit-
able algorithmic skeletons (and further techniques) and have found a way to ensure portability of our
results to larger scales and input sizes. We used existing and developed new measures to verify effi-
ciency of the programs developed in this thesis. Based on our results we can conclude that high-level
parallelisation of core computer algebra algorithms is indeed effective. We summarise below the main
contributions of this thesis.

. Contributions

We have used type classes to express ad-hoc polymorphism of symbolic computation. We developed
algorithmic skeletons for high-level parallelisation of important computer algebra algorithms. Wewere
the first to develop alternative rational arithmetic for generic high-level parallelisation of computations.
We made a test study of high-level actors implementation in Eden: a first actors’ implementation in
Eden to our knowledge. Novel techniques using statistical methods for performance estimation and
evaluation were introduced in this thesis. To be more elaborate:

• We have discussed some language design aspects of computer algebra systems in Chapter . We
introduced the term ‘language unity’ for computer algebra systems having the same language
in their implementation and interface parts. is chapter shares material with [Lobachev and
Loogen,] and facilitates the work in the remaining chapters. To our knowledge we are the
first ones to emphasise the importance of language unity. [Bauer et al.,] and [Mechveliani,
a] made similar decisions, but did not highlight the language unity and did not emphasise
its importance.

• Chapter presented the programming language foundation of this work: the parallel functional
programming language Eden [Loogen et al.,]. We have also presented existing algorithmic
skeletons and tools for the analysis of parallel program execution.

• In Chapter we have deduced a generic approach to estimate execution time of parallel pro-
grams. We employed statistical methods and an ingenious separation of the specific parts of the
parallel computing time to be able to predict the execution time for non-measured input sizes
and for non-measured numbers of processors. We have used the estimation and evaluation
methods from Chapter throughout this thesis. We have estimated execution times of our par-
allel programs and compared the results with the observed values. Additionally, we found the
measure ‘parallel overhead w.r.t. the number of processing elements’ to show effectively the
quality of the parallel implementation. We have used our new quality measure and the serial
fraction [Karp and Flatt,] to ensure parallelisation quality of our programs. Our approach
provided uswith some very interesting insights into the details of the parallelisations in question.
Possible reasons for particular values of the parallel penalty ranged from non-perfect task distri-
bution to communication overhead. We applied our methods to some examples in Chapter .
We presented an example in Eden, and an example using time measurements on Jülich Blue

178 Chapter . Conclusions, Future, and Related Work

Gene/P supercomputer. We have additionally performed theoretical analysis of task distribu-
tion for computation on a supercomputer. e approach of this chapter has been first presented
in [Lobachev and Loogen, c]. A journal publication on the same topic was submitted to the
International Journal of Parallel Programming.
e usage of statistical methods and the suggested division of parallel program time are our
original research.

• We have developed a generic map+reduce skeleton scheme for repeated computations with a
possibility of premature termination. It was especially easy to implement this scheme in Eden.
Laziness played an important role in our elegant implementation. Using the instantiations of
map+reduce: the skeletons farm+reduce and workpool+reduce, we have implemented the par-
allel Rabin–Miller and the parallel Jacobi sum tests in Chapter . is resulted in a complete
toolchain for fast (i.e., probabilistic) primality testing. We have performed estimations of execu-
tion time of both parallel tests. We analysed task balancing issues in the parallel Rabin–Miller
test and made successful predictions for optimal configurations. We introduced optimisations
for task balancing in the parallel implementation of the Jacobi sum test. We predicted the run
times of both tests with low relative error.
We are not aware neither of the map+reduce scheme nor of the parallelisation of Jacobi sum test
having been presented before. Parallelisation of the Rabin–Miller test is quite straightforward,
however, we have not seen a parallel high-level approach towards such a parallelisation in literat-
ure. We have submitted an article on our parallelisation scheme to the special issue onmulticore
programming in International Journal of of High Performance Computing and Networking.

• Chapter dealt with fast multiplication in its various forms. We have implemented the divide
and conquer skeletons for both distributed and flat expansion of the divide and conquer tree.
We instantiated these skeletons with Karatsuba multiplication, the fast Fourier transform (FFT),
and Strassen matrix multiplication [von zur Gathen and Gerhard,]. e FFT was also
implemented with the distributable homomorphism approach [Gorlatch, a]. We experi-
mented with numerous parallelisation approaches for divide and conquer algorithms with very
low expense on the programmer’s side because of themodularity of the skeleton-based approach.
Existing skeletons in the same class are drop-in replacements for one another.
We made an observation concerning applicability of the direct divide and conquer implementa-
tion of the parallel FFT. us we have seen both the interchangeability of algorithmic skeletons
(‘the skeleton divConFlat works everywhere!’) and their limits. e quality of our parallel im-
plementations was quantitatively evaluated in this thesis. We explained the performance of our
implementation of Strassen multiplication with theoretical task distribution analysis. Its results
were supported by practical observation of the parallel penalty values.
In Section . we implemented a divide and conquer skeleton using actors [Hewitt et al., ,
Agha, , Haller and Odersky, ,]. We modelled them in Eden with lazy streams
[Wray andFairbairn,], a farm skeleton andpatternmatching. In a sense, such an approach is
similar to task creating farm, viz. [Priebe, , Brown and Hammond,]. Note, we utilised
a skeleton to implement this approach, resulting in another skeleton.
We used the fast Fourier transform to implement fast multiplication of polynomials with bound-
ed coefficients inZ. e latter approach and the Karatsubamultiplication of polynomials corres-
pond directly with approaches for integer multiplication. Chapter shares material with [Ber-
thold et al., a,b,c]. ese papers introduced new, more special divide and conquer skeletons
to Eden. Summarising, we have shown approaches to the fast multiplication of three different
basic mathematical structures. We utilised our prediction methods to estimate the execution
times. e results had small relative errors for Strassen multiplication and FFT and extremely
small for Karatsuba method: 0.025%.

• Chapter presented our novel approach to data parallel rational arithmetic. We used multiple
residue classes. Special attention was paid to the common factors of numerator or denominator

.. Contributions 179

with the moduli—the numbers modulo which the congruence relation is constructed. We have
introduced a method to remove all such common factors and to ensure the feasibility of a ra-
tional multiple-residue arithmetic. We parallelised it naturally. e parallel integer arithmetic
was implemented as a byproduct. ese two arithmetic implementations can be applied to vari-
ous algorithms. ey enable easy parallelisation of various symbolic computation approaches,
provided an upper bound on the result can be stated. e same chapter presented test results
for parallelising Gauß elimination with the rational arithmetic. We used a farm skeleton in the
implementation of parallel Gauß elimination. We analysed the task balancing of this implement-
ation. We predicted its execution time using our methods with very small relative error. Our
presentation shares material with [Lobachev, , a, Lobachev and Loogen, a,b].

is chapter is different from the others in two aspects. Firstly, we introduced new algorithms
instead of the parallelisation of existing methods. Secondly, the parallelisation approach presen-
ted in Chapter forms a scheme for parallelisation of computer algebra algorithms. It is not an
algorithmic skeleton, but a further reusable approach towards easy parallelisation of computa-
tional algorithms in a data parallel manner.

e presented algorithms and suggested parallelisation approach of Chapter are results of our
long-term research that begun . Recent publications on similar topics, like [Arnold, ,
Idrees et al.,], only emphasise the importance of this research.

• We found some features of the parallel functional programming language Eden [Loogen et al.,
] very useful in the context of this thesis. We used laziness to express actors in Chapter ,
as mentioned above. We also used it in the implementation of the FFT and of the map+reduce
scheme. ese implementations can function also without laziness, but laziness accounts for
their elegance. Some further applications of laziness are, e.g., in [Loidl, , Hinze,]. We
presented an example, based on [McIlroy, ,], in Chapter .

e expressiveness of Haskell, which is the sequential base for Eden, was particularly useful in
the implementation of mathematical algorithms. To give an example, we were able to express
the FFT in just a few lines of code in Chapter ; the implementation of Rabin–Miller test was an
almost direct translation of the corresponding algorithm, see Chapter . Ad-hoc polymorphism
and type classes elegantlymade symbolic computing possible in our framework. We emphasised
these features in Chapters and . We made a use of Eden’s futures [Dieterle et al., b] in
Chapter .

Using the parallel functional lazy programming language Eden, we were able to express high-
level parallelisations in a concise and efficient manner. e language choice contributed signi-
ficantly to the programmer’s productivity that was required to produce results presented in this
work.

Summarising, we firstly developed new high-level parallelisation techniques applicable tomultiple
computer algebra problems; and secondly introduced andmaintained a certain qualitymeasure for the
performance of programs in question. We were able to predict the performance of our test programs
using a novel estimation method. Symbolic methods were the case studies for these results. us
we have shown, we can parallelise selected computer algebra algorithms effectively on a high level of
abstraction. e gained knowledge on the parallelisation is reusable through our estimation technique.

List of Publications

[Lobachev and Loogen,] O. Lobachev and R. Loogen. Towards an implementation of a com-
puter algebra system in a functional language. In S. Autexier, J. Campbell, J. Rubio, V. Sorge,
M. Suzuki, and F. Wiedijk, editors, Intelligent Computer Mathematics, LNAI , pages –.
AISC : International Conference on Artificial Intelligence and Symbolic Computation,
Springer-Verlag,

180 Chapter . Conclusions, Future, and Related Work

[Berthold et al., a] J. Berthold, M. Dieterle, O. Lobachev, and R. Loogen. Distributed Memory
Programming on Many-Cores – A Case Study Using Eden Divide-&-Conquer Skeletons. In
K.-E. Großpitsch, A. Henkersdorf, S. Uhrig, T. Ungerer, and J. Hähner, editors, Workshop on
Many-Cores at ARCS ’: ⁿ International Conference on Architecture of Computing Systems
, pages –. VDE-Verlag, a

[Berthold et al., b] J. Berthold,M. Dieterle, O. Lobachev, and R. Loogen. Parallel FFTwith Eden
skeletons. In V. Malyshkin, editor, PaCT : International Conference on Parallel Comput-
ing Technologies, LNCS , pages –. Springer-Verlag, b. Extended version in [Ber-
thold et al., c]

[Berthold et al., c] J. Berthold, M. Dieterle, O. Lobachev, and R. Loogen. Parallel FFT with Eden
skeletons. Technical Report bi-, Philipps-Universität Marburg, Fachbereich – Mathem-
atik und Informatik, c

[Lobachev and Loogen, a] O. Lobachev and R. Loogen. Implementing data parallel rational
multiple-residue arithmetic in Eden. In V. P. Gerdt, W. Koepf, E. W. Mayr, and E. H. Vorozht-
sov, editors, CASC’: Computer Algebra in Scientific Computing, LNCS , pages –.
Springer-Verlag, a. Extended and revised version in [Lobachev and Loogen, b]

[Lobachev and Loogen, b] O. Lobachev and R. Loogen. Implementing data parallel rational
multiple-residue arithmetic in Eden. Technical Report bi-, Fachbereich Mathematik und
Informatik der Philipps-Universität Marburg, b

[Lobachev and Loogen, c] O. Lobachev and R. Loogen. Estimating parallel performance, a skel-
eton-based approach. In Proceedings of International Workshop on High-level Parallel Pro-
gramming and Applications, pages –. ACM Press, c

[Lobachev, a] O. Lobachev. Multimodulare Arithmetik. Logos, Berlin, Germany, a. ISBN

[Lobachev et al.,] O. Lobachev, M. Guthe, and R. Loogen. Estimating parallel performance. In-
ternational Journal of Parallel Programming, . Submitted

[Lobachev, b] O. Lobachev. On an implementation of parallel computation skeletons with pre-
mature termination property. International Journal of High Performance Computing and Net-
working, b. Submitted to the Special Issue on Multicore Programming

. Related Work

We mention here the publications that are related to the whole concept of this thesis. Please see for
the related work sections in the individual chapters for a more detailed related work on an appropriate
topic.

Computer algebra systems. Any computer algebra system is related to our approach. emost popu-
lar general purpose ones are Maple [Redfern, , Monagan et al.,] and Mathematica [Wolfram,
,]. More special systems are GAP [GAP,], CoCoA [Capani and Niesi, , CoCoA,
], GiNaC [Bauer et al.,], Singular [Greuel et al., , Decker et al.,], PARI [Batut et al.,
], NTL [Shoup,], DISCRETA [Betten et al.,]. We also would like to mention LiDIA
[Biehl et al.,], KANT V [Daberkow et al.,], Macaulay [Eisenbud, , Grayson and Still-
man,], BiPolar [von zur Gathen and Gerhard,], see also [Grabmeier et al.,]. One of
the first computational approaches was [Williams,]. First systems were Macsyma (Maxima in
the open source variant) [Martin and Fateman,], Scratchpad (later: Axiom) [Griesmer and Jenks,
], Reduce [Hearn, ,], SACI (later SACLIB) [Buchberger et al.,], MuMath (later: De-
rive), see [Grabmeier et al.,]. Later, Axiom/Aldor [Jenks and Sutor, , Bronstein et al.,],
Magma [Bosma et al.,], MuPAD [Fuchssteiner,] emerged.

.. Related Work 181

.. Parallel Computer Algebra

We can divide existing parallel implementations of algorithms of computer algebra into few categories.
e first are SMP-based systems, typically using threads. ey feature a typical low-level parallelism
on multiprocessors. e second feature coarse-grained distributed memory parallelism. e third
interconnect existing systems. All of them focus on parallel computer algebra systems. e fourth
option is to examine particular algorithms. See below for related work on this issue.

reads and Co. MuPAD [Fuchssteiner, , Naundorf,], Macaulay [Eisenbud,], Can-
nes/Parcan [Gloor andMuller,], and PARSAC [Kuechlin,] included some parallel computing
features. In the first two cases, parallel processing relies completely on the shared memory setting. For
example, Macaulay features threads. PARSAC has threads and green threads, but it was also exten-
ded to distributed memory systems. PARSAC evolved from an SMP implementation to support of
distributed memory. Our approach functions both on distributed and shared memory machines. We
paid special attention to its very good performance in an SMP setting. In the PARSAC case, much
focus was also on algorithms, see, e.g., [Amrhein et al.,]. Cannes/Parcan was developed in C/C++

[Grabmeier et al.,]. It suffered from memory management issues. e differences of MuPAD,
Parcan, Macaulay, and PARSAC with our approach are twofold. Firstly, these are complete systems,
while we focus on a bundle of core algorithms. Secondly, these approaches focus on low-level parallel-
isation with threads. In a contrast, we consider high-level parallelisation approaches.

Distributed systems and special languages. KANT V is capable of running on a network of work-
stations [Grabmeier et al.,]. Independent computations can be managed in a master-worker
manner. We have used a similar approach in some parallelisations in this thesis. However, methods
like FFT or fast multiplication algorithms required a much more fine-grain handling of parallelism,
see Chapter . We have also seen in Chapter how large the differences can be in the duration of a
single task in a complicated number theoretical algorithm parallelised with a master-worker skeleton.

PACLIB [Schreiner and Hong, , Schreiner,] aimed for a parallel functional language for
computer algebra. is is surely related to our approach. However, Schreiner focuses much more on
a parallel language with constructs suitable for computer algebra implementation. We take such for
granted with Eden, and focus on parallelisation of computer algebra algorithms.

Orchestration. A quite recent move to forge an interface between various systems also having a par-
allelism option is SCIEnce Project [Hammond et al., , SCIEnce, , Brown andHammond, ,
Brown et al.,], see also ∥Maple∥ [Siegl,], Maple-Eden interface [Martínez and Peña,],
Distributed Maple [Schreiner et al.,]. ese are heterogeneous systems where the coordination
happens in a different language, than computation. Both [Martínez and Peña,] and [Brown and
Hammond,] use Eden as a coordination language. Siegl [] also used a functional language
for coordination purposes. We use Eden for both coordination and computation.

Algorithms. Parallel algorithms of computer algebra have been studied since for quite a long time.
Works on this topic include fastmultiplication (and the fast Fourier transform) [Morrison, , Cesari
and Maeder, a,b, Hammes et al., , Gorlatch, a, Gorlatch and Bischof, , Jebelean, ,
Dmitruk et al., , Crandall et al., , Marti-Puig et al.,], matrix manipulation [Luo and
Drake, , Gupta and Sadayappan, , Demmel et al., , , Li et al., , Nguyen et al.,
, Agarwal et al.,], GCDcomputation (and related topics) [Borodin et al., , von zurGathen,
, Sedjelmaci,], Gröbner bases computation [Ebert, ,Watt, , Buchberger and Jebelean,
, Pauer, , Winkler, , Arnold, , Kredel, , Idrees et al.,] (not directly parallel,
but definitely of benefit is [Sasaki and Kako,]), and other topics, like the LLL algorithm [Wetzel,
, Backes and Wetzel,]. We handle related work in a more detail in appropriate chapters when
discussing concrete algorithms. Sequential methods serving as foundation for the parallel implement-
ation include [Karatsuba and Ofman, , Cooley and Tukey, , Schönhage and Strassen, ,
Strassen,] for the fast multiplication methods, [Miller, , Rabin, , Adleman et al., ,

182 Chapter . Conclusions, Future, and Related Work

Cohen and Lenstra,] for primality testing, and [Borosh and Fraenkel, , Szabo and Tanaka,
, Gregory and Krishnamurthy, , Lobachev, , a] for rational residue classes.

Known publications in this area either focus on algorithms or use low-level parallelism, e.g., the
one based on message passing. In a contrast, we focus on high-level parallelism, e.g., algorithmic
skeletons.

.. Parallel Computing in General

Parallel computing as such is oen based on low-level libraries for threads or message passing [Grama
et al., , Nichols et al., , Snir et al., , MPI, , Sunderam, , PVM,] (for Haskell
implementations ofMPI see [Breitinger et al., , Astapov et al.,]). Higher-level concurrency ap-
proaches include communicating sequential processes byHoare [] (see also [Abdallah et al.,],
refer to [Brown,] for Haskell implementation) and actors [Hewitt et al., , Agha, , Arm-
strong, , Haller and Odersky, , , Sulzmann et al., , Sulzmann, , Epstein et al.,
]. We discussed actors briefly in Chapter . An interesting approach to concurrency is soware
transactional memory. Please refer to [Knight, , Herlihy and Moss, , Shavit and Touitou, ,
, Welc et al., , Adl-Tabatabai and Shpeisman, , Harris et al.,] for more information
on this topic. Haskell implementation is discussed, e.g., in [Discolo et al., , Peyton-Jones, ,
Harris et al.,]. Concurrent Haskell approaches include [Scholz, , Peyton-Jones et al.,].
We mostly focused on genuinely parallel and not concurrent approaches.

Parallel Haskells

Wechose Eden [Loogen et al.,] (see also [Breitinger, , Berthold,]) as our implementation
language. Further parallel or distributedHaskell approaches include H [Nikhil et al., , Nikhil and
Arvind,], GpH [Trinder et al., b, , Marlow et al.,], Data Parallel Haskell [Chakrav-
arty et al.,], Cloud Haskell [Epstein et al.,] and the Par monad [Marlow et al.,]. See
discussion in Chapter for more information. A typical research direction for a parallel Haskell is im-
plicit parallelism, in a contrast to explicit parallelism model in Eden. We made some use of the futures
[Dieterle et al., b], see also [Alt and Gorlatch,].

.. Skeletons

e algorithmic skeletons were introduced by Cole []. An overview of existing skeleton libraries
is in [González-Vélez and Leyton,]. One of the first skeleton libraries was [Darlington et al.,].
Kesseler [] presented a skeleton approach in Clean [Brus et al.,]. Further development was
made by Botorog and Kuchen [,] with the Skil language. It is imperative, but features such
interesting aspects as higher-order function and polymorphism. Sérot et al. [] presented a special
skeleton library inCAML. PAS (Parallel Architectural Skeletons) [Goswami et al.,] is a C++ library,
relying on MPI for message passing. Its extension EPAS [Akon et al.,] allows to specify new
skeletons in a special extension language. P3L (Pisa Parallel Programming Language) [Bacci et al.,
, Danelutto et al., , Pelagatti,] and its derivative SKiE [Bacci et al., a] are skeleton-
based coordination languages. e generic ‘templates’ could have multiple implementations, e.g., for
different platforms. SKELib is an associated C library [Danelutto and Stigliani,]. Muesli [Kuchen,
, Kuchen and Striegnitz, , Poldner and Kuchen, a,b] is a further development of Skil ideas
in C++ templates. Skeleton composition in Muesli is similar to P3L. Data parallel skeletons in Muesli
feature automatic scaling across the PEs, using both OpenMP [Dagum and Menon,] and MPI
[Snir et al.,]. Alba et al. [] presented a C++ library for combinatorial optimisation. e search
strategies are encoded as skeletons. SkeTo [Matsuzaki et al.,] is also a C++ skeleton library using
MPI. e eSkel library [Benoit and Cole, , Benoit et al.,] is a C skeleton framework using
MPI. SBASCO (Skeleton-BAsed Scientific COmponents) [Díaz et al.,] is a large framework for
numeric computing. It combines functional and non-functional components. HOCSA [Dunnweber
and Gorlatch,] uses higher-order components for grid infrastructure. It includes such features
as abstraction from Globus toolkit and usage of web services. JaSkel is a Java-based skeleton library

.. Future Work 183

[Ferreira et al.,]. Lithium/Muskel [Aldinucci et al.,] and Calcium/Skandium [Leyton and
Piquer,] are also Java skeleton libraries.

Contrarily to most aforementioned approaches, in Eden the skeleton implementation language is
the same as the skeleton instantiation language, see, e.g., [Galán et al., , Klusik et al., , Ham-
mond et al., , Loogen et al., , Berthold and Loogen, , Priebe,]. New Eden approach
to skeleton composition is [Dieterle et al., b]. A classic publication on Haskell-related skeleton
approach is [Michaelson et al.,]. Herrmann [] considered divide and conquer skeletons in a
Haskell dialect. In GpH [Trinder et al., b] parallelism can be expressed with evaluation strategies
[Trinder et al., a] that can be capsuled in algorithmic skeletons. e deterministic Par monad
[Marlow et al.,] can also be used to implement skeletons.

Particular skeleton implementations in Eden include various workpools [Priebe, , Berthold
et al., , Dieterle et al., a, Brown and Hammond,], topological skeletons [Berthold and
Loogen,], and divide and conquer skeletons [Loogen et al., , Berthold et al., a,b,c]. Fur-
ther Eden skeletons include map-reduce [Berthold et al., d] and systolic skeletons [Loogen et al.,
].

Skeletons are sometimes used as an aid for the performance estimation, like in, e.g., [Zavanella,
, Cole and Hayashi, , Benoit et al.,]. See [Lobachev and Loogen, c] for discussion
of skeleton-based, specialised versions of our performance estimation method.

.. Further Related Work

Our approach of uniting the implementation and interface languages of a CAS (see Chapter) is sup-
ported by [Mechveliani, , Bauer et al.,]. Haskell libraries featuring some aspects of com-
puter algebra are [Mechveliani, a,b, Amos, , urston et al., , Brown et al.,]. An
interesting bridge between Haskell and mathematics is formed by infinite data structures [Wray and
Fairbairn, , Bird et al.,], see [Karczmarczuk, ,McIlroy, ,] and also [Hinze,].
ese works focus on the laziness of Haskell. We discussed an example in Chapter and used laziness
throughout this thesis. e gain was in a more concise representation of complex processes.

. Future Work

In a close connection to this work, further topics can be designated. An adaptation of the rational
multiple-residue arithmetic of Chapter to the needs of Gröbner bases computation—another essen-
tial method of computer algebra—is a future vision. An implementation of the negative wrapped
convolution (see Chapter) will relax the bound on the coefficient size for FFT-based polynomial
multiplication. In the context of [SCIEnce,] an interface to other systems is required.

is thesis has a conceptional focus on parallel algorithms. A similar work focused on data struc-
tures and considering parallel domain construction would be a very interesting reading. For the reas-
ons we saw in Chapter , it would need dependent typing. A good candidate is Agda [Bove et al.,].
A sequential Haskell approach for domain construction is [Mechveliani, , a,b].

Symbolic computation is a very large field, so we can easily name topics we chose not to consider in
this thesis, but whichmight constitute an interestingmaterial, having the basics that this work provides.
Division is a large interesting topic for which both advanced domain construction (for Hensel liing)
and advanced parallelisation techniques are required [von zur Gathen and Gerhard, , Grabmeier
et al.,]. Symbolic addition and integration is another area of symbolic data manipulation where
it would be interesting to consider the parallel case [von zur Gathen and Gerhard, , Bronstein,
]. Note, we briefly handled differentiation and integration of power series, and hence also: of
polynomials, in Chapter . e factorisation of polynomials is very interesting, not least because of
the challenges connected with Hensel liing [Hensel, , Koblitz, , Grabmeier et al.,], and
because of the LLL algorithm with its potential for symbolic-numeric computing [von zur Gathen and
Gerhard, , Nguyen and Stehlé,].

Appendix

A A

FOUNDAT IONS

A negative minus zero is negative, a
positive [minus zero] is positive;
zero [minus zero] is zero. When a
positive is to be subtracted from a
negative or a negative from a
positive, then it is to be added.

Brahmagupta,
Brahmasphutasiddhanta, A.D.

Considered the first mention of zero.

W
 to define some background concepts reoccurring through the complete thesis or
serving as a premise for some of its contributions. We handle some abstract algebra
first, then switch to an elementary number theory—so elementary, it can be called arith-
metic!—and continue defining some domains from the abstract algebra, which integers,

univariate and multivariate polynomials share. Matrices also fulfil some of the below laws, but not all,
as matrix multiplication is not commutative.

enext section discusses the issues of notation. SectionA. provides somebackground in abstract
algebra. en we arrive at the definition of numbers in Section A., a short treatment of the euclidean
algorithm in Section A. and the definition of prime numbers in Section A.. Aer these sections we
can return to an abstract treatment in Section A.. A very brief introduction to what we will need from
the notion of vectors and matrices is in Section A..

A. Notation

A.. Mathematical Notation

We write vectors and matrices in bold, when referring to an entity, but no more, if we refer to a single
element of it. For instance, v = [v1, v3, v3] is a vector of length three and

A = (a11 a12
a21 a22

)

is a 2× 2matrix. Squared braces ‘[]’ denote vectors and curly braces ‘{}’ denote sets. If a fact of some-
thing being a set is not important and we merely need a collection of items of the same type, we oen
call it a vector, with lists or arrays in mind. However, we do not use these two words interchangeably.
In our notation, we omit parenthesis whenever possible, but care not to be ambiguous. We follow a
chapter-based numbering style: a lemma, theorem, example and so on have a number of the chapter,
following a running incremental number. Tables and figures also obey to this scheme, but have their
own counters. We have one exception to this rule: algorithms are thoroughly counted.

We sometimes write ⇒ for an implication. us, ⇐⇒ is equivalence. We assume set theory as
given. Also, we write sets in Latin uppercase letters and set elements in Latin lowercase, e.g., X is a set
and a, b are its elements if a, b ∈ X holds. e subset and superset relations are denoted with ⊂, e.g.,
X ⊂ Y for some sets X and Y . We sometimes write ⊊ if we want to stress the inequality. e elements of
the set can be enumerated within curly brackets: {0, 1, 2, . . . }. We also write conditionals in a similar
way. e symbol ∅ denotes an empty set. To give an example for two last issues: for integers a, b, c
and n holds {an + bn = cn ∶ n > 2} = ∅ per Last Fermat’s eorem. e number sets N,Z,Q,R,C
are assumed to be known to the reader. Nevertheless, we will introduce the first three with a bit more
formalism in this chapter. If we want to stress thatN begins with a zero, we writeN0. A signR+0 stands

188 Appendix A. Foundations

for non-negative real numbers, i.e., R+0 ∶= {x ∈ R ∶ x ≥ 0}. We assume the reader is familiar with
the concept of relations. Occasionally we write ‘B is defined as A’ as B ∶= A. Further, ⌊x⌋ for x ∈ R+
means such a ∈ N that a = max{a ∈ N ∶ a ≤ x}. Analogously, ⌈y⌉ = min{b ∈ N ∶ b ≥ y} for y ∈ R+
and b ∈ N. Vertical bars ∣ ⋅ ∣ denote an absolute value of a number, i.e., the number without a sign. But
∣a∣m denotes the residue of a modulo m, see Chapter for more on this. e double vertical bars ∥ ⋅ ∥
denote some norm. We index the norm with some identifier, to tell various norms apart.

As usual, we write ∑n
i=0 ai for a0 + ⋅ ⋅ ⋅ + an and∏n

i=0 ai for a0⋯an. We may omit the coefficients
at the sum and product symbols, if they are very clear from the context. We use the common symbols
for factorial and binomial coefficients: for n, k ∈ N we write n! ∶=∏n

i=1 i and (
n
k) =

n!
k!(n−k)! .

We write log for a logarithm, when a base does not really matter. We write logb for a logarithm
in basis b. Similar to ln = loge and lg = log10, we define lb = log2. Here e is the Euler constant,
2.718281828459 . . .

A.. Algorithms

A programming language is low level
when its programs require attention
to the irrelevant.

Alan J. Perlis, Epigrams on
programming

We oen use pseudocode to describe algorithms used in this work. We chose the common imper-
ative style of the pseudocode. e functional implementation is stated later in terms of Haskell source
code. We use the usual language constructs, familiar from C [ISO/IEC :] and Pascal [Wirth,
]. We try to keep the side effects at minimum.

We describe briefly the structure of an algorithm description in pseudocode. Each algorithm be-
gins with an ‘require’ and ends with ‘ensure’ clauses, stating the input and output of the algorithm. e
actual actions to be performed are described with plain text and mathematical notation. e le ar-
row denotes assignment, e.g., x ← 42. Following keywords are used. e keywords for,while, if, then,
else, return have their usual meaning. See Algorithm for an example. A repeat–until loop has the
semantics of do–while not. Its body is executed at least once. With map we designate an application
of a given function to a list. Note that the return statement breaks up all loops.

Helper algorithms can be introduced. In this case the pseudocode either refers to the other al-
gorithm explicitly or performs a procedure call. For an example of the latter see the call of the I P
procedure in Algorithm , line . e assumption here is that the procedure I P exists and has
the type ‘integer → boolean’. A declaration of a procedure is shown in line of Algorithm . Two
slashes introduce a comment, like one in line .

Algorithm An example algorithm
Require: an integer n

: procedure F E(n)
: set n ← n + 1. // For what reason?
: for all i > 0 and i < n do
: for all odd j with j < i do
: if n ⋅ j = 42 then return false
: else if I P(i + j) then return true
: end if
: end for
: end for
: return true
: end procedure
Ensure: true or false.

A.. Groups, Rings, Fields I: e Definitions 189

abelian group group monoid semigroup

Figure A.: e relations between several group concepts. We denote the subset relations, e.g., all groups
are also monoids.

A.. Complexity

We use the standard ‘big Oh’ complexity notation. A function f ∶ N → R+0 is in a O(g) class of some
g ∶ N → R+0 , if some N ∈ N exists, that for all n > N in N holds f (n) ≤ cg(n) for some constant c > 0.
Note that both f and g have no negative values. We oen write in sign f ∈ O(g) for the preceding
definition. Other related notations follow. As above, we assume f , g ∶ N→ R+0 .

• ‘Little oh’: f ∈ o(g)⇐⇒ some N ∈ N exists, that for all n > N in N holds f (n) ≤ cg(n) for all
constants c > 0.

• ‘Big omega’: f ∈ Ω(g)⇐⇒ some N ∈ N exists, that for all n > N in N holds f (n) ≥ cg(n) for
some c > 0.

• ‘Big theta’: f ∈ Θ(g)⇐⇒ some N ∈ N exists, that for all n > N in N holds c1g(n) ≤ f (n) ≤
c2g(n) for some constants c1, c2 > 0.

• ‘Little omega’: f ∈ ω(g)⇐⇒ some N ∈ N exists, that for all n > N in N holds f (n) ≥ cg(n) for
all constants c > 0.

We need to note, that originally the ‘ohs’ in the names were omicrons. is notation is also known
as Bachmann–Landau notation, aer Paul Gustav Heinrich Bachmann *.., †.. and Ed-
mund Georg Hermann Landau *.., †.., number theorists.

A. Groups, Rings, Fields I: e Definitions

e classic sources for abstract algebra are [van der Waerden, , Lang,]. However, here we
follow [Grove,], which provides an overview at a graduate course pace.

Definition A.. A group G = (G , ⋅) is some non-empty set G and a corresponding binary operation ⋅
on it, which fulfils the following axioms. For all a, b, c ∈ G:

. Closure: a and b ∈ G⇒ a ⋅ b ∈ G.

. Associativity: a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c.

. Identity: a neutral element 1 ∈ G exists with a1 = a = 1a for all a ∈ G.

. Inverse: For each a ∈ G an inverse a−1 ∈ G exists, with aa−1 = 1 = a−1a.

e group G in the above definition is a multiplicative group, nothing which is different from an
additive group up to notation. A neutral element of a multiplicative group is also called a unity. Do
Axioms and not hold, then such an object is called a semigroup. Does only not hold, then it is a
monoid. An example for a monoid is N0. Such a group G, where for all a, b ∈ G holds a ⋅ b = b ⋅ a, is
also called an abelian group. An example for latter is (Z,+). We denote explicitly if a group should not
be abelian. An overview of the relations of the above concepts is presented in Figure A..

A ring is a non-empty set R with two operations + and ⋅, where (R,+) is a full-fledged abelian
group, and (R, ⋅) is just a semigroup. For non-trivial rings, also called rings with unity, holds that
(R, ⋅) is a monoid. If (R,+) is merely a commutative monoid, we call R a semiring. A subset of a ring,
that is invertible under ⋅, is denoted with R∗. It is a multiplicative group. Elements of R∗ are called
units. Note that a unity is also a unit, but not all units are unities, see also Lemma A. on page .

190 Appendix A. Foundations

We regard commutative non-trivial rings in this thesis, we call them ‘commutative rings with unity’ or
simply ‘rings’.

A ring closed under multiplicative inversion is a field. In other words: a set F, where both (F ,+)
and (F , ⋅) are groups, is a field (F ,+, ⋅). Naturally, for a field F holds F∗ = F ∖ {0}. An example is Q,
the set of all rational numbers. But in most cases we do not need a whole ring. For additive groups the
inverse is oen denoted with (unary)−, and the neutral element with 0. So a+(−a) = 0, for a ∈ (G ,+).
Further, given a, b ∈ (R,+, ⋅), the common notion for a + (−b) is a − b and that for a ⋅ b−1 is a/b (for
b ∈ R∗). Let R be a ring. We denote with R[x] the ring of univariate polynomials over R. Similarly,
R[x1, . . . , xn] denotes the ring of multivariate polynomials over R. e next proposition is [Grove,
, eorem ., p.]. See there for the proof.

Proposition A.. If R is a ring, then also R[x1, . . . , xn] is.

In fact it’s not just a ring [Grove,]. For a (commutative) ring R an R-module is an additive
abelian group A, where scalar multiplication of an element in R and an element in Awith the result in A
is defined and is additive in both components and multiplicative. If additionally, for a, b ∈ A and r ∈ R
holds r(ab) = (ra)b = a(rb), then A is a R-algebra. If R is a commutative ring with unity, then any
R[x1, . . . , xn] is an R-algebra. By the way, an extension of a field is also an algebra over that field. We
show a stronger statement on structure of R[x1, . . . , xn], depending on structure of R, aseoremA.
on page .

A. e Numbers

In this section we will define the well-known notions of natural, integral and rational numbers as well
as the concepts of integer division and of associates. We follow [Ebbinghaus et al.,] below.

Definition A. (Natural numbers). Let N be a set of natural numbers. It holds that a neutral element,
the zero, in sign: 0, is an element of N. Further, a mapping σ ∶ N → N, a successor mapping is defined,
such that

. e mapping σ is one-to-one (injective).

. Zero is not in the domain of σ .

. If some set M with 0 ∈ M exists, and for all m ∈ M holds σ(m) ∈ M, then M ⊃ N.

e famous Peano axioms, named aer Giuseppe Peano, *.., †.., correspond ex-
actly to the above definition. e original Peano axioms can be formulated as the following definition.
In fact, we assume here that the equality = is a reflexive, symmetric and transitive relation.

Definition (Peano). We can define N, σ and 0 with the following statements.

. It holds 0 ∈ N.

. Is n ∈ N, then σ(n) ∈ N.

. Is n ∈ N, then σ(n) ≠ 0.

. Is 0 ∈ M and does it hold for all n ∈ M that σ(n) ∈ M, then N ⊂ M.

. For n and m in N the fact σ(n) = σ(m)means that n = m.

Strictly, one needs to show thatN is a monoid and thatN is unique. However, we omit these proofs
here and refer to [Ebbinghaus et al.,] for a more rigorous treatment of this topic.

As for integer numbers, we define themas pairs of natural numbers. To bemore precise, viz. [Ebbing-
haus et al., , Chapter , §], define an equivalence relation ∼ on pairs of natural numbers. For a, b,
c, d in N let

(a, b) ∼ (c, d) ⇐⇒ a + d = b + c.

A.. Euclidean Algorithm 191

N Z Q R C

Figure A.: Natural numbers and beyond. e subset relation is denoted, e.g., Z ⊂ Q.

We omit here the proof, that ∼ is in fact an equivalence relation. Let [⋅] denote here the equivalence
class of the above relation:

[(a, b)] = {(a, b) ∶ (a, b) ∼ (c, d) for all a, b, c, d ∈ N}.

en Z is the set of all such equivalence classes. For the convenience we write the specimen of the
equivalence class [(0, a)] for some a ∈ N as −a, an unary minus.

One can define the addition andmultiplication inZ basing on the equivalence class representation.
For the latter: [(a, b)] ⋅ [(c, d)] ∶= [(ac + bd , ad + bc)]. We can extend the notion of unary minus
to Z, hence defining the additive inverse in Z.

Lemma A.. e set of all integers Z is a group under +. But Z is only a monoid w.r.t. ⋅.

Proof. We can easily verify this fact: (Z,+) is naturally closed and associative. e neutral element is
0 ∈ Z. e negative of an integer is its additive inverse. Although (Z, ⋅) is closed and associative, and
a neutral element w.r.t. multiplication, the unity, exists, no reciprocal a−1 of a ∈ Z with ∣a∣ ≠ 1 is again
in Z. So, for the set of units of integers holds Z∗ = {−1, 1}.

A similar approach is possible with the rational numbers. We define them as pairs of integers. To
be more precise [Ebbinghaus et al., , Chapter , §]:

Definition A.. Consider the relation (a, b) ≈ (c, d)⇐⇒ ad = bc for a and b ∈ Z, c and d ∈ Z ∖ {0}.
e equivalence classes of this relation are denoted with a/b or a

b and are called fractions, the set of all
fractions is denoted with Q.

It is easy to verify that Q together with addition and multiplication

a
b
+ c
d
∶= ad + bc

bd
and

a
b
⋅ c
d
∶= ac

bd
for all a, c ∈ Z and b, d ∈ Z ∖ {0}

forms a field. We do not consider real numbersR and complex numbersC in detail here. A hierarchy
of numbers in shown in Figure A..

A. Euclidean Algorithm

e division for all non-zero elements is defined forQ. But it is possible to introduce a special division
for integral numbers.

Definition A. (Integer division). For any integers a and b such c and r exist that a = bc+ r. We write
c = a div b and r = a mod b. Further, we write b ∣ a, in words ‘b divides a’, if r = 0. Is it not the case,
we write b ∤ a, ‘b does not divide a’.

Definition A. ([Grove,], p.). Two elements a and b of a ring R are called associates, if some
unit u ∈ R∗ exists with a = ub.

Lemma A.. If two elements a and b of a ring are associates, then a ∣ b and b ∣ a.

Proof. Follows trivially from a = ub⇐⇒ u−1a = b for a unit u.

192 Appendix A. Foundations

Algorithm Euclidean algorithm
Require: integers a and b

: repeat
: Let r ← a mod b.
: Set a ← b
: and b ← r.
: until r ≠ 0
: return b.

Ensure: gcd(a, b)

e classic notion of the euclidean algorithm serves exactly for determining the greatest common
divisor, which we abbreviate with GCD. If the gcd(a, b) is unity for some integers a and b, the input
values have no common factors, i.e., a ∤ b and b ∤ a.

Following [Graham et al.,], we oen write a � b for gcd(a, b) = 1. Note that in theoretical
computer science the orthogonality symbol � oen denotes the ‘bottom’. It stands for a diverging
program (e.g., f 42 = �) or for the least element of a partially ordered set. However in the first case
� is a binary relation and in the second case � is a constant. So, it is possible to tell the two different
usages apart from the context. We consider the euclidean algorithm next.

History. Euclid (Εὐκλείδης) of Alexandria lived around A.C. and is referred to as ‘Father of
Geometry’. He is most famous for his book Elements. Euclid’s name means good glory. His Elements
(Στοιχεῖα) is the most successful textbook ever. It was used up to the end of century for teaching
geometry. e Elements defines mathematics with deduction from small set of axioms. One can say,
that this book was the very first and still extremely influential foundation of mathematics we know. It
was printed first in Venice in and has survived over thousand editions. Only the Bible has more.

Donald Knuth considers the euclidean algorithm to be the oldest non-trivial algorithm in the his-
tory of mathematics [Knuth,]. It contains a while loop, so the termination condition of the al-
gorithm is not immediately clear from its description. However a modern notion of euclidean rings
tells us, that division with remainder always produces a ‘smaller’ value than its largest input. Hence
a ‘division chain’, which is essentially the euclidean algorithm, terminates with a zero in finite many
steps. Curiously enough, the notion of ‘smaller’ might be quite general, it is not limited to a smaller
absolute value, cf. Section A.. e algorithm appears in Euclid’s Elements, but historians suppose it
predates Euclid. Coming apparently from the pythagoreans, the algorithm is supposedly was known
to Eudoxus (Εὔδοξος) of Cnidus, * or A.C., † or A.C., and to Aristarchus (Ἀρίσταρχος)
of Samos, * A.C., †c. A.C. e euclidean algorithm was independently discovered in India and
China centuries aer Euclid. It took approx. years to comprehend the importance of the euclidean
algorithm for the number theory [Stillwell,]. e algorithm was then utilised in Europe for the
efficient solution of Diophantine equations. Later, its application in the context of continued fractions
emerged [Brezinski,]. Gauß mentions the euclidean algorithm in this context in . e no-
tion of the extended euclidean algorithm (cf. Algorithm on page) is connected with names of
Saunderson and Cotes. It provides us with Bèzout identity: for any integers a and b there exist such
x and y that gcd(a, b) = xa + yb holds. Dirichlet sees the euclidean algorithm as a base for number
theory. e algorithm is related to Sturm chains. Please refer [MacTutor, , Chabert,] formore
information on Euclid’s biography and work. Books on number theory also sometimes include some
historic notices, like [Stillwell,] does. Further sources are [van der Waerden and Habicht, ,
Eves, , Chabert, , Fowler,].

e algorithm. e euclidean algorithm computes the GCD of two integers, see . e polynomial
variant could be similarly straightforward, but requires much finesse have good performance [von zur
Gathen and Gerhard,]. For a variant of the algorithm, which operates with subtraction and not
division, see Algorithm on the facing page. Notably, the euclidean algorithm is a base for computer

A.. Primes 193

Algorithm Subtraction-based euclidean algorithm
Require: integers a and b

: Let r ← a − b.
: while r ≠ 0 do
: set a ← b and b ← r.
: end while
: return b

Ensure: gcd(a, b)

algebra. We have brought this thought from Tomas Sauer’s lectures [Sauer,]:

e subtitle of a half of [Computer Algebra] lecture could be ‘variations of the euclidean
algorithm’.

Indeed, the representation of rationals in residue rings, we present in Chapter is nothing else
than an utilisation of the extended euclidean algorithm. A more generic case is Padé reconstruction of
rational functions. Further, the famous Buchberger algorithm for computing Gröbner bases is a very
wide generalisation of the same euclidean algorithm.

A. Primes

In Section A. we will define primes in terms of abstract algebra. What we consider here, are old good
prime numbers.

Definition A. (Prime number). A natural number > 1 is a prime number if its only divisors are unity
and the number itself.

To give an example, 5 is prime, because 2 ∤ 5, 3 ∤ 5, 4 ∤ 5. e ‘dark ages’ of number theory know
multiple methods of prime search, but they all are not quite efficient. At the same time, these methods
are deterministic. e most ancient and still quite able one is the sieve of Eratosthenes. e idea of
the sieve is very simple. Lay out a list of natural numbers. We begin with a prime and strike out all
multiples of it. us we arrive at a next prime and repeat. ere are optimisations considering the
amount of striking out and ‘wheeling’—pre-filtering of a priori unfitting input. e first steps of the
sieve are presented in Table A. on the next page. We do not use any optimisations there. Note that
some numbers, like for and , have been stroked out multiple times.

e person the sieve is called aer, Eratosthenes (Ἐρατοσθένης) of Cyrene (*c. A.C., †c.
A.C.) was a prominent Ancient Greek scientist. His contributions included the measurements of the
circumference of the Earth and of the tilt of the Earth’s axis. Him is attributed the calculation of the
distance from the Earth to the Sun and the invention of the leap day. Further, Eratosthenes was the
head of the Library of Alexandria [Eves, , MacTutor,]. As for the sieve, there is an opinion
that Eratosthenes had not discovered the sieve, but merely gave a name to the already known method,
viz. [Waschkies,].

A very interesting summary with underlying functional implementations of the sieve was done by
O’Neill []. We presented modern approaches to primality testing in Chapter . Primes as such
are used in Chapter .

Primes are important because every natural number can be expressed as a product of powers of
primes. is makes primes the universal ‘building blocks’ of the natural numbers. is result has it
own name: Fundamental eorem of Arithmetic. We show it elegantly as Corollary A..

194 Appendix A. Foundations

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 …

2 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19 * 21 * …
2 3 5 * 7 * 11 13 * 17 19 * …
2 3 5 7 * 11 13 * 17 19 * …
2 3 5 7 11 13 * 17 19 * …
2 3 5 7 11 13 17 19 * …
2 3 5 7 11 13 17 19 …
⋮ ⋱

Table A.: First steps of the sieve of Eratosthenes.

A. Groups, Rings, Fields II: Domains and Ideals

So, let us get back to abstract algebra. It is well possible to define the euclidean algorithm on some
particular rings and there is an abstraction of notion of primes too! We refer to [Becker et al.,]
and [Grove,] as bases for our presentation.

Euclidean Domains. In order to abstract the euclidean algorithm to generic fields, we need to look
at the proof of termination of the euclidean algorithm. It depends on the definition of division. To be
more precise: the residue r of the division a = bc + r in a ring R should be smaller than b. For the next
definition, viz. [Becker et al., , Definition .] or [Sauer, , Section .]

Definition A. (Euclidean function). Let R be a commutative ring with unity. A function ϕ ∶ R →
N ∪ {−∞}, with ϕ(a) ≤ ϕ(ab) for all a, b ∈ R, is called an euclidean function, if for all a, b ∈ R with
ϕ(a) ≥ ϕ(b) such c, r ∈ R exist, that a = bc + r and ϕ(b) > ϕ(r). We agree that if for x ∈ R holds
ϕ(x) = −∞, then x = 0.

Definition A. (Domains). Let R be a commutative ring with unity.

. R is an integral domain, if it contains no zero divisors, i.e., if for all a, b ∈ R with a ≠ 0 ≠ b, holds
ab ≠ 0.

. An integral domain R is an euclidean ring or euclidean domain, if a corresponding euclidean
function exists (see Definition A.).

Corollary A.. Z is an integral domain.

To give a counterexample, residue classes in general are not integral domains: 2 ⋅ 3 = 0 mod 6.

Remark ([Grove,], p.). Another interesting fact: R is an integral domain if and only if R∖{0}
is a multiplicative semigroup.

Example A..

. Let R = Z. en a possible ϕ is the absolute value ∣ ⋅ ∣. With it, Z is an euclidean domain. For a
more detailed proof see [Becker et al., , Proposition .].

. Let R be a field. en a ‘Dirac’ function

δ(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if x ≠ 0
0 for x = 0

is an euclidean function.

A.. Groups, Rings, Fields II: Domains and Ideals 195

For an euclidean ring R holds R∗ = {x ∈ R∖{0} ∶ ϕ(x) = ϕ(1)}. is is [Grove, , Proposition .,
p.].

Definition A. ([von zur Gathen and Gerhard,], Definition .). We generalise ∣ straightfor-
wardly to euclidean domains.

. We denote greatest common divisor d of two elements a and b of an euclidean domain R with
euclidean function ϕ as d = gcd(a, b) ∈ R with

• d ∣ a and d ∣ b.

• For all x ∈ R fulfilling the above property, holds ϕ(x) ≤ ϕ(d).

. Let R be as above. We denote the least common multiple l ∈ R of two elements a and b in R,
l = lcm(a, b) with

• a ∣ l and b ∣ l .

• For all other x ∈ R with above property, holds ϕ(l) ≤ ϕ(x).

It is possible to compute GCD not merely for integers, but also for univariate polynomials. We can
define the GCD in more generic rings, but we need an euclidean ring to compute it! e next lemma
provides us with a ‘reality check’. We know that 1 ∈ Z is a unit. But also 1/2 ∈ Q[x] is!

Lemma A. (An intuition). Let F be a field. en (F[x])∗ = F∗.

Proof. Non-constant polynomials have no inverses, already ax−1 is not a polynomial anymore. But
constant polynomials have inverses, as our polynomial ring is over a field. e zero polynomial has
no inverse.

Ideals. e ideals are an essential instrument of the ring theory. Let us define them first. For more
information see [Becker et al., , Definition .] and [Grove, , p.] or any algebra book, like
[van der Waerden,].

Definition A.. Let R be a ring and let I be an non-empty subset of R. en I is an ideal of R if

• I is additive: for all a, b ∈ I holds a + b ∈ I.

• For any k ∈ R and all a ∈ I holds ka ∈ I.

For any subset X of R, an ideal generated by X, denoted ⟨X⟩ is the smallest ideal, which contains X.
An ideal I ⊂ R is trivial, if I = {0} and proper if I ⊊ R. An ideal, generated by a single element, is
called principal.

We typeset ideals in fraktur, a black-letter font. e convention is that an uppercase I is some ideal,
a lowercase n is a principal ideal, generated by the element n.

Example A..

. e set nZ of all multiples of a n ∈ Z is an ideal n. For a more concrete example: 2Z = 2 =
{. . . ,−4,−2, 0, 2, 4, . . . }.

. For an euclidean domain R, the notion d = gcd(a, b) = xa + yb is equivalent to a + b = d.

e second part of the above example is shown in [Becker et al., , Lemma .]. Proposi-
tion A. gives a more formal treatment of this.

196 Appendix A. Foundations

field euclidean domain PID UFD integral domain ring non-comm. ring

Figure A.: e relation between several ring concepts. We denote subset relation, e.g., every UFD is a
PID.

Two further domains. Now we can define two further domains, already shown in Figure A.: the
PID and the UFD.

Definition A.. A principle ideal domain, abbreviated PID, is a ring, where each ideal is principle.

e next statement is [Grove, , Proposition ., p.]. e converse does not hold.

Lemma A.. Every euclidean ring is a PID.

Proof. Let I be an arbitrary non-trivial ideal in an euclidean domain R. Choose such non-zero b ∈ I,
that ϕ(b) is minimal. We can write a = bc + r for some a ∈ I. It holds ϕ(r) ≤ ϕ(b). As r = a − bc ∈ I,
r = 0 per choice of b. Because b is the minimal non-zero element in I w.r.t. ϕ, the sharp inequality
ϕ(r) < ϕ(b) cannot hold. So a = bc, meaning I = b.

Definition A.. Let R be a commutative ring. An ideal m ⊊ R is maximal if no ideal p ⊊ R exists,
with m ⊊ p. e prime ideal p ⊂ R is such an ideal, that for any x , y ∈ R with xy ∈ p either x ∈ p or
y ∈ p holds.

e GCD is unique in a PID. More precisely stated:

Proposition A. ([Grove,], Proposition ., p.). Let R be a PID and let a and b be non-zero
elements of R. en a and b have a GCD, it values to d with

d = xa + yb

for some x, y ∈ R. e GCD is unique up to associates.

Note the emphasis on ‘have’ in the above proposition. It is about GCD existing, not about computing
it.

Proof. Let I = ⟨a, b⟩ = {ua + tb ∶ u, t ∈ R}. As R is a PID, I = d. For that d also d = xa + yb with
some particular x and y ∈ R holds. Clearly: d is a common divisor of a and b.

Remains to showmaximality and uniqueness. As for the first: let c ∈ I be another common divisor
of a and b. As c ∣ a and c ∣ b, then c ∣ a + b, so c ∣ xa + yb, hence c ∣ d. is means that d is maximal,
i.e., d is the GCD of a and b. As for uniqueness, let d′ be another GCD. en d ∣ d′ and d′ ∣ d. So, d
and d′ are associates.

Proposition A. ([Grove,], Corollary , p.). If R is an integral domain, then also R[x].

e following definition can be found in [Grove, , p. and p.] and [Becker et al., ,
Definition .].

Definition A.. Let R be an integral domain.

. A prime element p ∈ R is not a zero and not a unit, such that for a and b ∈ R holds: if p ∣ ab then
either p ∣ a or p ∣ b.

. An irreducible element has only units and its own associates as divisors.

A.. Matrices and Vectors 197

. A unique factorisation domain, abbreviated UFD, is an integral domain, where every element,
being not zero and not unit, is a product of irreducible elements and all irreducible elements are
prime elements.

Remark. Primes are irreducible in every integral domain.

e following theorem summarises few classic algebra results. Basing on [Grove,], item
follows immediately from item , our Lemma A. and our Example A.. Item is a non-inductive
version of Grove’s eorem ., page . Item is Grove’s Proposition . on page , and item is
a corollary to the aforementioned theorem from the same book. Look there for the proof.

eorem A. (A bit of intuition).

. Z is a UFD.

. Generally, if R is a UFD, then R[x] is a UFD. For example, Z[x] is a UFD.

. Every PID is a UFD.

. If R is a UFD, then R[x , y] is a UFD, but not a PID anymore.

eorem A. ([Grove,], eorem ., p.). e factorisation in a UFD is unique. More pre-
cisely: let R be an UFD and x ∈ R be not a unit and not zero. en a unit u ∈ R∗, powers v1, . . . , vn ∈ Z
and primes p1, . . . , pn ∈ R exist, such that

x = upv11 p
v2
2 ⋯p

vn
n .

Corollary A. (Fundamental eorem of Arithmetic). Any integer can be (up to the sign) uniquely
decomposed into a product of primes.

Proof. e ring of integers Z is a UFD.

Remark. e statement of Proposition A. holds also if R is a UFD [Grove, , Proposition .,
p.]. However, to compute GCD, we need the euclidean algorithm, so R should be an euclidean ring
for that sake.

A. Matrices and Vectors

In a contrast to scalar values, we denote vectors and matrices in a bold font, lowercase and uppercase
correspondingly. So, x is a scalar, x is a vector and X is a matrix. e uppercase ‘T’ denotes transposi-
tion, it turns the row vector into a column vector and vice versa. For matrices, transposition replaces
rows and columns. Vectors andmatrices of fitting dimensions can be multiplied. Any vector or matrix
can be scaled with a scalar. ere are different vector-vector products, which we do not consider in
more detail. For the remaining products holds with a ∈ K a scalar, v ∈ Kn a vector and two matrices
X,Y ∈ Kn×m, for an UFD K:

av = a[v1, . . . , vn]T = [av1, . . . , avn]T ,

aX = a
⎛
⎜
⎝

x11 . . . x1n
⋮ ⋱ ⋮

xm1 . . . xmn

⎞
⎟
⎠
=
⎛
⎜
⎝

ax11 . . . ax1n
⋮ ⋱ ⋮

axm1 . . . axmn

⎞
⎟
⎠
,

Xv =
⎛
⎜
⎝

x11 . . . x1n
⋮ ⋱ ⋮

xm1 . . . xmn

⎞
⎟
⎠

⎡⎢⎢⎢⎢⎢⎣

v1
⋮
vn

⎤⎥⎥⎥⎥⎥⎦
=
⎛
⎜
⎝

x11v1 . . . x1nvn
⋮ ⋱ ⋮

xm1v1 . . . xmnvn

⎞
⎟
⎠
,

XY =
⎛
⎜
⎝

x11 . . . x1n
⋮ ⋱ ⋮

xm1 . . . xmn

⎞
⎟
⎠

⎛
⎜
⎝

y11 . . . y1l
⋮ ⋱ ⋮

ym1 . . . yml

⎞
⎟
⎠
=
⎛
⎝

m
∑
j=1

xi jy jk
⎞
⎠
ik

for all 1 ≤ i ≤ n, 1 ≤ k ≤ l .

198 Appendix A. Foundations

Here we write, e.g., (x)i j for the entry at (i , j) of the matrix X and, e.g., vi for the i entry of the
vector v. Matrix product is defined only if the dimensions of both matrices correspond. It is not
commutative, i.e., in general XY ≠ YX holds.

A B

CODE

B. Helper Functions for Rabin–Miller Test

In Figure . we omitted the code for the function singleRabinMiller and two further helper func-
tions. We amend this omission hereby. Figures B., B. and B. show the Haskell implementation of
powermod, separate and singleRabinMiller respectively.

-- ∣ computes powers in residue rings, i.e. b^e mod m
powermod :: Integer -- ^ the base ...

→ Integer -- ^ the exponent ...
→ Integer -- ^ ... modulo m
→ Integer -- ^ the result b^e mod m

powermod b e m
∣ (e==0) = 1
∣ (e ‘mod‘ 2 == 0) = (temp ∗ temp) ‘mod‘ m
∣ otherwise = b ∗ (powermod b (e-1) m) ‘mod‘ m
where temp = (powermod b (e ‘div‘ 2) m)

Figure B.: Implementation of powermod.

separate :: (Integer, Integer) -- ^ input (n,0)
→ (Integer, Integer) -- ^ output (q,t) w. n=2^t∗q

separate (q, t)
∣ (q ‘mod‘ 2 == 0) = separate (q ‘div‘ 2, t+1)
∣ otherwise = (q, t)

Figure B.: Implementation of separate.

-- ∣ Rabin-Miller test for a given basis a
singleRabinMiller :: Integer -- ^ n is prime candidate

→ Integer -- ^ t of n=2^t∗q
→ Integer -- ^ e is the current value of a^((2^e)q)
→ Integer -- ^ b = a^q
→ Bool -- ^ strong pseudoprime w.r.t. a or not?

singleRabinMillerBool n t e b
∣ (b==1) = True
∣ (b==n-1) = True
∣ (e ≤ t-2) = singleRabinMiller n t (e+1) (b∗b ‘mod‘ n)
∣ otherwise = False

Figure B.: Implementation of singleRabilMiller.

B. Helper functions for Jacobi sum test

We show the signatures of some helper functions in Figure B.. e code to simplify cyclotomic poly-
nomials is in Figure B., the function easysimp was defined in Figure . on page . e sequential
implementation of the Jacobi sum test is in Figure B..

type Poly a = [a]

200 Appendix B. Code

-- implementation details omitted, we show only selected type signatures
multInverse :: Integer → Integer → Integer
prodsimmod :: Poly Integer → Poly Integer → Integer

→ Integer → Integer → Poly Integer
gpotsimmod :: Poly Integer → [(Integer, Integer)]

→ Integer → Integer → Integer → Poly Integer
isrootofunity, isprrootofunity :: Poly Integer → Integer

→ Integer → Integer → Bool
binpolypotsimmod :: Poly Integer → Integer → Integer

→ Integer → Integer → Poly Integer

Figure B.: Types of helper functions for Jacobi sum test

-- simplifies a cyclotomic polynomial
-- uses the fact ζnn=1 and the minimal polynomial
simpol :: Poly Integer -- ^ polynomial to simplify

→ Integer -- ^ prime p
→ Integer -- ^ power k of p
→ Poly Integer -- ^ simplified polynomial

simpol poly p k = begin - remain ∗ (minPoly p k)
where (begin, remain) = separate (easysimp poly (pk)) ((p-1)∗p^(k-1))
-- a Num instance for polynomials is defined

-- produces the minimal polynomial for the given root of unity
minPoly :: Integer -- ^ prime p

→ Integer -- ^ power k of p
→ Poly Integer -- ^ minimal polynomial

minPoly p k = foldr (+) [] [nrootpot (pk) (i∗p^(k-1)) ∣ i ∈ [0..(p-2)]]

-- produces the power of p-th root of unity in an extension of Z
nrootpot :: Integer -- ^ number p

→ Integer -- ^ power of the root of unity
→ Poly Integer -- ^ result: the element of the extension

nrootpot = ... -- implementation omitted

Figure B.: Simplifying polynomials Φn, the hard way.

jacobiSumTestCase1 :: Integer → Integer → Integer
-- ^ p, k and q from pk ∣ ∣ q-1

→ Integer -- ^ prime candidate n
→ [Integer] -- ^ list of primes with lp=0
→ [(Integer,Integer)] -- ^ tabled function f
→ Maybe [Integer] -- ^ the result:

-- Nothing: not a prime
-- Just _: possibly updated list

jacobiSumTestCase1 p k q n lps fps
∣ (not $ isRootOfUnity spq p k n) = Nothing
∣ (isPrRootOfUnity spq p k n) = Just (delete p lps)
-- remove the prime p from the list
∣ otherwise = Just lps
-- keep the list as is
where eset = [l ∣ l ∈ [1..n], (l ‘mod‘ p) ≠ 0]

theta = [(x, multInverse x n) ∣ x ∈ eset]
alpha = [((r*x) ‘div‘ n, multInverse x n) ∣ x ∈ eset]
r = n ‘mod‘ l

B.. Skeletons of dcF Class 201

l = pk
s1 = wgpow (j p q fps) theta
s2 = wpow s1 (n ‘div‘ l)
spq = wprod s2 jpot
jpot = wgpow (j p q fps) alpha
wpow b e = binpolypotsimmod b e p k n
wprod w1 w2 = prodsimmod w1 w2 p k n
wgpow b e = gpotsimmod b e p k n

Figure B.: Jacobi sum test: sequential implementation of helper Algorithm .

B. Skeletons of dcF Class

As discussed in Chapter , it is possible to express the skeletons of the dcF class with skeletons of dcC
class. Here we show the exact interfaces.

divConSeq :: (Trans a, Trans b)
⇒ DC’ a b

divConSeq trivial solve divide combine x
= divConSeq_c trivial solve divide (λ_ parts → combine parts) x

Figure B.: e sequential divide and conquer skeleton of the dcF class.

dcNTickets :: (Trans a, Trans b)
⇒ Int -- ^ n (expect n children)
→ [Int] -- ^ tickets (machine ids to use)
→ DC’ a b -- ^ the dcF divide-and-conquer type

dcNTickets k ts trivial solve divide combine x
= dcNTickets_c k ts trivial solve divide (λ_ parts → combine parts) x

Figure B.: e dcNTickets skeleton of dcF class.

divConFlat :: (Trans a,Trans b)
⇒ Map a b -- ^ custom map implementation
→ Int -- ^ depth
→ DC’ a b -- ^ the dcF divide-and-conquer type

divConFlat myParMap depth trivial solve divide combine x
= divConFlat_c myParMap depth trivial solve divide

(λ_ parts → combine parts) x

Figure B.: e divConFlat skeleton of dcF class.

B. e Optimised Boilerplate Code for Gauß Elimination

Here we show the source code for the function lift1’, the optimised version of lift, shown in Fig-
ure . on page . Helper functions are shown in Figure B., the actual implementation of lift1’
is in Figure B.. e functions toL and fromL implement the signatures from Figure . on page ,
liftLSdiag is an enhanced variant of liftL from that figure.

type MatArr i n = ... -- array-based matrix representation
type TransMat i n = ((i, i), [[n]])

toL :: (Num n, NFData n) ⇒ Int → MatArr Int n → TransMat Int n
toL shuff arr = let ((_, _), (n, m)) = bounds arr

202 Appendix B. Code

ll = unshuffleN shuff $ elems arr
lm = rnf ll ‘pseq‘ ll

in ((n, m), lm)
fromL :: (Num n) ⇒ TransMat Int n → MatArr Int n
fromL ((n, m), xss) = listArray ((1,1), (n, m)) $ shuffleN xss

type SparseMatEl i n = ((i, i), n)
type SparseMatDiag i n = ((i, i), [[SparseMatEl i n]])

-- adapt the chunking size to the diagonal
diagC :: Int → Int
diagC = round ○ sqrt ○ fromIntegral

toSd :: Num n ⇒ Int → MatArr Int n → SparseMatDiag Int n
toSd c a = let b@((mn,mm), (xn,xm)) = bounds a

xs = [((i,i), a!(i,i)) ∣ i ∈ [mn..xn]]
xss = unshuffleN (diagC c) xs

in ((xn-mn+1, xm-mm+1), xss)

fromSd :: Num n ⇒ SparseMatDiag Int n → [n]
fromSd ((n, m), xss) = map snd $ shuffleN xss

Figure B.: Helper functions for lift1’.

-- convert only the diagonal
liftLSdiag :: (Num x, Num y)

⇒ Int -- ^ chunking size
→ (MatArr Int x → MatArr Int y)

-- ^ working function, e.g. gauss
→ TransMat Int x -- ^ input
→ SparseMatDiag Int y -- ^ output

liftLSdiag c f = (toSd c) ○ f ○ fromL

-- chunk size / a map implementation / working function
-- / primes / input matrix / output, matrix diagonal
-- lift1’ :: Int → Map a b → (c → d)
-- → [n] → MatArr Int x → [x]
lift1’ c mymap f ps x
= let xs’ = map (toL c) $ toResiduePrimes x ps

xs = rnf xs’ ‘pseq‘ xs’
ys’ = mymap (liftLSdiag c f) xs
ys = rnf ys’ ‘pseq‘ ys’

in map (restoreFZ) $ transpose $ map fromSd ys

Figure B.: e implementation of lift1’.

L I ST OF F IGURES

. e Wilkinson monster .

. Some initial code for encoding power series in Haskell .

. Source code for shuffle and unshuffle .
. A scheme for transpose .
. A scheme for unshuffle for PEs .
. e Trans type class and its instance for lists .
. Functions chunk and unchunk .
. e function applyChunk .
. Implementation of parMap .
. e implementation of farm .
. e implementation of the self service farm .
. A classification of workpools .
. A simple, sorting, blocking workpool .
. A simple, sorting, non-blocking workpool .
. e top-level interfaces for the workpools .
. Helper functions for the workpool implementations .
. e map-like skeletons in Eden .
. Sequential divide and conquer skeleton .
. Relation of the dcX classes .
. An adaptation of divide and conquer skeleton with depth control
. e parWhile skeleton .
. Helper functions for Figure .
. Example of a trace .

. Computing Hamming numbers .
. Predicting both components for Hamming numbers .
. e speedup plot for LBM .
. Computing B(n, p) for LBM .
. Comparing parallel penalty and serial fraction for LBM .
. An example for task distribution .
. First ten thousand Hamming numbers: speedup and quality measures

. Twelve possibilities for a combination of the three repeated computation skeleton features
. A typical sequential repeated computation in pseudocode
. Parallel repeated computation with dynamic internal task creation
. Parallel repeated computation with no task creation, imperative view
. Parallel repeated computation with no task creation, lazy functional view
. A simple repeated computation skeleton without task creation
. e and function from standard Haskell Prelude .
. A standard reduce .
. A tree-shaped reduce .
. e map-reduce scheme .
. A standard reduce with shortcutting .
. A generic map+reduce skeleton scheme .
. Implementing farm+reduce using the generic scheme .

204 List of Figures

. Commutative rings in Haskell .
. Two implementations of map-reduce with map+reduce and remote data
. e main loop of Rabin–Miller test in parallel .
. Trace of Rabin–Miller test .
. Speedup and quality measures for Rabin–Miller test on sakania
. Speedups for Rabin–Miller test, take two .
. e zoom into the trace on local workstations for Rabin–Miller test
. Predicting the execution time of Rabin–Miller test. Le: sequential run time, right: paral-

lel penalty .
. A primitive root of unity .
. Computing multiplicity in Haskell .
. e powering algorithm for residue classes .
. Simplifying polynomials Φn, the easy way .
. Jacobi sum: Main loop .
. Parallel implementation of Jacobi sum test .
. Parallel Jacobi sum trace diagram, initial version .
. Distribution of tasks in a Jacobi sum program .
. Trace diagram for Jacobi sum test with reversed task order on sakania
. Trace diagram for Jacobi sum test with reversed task order on local workstations
. Trace diagram for Jacobi sum test with reversed task order on local workstations
. Speedup for Jacobi sum test .
. Predicting sequential execution time of Jacobi sum test .
. Predicting parallel overhead w.r.t. n of Jacobi sum test .
. Jacobi sum test. Estimating B(n, p) w.r.t. p .
. Parallel overhead and serial fraction for Jacobi sum test .
. Trace for Jacobi sum test, using PE .
. Trace for Jacobi sum test, using PE .
. Composition of primality tests in Haskell .
. Overview of Chapter .

. Questions of Chapter .
. Interfacing dcF from dcC .
. Divide and conquer expansion schemes .
. Ticket placement with dcNtickets skeleton .
. Expansion-based divide and conquer with tickets .
. Flat expansion divide and conquer skeleton for k-ary task trees
. Comparing naive dense and naive sparse polynomial multiplication
. Complexity of the Karatsuba algorithm .
. e skeletal implementation of Karatsuba multiplication .
. Implementation of Karatsuba multiplication .
. Speedups of Karatsuba multiplication on sakania .
. Quality measures for Karatsuba multiplication .
. Trace diagram for Karatsuba multiplication for input size 32 000 on two cores
. Trace diagram for Karatsuba multiplication for input size 128 000 on eight processors . . .
. Predicting the parallel execution time of Karatsuba multiplication
. A non-skeleton based radix two FFT implementation (DIF)
. Implementing chunking in a divide and conquer skeleton
. Traces and run times of divide and conquer FFT approaches on local workstations
. Parallel map-and-transpose skeleton .
. A possible implementation of the map-and-transpose skeleton with remote data
. Trace of parallel FFT using map-and-transpose skeleton on a Beowulf cluster
. Evaluation of FFT on local workstations .
. Evaluation of FFT on Beowulf cluster .

List of Figures 205

. Distributed result map-and-transpose vs. gathered result .
. Multiplication of dense univariate polynomials .
. e skeletal implementation of the FFT .
. Implementing parallel Strassen matrix multiplication .
. e z-curve .
. e complexity of the two steps of Strassen multiplication
. Strassen multiplication in Haskell .
. Trace visualisation of Strassen multiplication .
. Speedup and quality measures for Strassen matrix multiplication
. Implementing divide and conquer with actors .
. e idea behind a task creating farm .
. e DCTask declaration and the farm with external task creation
. e transform function of the dcFarm implementation .
. e wrapper function dcFarm and the definition of the working function
. e completely distributed divide with arity three and depth two at PE
. Comparing the speedups for divConFlat and dcFarm on sakania
. Trace visualisation of Strassen multiplication with dcFarm skeleton
. Overview of Chapter .

. ree implementations of extended euclidean algorithm .
. Required function types for single-residue arithmetic in Haskell
. Implementing the multiple-residue integer arithmetic .
. Converting from Zβ to ZM with mixed-radix algorithm .
. Basic outline of rational multiple-residue implementation in Haskell
. Forward mapping (Algorithm) .
. e outline of an implementation of the backwards mapping (Algorithm)
. Farey fractions with powers of small integers .
. Instances of Num and Fractional for Wβ .
. Additive operations in a single fractional residue class .
. Visualising ϕ1 and ψ1 .
. Implementation hierarchy of the residue arithmetic example
. Gauß elimination in Haskell .
. Residue-based invocation of parallel Gauß elimination .
. e function lift1 and supporting code signatures. We omit technical details here
. Plot of the 20 × 20 permutation matrix .
. e trace diagram for Gauß elimination .
. Gauß elimination. Predicting sequential run time and parallel penalty values w.r.t. n . . .
. Gauß elimination. Estimation of penalty values w.r.t. p .
. Parallel penalty and serial fraction for Gauß elimination .
. A corresponding speedup plot for Figure .

A. e relations between several group concepts .
A. e relation between number concepts .
A. e relation between several ring concepts .

B. Implementation of powermod .
B. Implementation of separate .
B. Implementation of singleRabilMiller .
B. Types of helper functions for Jacobi sum test .
B. Simplifying polynomials Φn, the hard way .
B. Jacobi sum test: sequential implementation of helper Algorithm
B. e sequential divide and conquer skeleton of the dcF class
B. e dcNTickets skeleton of dcF class .

206 List of Figures

B. e divConFlat skeleton of dcF class .
B. Helper functions for lift1’ .
B. e implementation of lift1’ .

L I ST OF TABLE S

. Two languages of a CAS .
. Features of CAS languages in the mainstream .

. e Flynn taxonomy .
. Classification of parallel languages .
. Classification of divide and conquer .
. Examples for the particular divide and conquer classes .

. Execution times of Hamming numbers program .
. LBM on a supercomputer .
. Analysing the task distribution in LBM .

. Classification of parallel repeated computation skeletons .
. e result matrix of Rabin–Miller test .
. Overheads for process placement: tasks at to PEs .
. e result matrix for Jacobi sum test .
. Values of t for Algorithm .
. Naming of workpools in this chapter .
. Time measurement for Jacobi sum test, part .
. Time measurement for Jacobi sum test, part .
. Timings for Jacobi sum test .

. Run time comparison of Karatsuba multiplication with Eden and Multicore Haskell
. An overview of good prediction methods for Karatsuba multiplication
. Variants of FFT, in a short form .
. Complexity of separate steps of FFT .
. Run times of -radix vs -radix on eight PEs .
. Task distribution for depth two flat expansion FFT computation
. eoretical task distribution in depth one parallel Strassen multiplication

. e execution of Algorithm for the Mβ counterexample
. Execution tableau of Algorithm for the Mβ counterexample
. Execution tableau of Algorithm for the Wβ example .
. Execution times for Gauß elimination on sakania .
. Task distribution in the discussed implementation of Gauß elimination
. Comparison of our approach with Maple using permuted Pascal matrices
. Determinants of integer random sparse matrices with Maple, upper bound on the speedups
. Determinants of rational random dense matrices with Maple, upper bound on the speedups

A. First steps of the sieve of Eratosthenes .

L I ST OF ALGOR ITHMS

 Rabin–Miller test .
 Primitive roots modulo p .
 Precomputations for Jacobi sum test .
 Jacobi sum test. Case .
 Jacobi sum test. Case .
 Jacobi sum test. Case .
 Jacobi sum test. Case .
 Jacobi sum test. Main algorithm .
 Russian peasant multiplication .
 Schoolbook multiplication .
 Karatsuba multiplication .
 e fast Fourier transform .
 FFT-based multiplication .
 Strassen matrix multiplication .
 Standard extended euclidean algorithm .
 Rational-to-integer mapping .
 Mapping integer to Farey fraction .
 Mapping an integer to integral multiple-residue .
 From integral multiple-residue to an integer. Part .
 From integral multiple-residue to an integer. Part .
 From integral multiple-residue to an integer. Final part
 Common outline of forth rational multiple-residue mapping
 Forth rational multiple-residue mapping to Wβ .
 Backward mapping from Wβ to Q .
 An example algorithm .
 Euclidean algorithm .
 Subtraction-based euclidean algorithm .

B I BL IOGRAPHY

Archimedes will be remembered
when Aeschylus is forgotten, because
languages die and mathematical
ideas do not.

G. H. Hardy, A Mathematician’s
Apology

S. Abdali and D. Wise. Experiments with quadtree representation of matrices. In Symbolic and Algeb-
raic Computation, pages –. Springer-Verlag, . []

A. Abdallah, C. Jones, and J. Sanders. Communicating sequential processes: the first years. LNCS
. Springer-Verlag, . DOI http://dx.doi.org/./b. [, ,]

S. Aditya, L. A. Arvind, L. Augustsson, and R. S. Nikhil. Semantics of pH: A parallel dialect of Haskell.
In Haskell Workshop, . []

A. R. Adl-Tabatabai and T. Shpeisman. Dra specification of transactional language constructs for
C++. Transactional Memory Specification Draing Group, Intel, IBM, and Sun, . URL http://
software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition/. Retrieved ... [,]

L. M. Adleman, C. Pomerance, and R. S. Rumely. On distinguishing prime numbers from composite
numbers. Annals of Mathematics, ():–, . [, ,]

A. Agarwal and M. Levy. e kill rule for multicore. In Proceedings of the annual Design Automa-
tion Conference, pages –. ACM, . []

R. C. Agarwal, F. G. Gustavson, and M. Zubair. A high performance parallel algorithm for -D FFT.
In Proc. Supercomputing, page . IEEE Computer Society, . []

R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar. A three-dimensional approach to
parallel matrix multiplication. IBM Journal of Research and Development, ():–, . [,
]

G. Agha. Concurrent object-oriented programming. Communications of the ACM, :–, .
ISSN -. DOI http://doi.acm.org/./.. []

G. A. Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems. PhD thesis, Uni-
versity of Michigan, . URL http://hdl.handle.net/./. [,]

G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor computation. Journal
of Functional Programming, ():–, . DOI http://dx.doi.org/./SX. []

M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Mathematics–Second Series, ():
, . []

K. Aida, W. Natsume, and Y. Futakata. Distributed computing with hierarchical master-worker
paradigm for parallel branch and bound algorithm. IEEE International Symposium on Cluster Com-
puting and the Grid, pages –, . DOI http://doi.ieeecomputersociety.org/./CCGRID.
.. []

http://dx.doi.org/10.1007/b136154
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition/
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition/
http://doi.acm.org/10.1145/83880.84528
http://hdl.handle.net/1721.1/6952
http://dx.doi.org/10.1017/S095679689700261X
http://doi.ieeecomputersociety.org/10.1109/CCGRID.2003.1199364
http://doi.ieeecomputersociety.org/10.1109/CCGRID.2003.1199364

212 Bibliography

S. Akioka andY.Muraoka. Extended forecast of CPUandnetwork load on computational grid. In IEEE
International Symposium onCluster Computing and theGrid, pages –. IEEEComputer Society,
. ISBN ---X. DOI http://doi.ieeecomputersociety.org/./CCGrid... []

M. Akon, A. Singh, D. Goswami, and H. Li. Extensible parallel architectural skeletons. In HiPC
— High Performance Computing, pages –. Springer-Verlag, . []

E. Alba, F. Almeida, M. Blesa, J. Cabeza, C. Cotta, M. Díaz, I. Dorta, J. Gabarró, C. León, J. Luna,
et al. MALLBA: A library of skeletons for combinatorial optimisation. In Euro-Par Parallel
Processing, pages –. Springer-Verlag, . []

M. Aldinucci, M. Danelutto, and P. Teti. An advanced environment supporting structured parallel
programming in Java. Future Generation Computer Systems, ():–, . []

M. Alt. Using Algorithmic Skeletons for Efficient Grid Computing with Predictable Performance. PhD
thesis, Universität Münster, July . URL http://wwwmath.uni-muenster.de/pvs/publikationen/
papers/AltDiss.pdf. []

M. Alt and S. Gorlatch. Future-Based RMI: Optimizing compositions of remote method calls on the
Grid. In H. Kosch, L. Böszörményi, and H. Hellwagner, editors, Euro-Par , LNCS , pages
–. Springer-Verlag, Aug. . [, ,]

M. Alt and S. Gorlatch. Adapting java rmi for grid computing. Future Generation Computer Systems,
():–, . ISSN -X. DOI http://dx.doi.org/./j.future.... []

G.M.Amdahl. Validity of the single processor approach to achieving large scale computing capabilities.
In Proc. AFIPS Spring Joint Computer Conference, pages –. ACM Press, . [, ,]

D. Amos. Haskell for Math program, . URL http://www.polynomino.fs.com/david/haskell/
codeindex.html. Retrieved ... [,]

B. Amrhein, O. Gloor, and W. Küchlin. A case study of multi-threaded Gröbner basis completion.
In Proceedings of the International Symposium on Symbolic and Algebraic Computation, page ff.
ACM Press, . []

J. L. O. Arjona, G. Roberts, and G. Street. Architectural patterns for parallel programming. In Proceed-
ings of EuroPLoP, . []

J. Armstrong. Programming Erlang. e Pragmatic Programmers, LLC, . [, ,]

E. A. Arnold. Modular algorithms for computing Gröbner bases. Journal of Symbolic Computation,
():–, . [, , , ,]

D. Astapov, B. Pope, et al. Haskell-MPI: Haskell bindings to the MPI library, . URL https://github.
com/bjpop/haskell-mpi. Retrieved ... [,]

B. Bacci, M.Danelutto, S. Orlando, S. Pelagatti, andM.Vanneschi. P3L: A structured high-level parallel
language, and its structured support. Concurrency: Practice and Experience, ():–, . DOI
http://dx.doi.org/./cpe.. []

B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi. SKiE: A heterogeneous environment for HPC
applications. Parallel Computing, (-):–, a. []

B. Bacci, S. Gorlatch, C. Lengauer, and S. Pelagatti. Skeletons and transformations in an integrated
parallel programming environment. Parallel Computing Technologies, pages –, b. []

W. Backes and S. Wetzel. Parallel lattice basis reduction using a multi-threaded Schnorr-Euchner LLL
algorithm. Euro-Par Parallel Processing, pages –, . []

http://doi.ieeecomputersociety.org/10.1109/CCGrid.2004.1336711
http://wwwmath.uni-muenster.de/pvs/publikationen/papers/AltDiss.pdf
http://wwwmath.uni-muenster.de/pvs/publikationen/papers/AltDiss.pdf
http://dx.doi.org/10.1016/j.future.2004.05.010
http://www.polynomino.f2s.com/david/haskell/codeindex.html
http://www.polynomino.f2s.com/david/haskell/codeindex.html
https://github.com/bjpop/haskell-mpi
https://github.com/bjpop/haskell-mpi
http://dx.doi.org/10.1002/cpe.4330070305

Bibliography 213

D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Fre-
derickson, T. A. Lasinski, R. S. Schreiber, et al. e NAS parallel benchmarks. International Journal
of High Performance Computing Applications, ():–, . ISSN -. []

K. A. Baker and A. F. Pixley. Polynomial interpolation and the Chinese remainder theorem for
algebraic systems. Mathematische Zeitschri, :–, . ISSN -. DOI http:
//dx.doi.org/./BF. []

K. Barclay and J. Savage. Groovy Programming: An Introduction for JavaDevelopers. MorganKaufmann
Publishers Inc. San Francisco, CA, USA, . []

E. H. Bareiss. Sylvester’s identity and multistep integer-preserving gaussian elimination. Mathematics
of Computation, ():–, . ISSN . URL http://www.jstor.org/stable/.
[]

H. P. Barendregt. e lambda calculus: its syntax and semantics. North Holland, . ISBN
. []

C. Batut, K. Belabas, D. Bernardi, H. Cohen, and M. Olivier. User’s Guide to PARI/GP. Universite
Bordeaux I, version .. edition, . URL http://pari.math.u-bordeaux.fr/dochtml/html.stable/. Re-
trieved ... [,]

C. Bauer, A. Frink, and R. Kreckel. Introduction to the GiNaC framework for symbolic computation
within the C++ programming language. Journal of Symbolic Computation, ():–, . ISSN
-. [, , , ,]

T. Becker, V. Weispfenning, and H. Kredel. Gröbner bases: a computational approach to commutative
algebra. Springer-Verlag, . [, , ,]

A. Benoit and M. Cole. eSkel – e Edinburgh Skeleton Library, . URL http://homepages.inf.ed.
ac.uk/abenoit/eSkel/. []

A. Benoit, M. I. Cole, S. Gilmore, and J. Hillston. Evaluating the performance of skeleton-based high
level parallel programs. In ICCS — e International Conference on Computational Science,
Part III, LNCS , pages –. Springer-Verlag, . [,]

A. Benoit, M. Cole, S. Gilmore, and J. Hillston. Flexible skeletal programming with eskel. In J. Cunha
and P.Medeiros, editors, Euro-Par Parallel Processing, LNCS , pages –. Springer-Ver-
lag, . DOI http://dx.doi.org/./_. []

D. J. Bernstein. Multidigit multiplication for mathematicians, . URL http://cr.yp.to/papers/m.pdf.
Accepted toAdvances InAppliedMathematics, but withdrawn by author. Retrieved online ...
[,]

J. Berthold. Towards a generalised runtime environment for parallel Haskells. In M. Bubak et al.,
editors, Computational Science, number in LNCS , page ff. ICCS’—PAPP’, Springer-
Verlag, . []

J. Berthold. Explicit and Implicit Parallel Functional Programming — Concepts and Implementation.
PhD thesis, Philipps-Universität Marburg, . [, ,]

J. Berthold and R. Loogen. e impact of dynamic channels on functional topology skeletons. Parallel
Processing Letters, . [,]

J. Berthold and R. Loogen. Skeletons for recursively unfolding process topologies. In G. R. Joubert,
W. E. Nagel, F. J. Peters, O. G. Plata, P. Tirado, and E. L. Zapata, editors, Parallel Computing: Current
& Future Issues of High-End Computing, ParCo , Malaga, Spain, NIC Series . Central Institute
for Applied Mathematics, Jülich, Germany, . [,]

http://dx.doi.org/10.1007/BF01187059
http://dx.doi.org/10.1007/BF01187059
http://www.jstor.org/stable/2004533
http://pari.math.u-bordeaux.fr/dochtml/html.stable/
http://homepages.inf.ed.ac.uk/abenoit1/eSkel/
http://homepages.inf.ed.ac.uk/abenoit1/eSkel/
http://dx.doi.org/10.1007/11549468_83
http://cr.yp.to/papers/m3.pdf

214 Bibliography

J. Berthold and R. Loogen. Parallel coordination made explicit in a functional setting. In Z. Horváth
andV. Zsók, editors, IFL — Intl. Symposium on the Implementation of Functional Languages,
LNCS , Budapest, Hungary, a. Springer-Verlag. []

J. Berthold and R. Loogen. Visualizing Parallel Functional Program Executions: Case Studies with the
Eden Trace Viewer. In ParCo ’. Parallel Computing: Architectures, Algorithms and Applications.
IOS Press, b. [, ,]

J. Berthold, M. Dieterle, R. Loogen, and S. Priebe. Hierarchical master-worker skeletons. In D. S. War-
ren and P. Hudak, editors, Practical Aspects of Declarative Languages (PADL’), LNCS , San
Francisco (CA), USA, January . Springer-Verlag. [, , ,]

J. Berthold, M. Dieterle, O. Lobachev, and R. Loogen. Distributed Memory Programming on Many-
Cores – A Case Study Using Eden Divide-&-Conquer Skeletons. In K.-E. Großpitsch, A. Hen-
kersdorf, S. Uhrig, T. Ungerer, and J. Hähner, editors, Workshop on Many-Cores at ARCS ’: ⁿ In-
ternational Conference on Architecture of Computing Systems , pages –. VDE-Verlag, a.
[, , , , , , , , , , ,]

J. Berthold, M. Dieterle, O. Lobachev, and R. Loogen. Parallel FFT with Eden skeletons. In
V. Malyshkin, editor, PaCT : International Conference on Parallel Computing Technologies,
LNCS , pages –. Springer-Verlag, b. Extended version in [Berthold et al., c]. [B,
, , , , , , , , , , , , ,]

J. Berthold, M. Dieterle, O. Lobachev, and R. Loogen. Parallel FFT with Eden skeletons. Technical Re-
port bi-, Philipps-Universität Marburg, Fachbereich – Mathematik und Informatik, c.
[, , , , , , , , ,]

J. Berthold,M. Dieterle, and R. Loogen. Implementing parallel Googlemap-reduce in Eden. InH. Sips,
D. Epema, and H.-X. Lin, editors, Euro-Par Parallel Processing, LNCS , pages –.
Springer-Verlag, d. DOI http://dx.doi.org/./----_. [, ,]

A. Betten, R. Laue, and A. Wassermann. Discreta — a tool for constructing t-designs. Lehrstuhl II für
Mathematik, Universität Bayreuth, . []

I. Biehl, J. Buchmann, and T. Papanikolaou. LiDIA — a library for computational number theory.
Technical report, SFB -C, Fachbereich Informatik, Universität des Saarlandes, . []

A. Bieniusa, A. Middelkoop, and P. iemann. Brief announcement: actions in the twilight — con-
current irrevocable transactions and inconsistency repair. In Proceeding of the ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, PODC ’, pages –. ACM Press,
. ISBN ----. DOI http://doi.acm.org/./.. []

B. J. Birch andH. P. F. Swinnerton-Dyer. Notes on elliptic curves I. Journal für die reine und angewandte
Mathematik, ():–, . ISSN -. DOI http://www.reference-global.com/doi/abs/
./crll.... []

R. S. Bird, G. Jones, and O. De Moor. More haste, less speed: lazy versus eager evaluation. J. of
Functional Programming, ():–, . []

G. Birkhoff and C. R. de Boor. Piecewise polynomial interpolation and approximation. Approximation
of functions, pages –, . []

G. E. Blelloch. NESL: A Nested Data-Parallel Language. (Version .). Storming Media, . []

G. E. Blelloch. Programming parallel algorithms. Communications of the ACM, ():–, .
URL http://www.cs.cmu.edu/~scandal/cacm.html. [,]

http://dx.doi.org/10.1007/978-3-642-03869-3_91
http://doi.acm.org/10.1145/1835698.1835714
http://www.reference-global.com/doi/abs/10.1515/crll.1963.212.7
http://www.reference-global.com/doi/abs/10.1515/crll.1963.212.7
http://www.cs.cmu.edu/~scandal/cacm.html

Bibliography 215

G. E. Blelloch and J. Greiner. A parallel complexity model for functional languages. Technical report,
Carnegie Mellon University, . []

R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work stealing. Journal
of the ACM, ():–, . ISSN -. []

S. H. Bokhari. On the mapping problem. IEEE Transactions on Computers, pages –, . ISSN
-. []

A. Borodin and I. Munro. e computational complexity of algebraic and numeric problems. eory of
Computation . American Elsevier, . [,]

A. Borodin, J. von zur Gathen, and J. Hopcro. Fast parallel matrix and GCD computations. Inform-
ation and control, ():–, . DOI http://dx.doi.org/./S-()-. []

I. Borosh and A. S. Fraenkel. Exact solutions of linear equations with rational coefficients by congru-
ence techniques. Mathematics of Computation, ():–, . [,]

W. Bosma and M. P. van der Hulst. Primality proving with cyclotomy. PhD thesis, University of Ams-
terdam, . []

W. Bosma, J. Cannon, and C. Playoust. e Magma algebra system i: e user language. Journal of
Symbolic Computation, (/):–, . []

G. H. Botorog and H. Kuchen. Euro-Par’ Parallel Processing, volume of LNCS, chapter Efficient
parallel programming with algorithmic skeletons, pages –. Springer-Verlag, . []

G.H. Botorog andH.Kuchen. Efficient high-level parallel programming. eoretical Computer Science,
(-):–, . ISSN -. []

A. Bove, P. Dybjer, and U. Norell. A brief overview of Agda – a functional language with dependent
types. eorem Proving in Higher Order Logics, pages –, . []

S. Breitinger. Design and Implementation of the Parallel Functional Language Eden. PhD thesis, Philipps-
Universität Marburg, . URL http://archiv.ub.uni-marburg.de/diss/z//. []

S. Breitinger and R. Loogen. Concurrency in Functional and Logic Programming. In Fuji Intl. Work-
shop of Functional and Logic Programming, . []

S. Breitinger and R. Loogen. Channel Structures in the Parallel Functional Language Eden. In Glasgow
Workshop on Funct. Prg., . [,]

S. Breitinger, R. Loogen, and Y. Ortega-Mallén. Towards a declarative language for parallel and con-
current programming. In D. Turner, editor, Functional Programming, Workshops in Computing,
Glasgow, . Springer-Verlag. [,]

S. Breitinger, R. Loogen, Y. Ortega-Mallén, and R. Peña. Eden: Language Definition and Operational
Semantics. Technical Report , Philipps-University ofMarburg, . URL http://www.mathematik.
uni-marburg.de/fb/bfi/bfi.ps. []

S. Breitinger, U. Klusik, and R. Loogen. An Implementation of Eden on Top of Concurrent Haskell.
In W. Kluge, editor, Implementation of Functional Languages ’, LNCS . Springer-Verlag, .
[]

S. Breitinger, R. Loogen, and S. Priebe. Parallel programmingwithHaskell andMPI. In Implementation
of Functional Languages, . [,]

J. Brenner and L. Cummings. e Hadamard maximum determinant problem. e American Math-
ematical Monthly, ():–, . []

http://dx.doi.org/10.1016/S0019-9958(82)90766-5
http://archiv.ub.uni-marburg.de/diss/z1999/0142/
http://www.mathematik.uni-marburg.de/fb12/bfi/bfi10.ps
http://www.mathematik.uni-marburg.de/fb12/bfi/bfi10.ps

216 Bibliography

R. Brent. Error analysis of algorithms for matrix multiplication and triangular decomposition using
Winograd’s identity. Numerische Mathematik, :–, . ISSN -X. DOI http://dx.doi.
org/./BF. []

C. Brezinski. e long history of continued fractions and Padé approximants. In M. de Bruin and
H. van Rossum, editors, Padé Approximation and its Applications, LNM , pages –. Springer-
Verlag, . DOI http://dx.doi.org/./BFb. []

M. Brickenstein. Slimgb: Gröbner bases with slim polynomials. Revista Matemática Complutense, :
–, . ISSN -. DOI http://dx.doi.org/./s---. [,]

M. Bronstein. Symbolic integration I: transcendental functions, volume . Springer-Verlag, . []

M. Bronstein, J. Davenport, A. Fortenbacher, et al. Axiom – the year horizon, . URL http:
//portal.axiom-developer.org/public/book.pdf. [,]

C. Brown and K. Hammond. Ever-decreasing circles: a skeleton for parallel orbit calculations in Eden.
In TFP’ — Dra Proceedings of the Symposium on Trends in Functional Programming, . [,
, , , ,]

C. Brown, H.-W. Loidl, J. Berthold, and K. Hammond. Improving your CASH flow: e computer
algebra shell. In IFL — ⁿ International Symposium on Implementation and Application of
Functional Languages, . [,]

N. C. C. Brown. Communicating Haskell processes: Composable explicit concurrency using monads.
Communicating Process Architectures, pages –, . WoTUG-. [, ,]

N. C. C. Brown and P. H.Welch. An introduction to the Kent C++CSP library. Communicating Process
Architectures, :–, . [,]

T. Brus, M. van Eekelen, M. van Leer, and M. Plasmeijer. Clean — a language for functional graph
rewriting. In G. Kahn, editor, Functional Programming Languages and Computer Architecture, LNCS
, pages –. Springer-Verlag, . DOI http://dx.doi.org/./---_. []

B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem
nulldimensionalen Polynomideal. PhD thesis, Mathematical Institute, University of Innsbruck, Aus-
tria, . []

B. Buchberger and T. Jebelean. Parallel rational arithmetic for computer algebra systems: Motivat-
ing experiments. RISC Report Series -, Research Institute for Symbolic Computation (RISC),
Johannes Kepler University of Linz, . []

B. Buchberger, E. V. Krishnamurthy, and F. Winkler. Gröbner bases, polynomial remainder sequences
and decoding of multivariate codes. In Recent Trends in Multidimensional Systems eory, pages
–. D. Reidel Publ. Comp., . ISBN ---, ---. [, ,]

B. Buchberger, G. Collins, H. Hong, J. Johnson, W. Krandick, R. Loos, and A. Neubacher. A SACLIB
Primer. Technical Report –, Johannes Kepler University, Linz, Austria, . []

R. Bungers. Über die Koeffizienten von Kreisteilungspolynomen. PhD thesis, Georg-August-Universität
Göttingen, . []

P. Bürgisser, M. Clausen, andM. Shokrollahi. Algebraic complexity theory, volume . Springer-Verlag,
. []

L. E. Cannon. A cellular computer to implement the Kalman filter algorithm. PhD thesis, Montana State
University, . []

http://dx.doi.org/10.1007/BF02308867
http://dx.doi.org/10.1007/BF02308867
http://dx.doi.org/10.1007/BFb0095574
http://dx.doi.org/10.1007/s13163-009-0020-0
http://portal.axiom-developer.org/public/book2.pdf
http://portal.axiom-developer.org/public/book2.pdf
http://dx.doi.org/10.1007/3-540-18317-5_20

Bibliography 217

D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta
Informatica, ():–, . ISSN -. [, , ,]

A. Capani and G. Niesi. CoCoA . User’s Manual. Dipartimento diMatematica, Università di Genova,
Via Dodecaneso, , I- Genova (Italy), . [,]

G. Cesari and R. Maeder. Parallel -primes FFT algorithm. In J. Calmet and C. Limongelli, editors,
Design and Implementation of Symbolic Computation Systems, LNCS , pages –. Springer-
Verlag, a. [,]

G. Cesari and R. Maeder. Performance analysis of the parallel Karatsuba multiplication algorithm for
distributed memory architectures. Journal of Symbolic Computation, (-):–, b. DOI
./jsco... [,]

J.-L. Chabert, editor. A history of algorithms: from the pebble to the microchip. Springer-Verlag, .
[, , , ,]

M. M. T. Chakravarty, R. Leshchinskiy, S. L. Peyton Jones, G. Keller, and S. Marlow. Data Parallel
Haskell: a status report. In DAMP ’, pages –. ACM Press, . [, ,]

B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel programmability and the chapel language.
International Journal of High Performance Computing Applications, ():–, . URL http:
//hpc.sagepub.com/content///.abstract. []

J. M. Chambers and T. J. Hastie. Statistical models in S. CRC Press, . []

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar.
X: an object-oriented approach to non-uniform cluster computing. In Proceedings of the th
annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applica-
tions, OOPSLA ’, pages –. ACM Press, . ISBN ---. DOI http://doi.acm.org/
./.. []

S. Chen and G. D. Doolen. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mech-
anics, ():–, . []

E. W. Cheney and D. R. Kincaid. Numerical mathematics and computing. Brooks/Cole, . []

R. C. C. Cheung, A. Brown,W. Luk, and P. Cheung. A scalable hardware architecture for prime number
validation. In FPT — Proceedings of IEEE International Conference on Field Programmable
Technology, pages –, . [,]

A. Church. e calculi of lambda-conversion. Annals of Mathematics Studies, . []

P. Ciechanowicz and H. Kuchen. Enhancing muesli’s data parallel skeletons for multi-core computer
architectures. In IEEE International Conference on High Performance Computing and Commu-
nications, pages –. IEEE, . []

W. S. Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal of the Amer-
ican Statistical Association, ():–, . ISSN . URL http://www.jstor.org/stable/
. []

W. S. Cleveland and S. J. Devlin. Locally weighted regression: An approach to regression analysis by
local fitting. Journal of the American Statistical Association, ():–, . ISSN .
URL http://www.jstor.org/stable/. []

CoCoA, . CoCoA: a system for doing computations in commutative algebra, . URL http:
//cocoa.dima.unige.it. Retrieved ... [,]

10.1006/jsco.1996.0026
http://hpc.sagepub.com/content/21/3/291.abstract
http://hpc.sagepub.com/content/21/3/291.abstract
http://doi.acm.org/10.1145/1094811.1094852
http://doi.acm.org/10.1145/1094811.1094852
http://www.jstor.org/stable/2286407
http://www.jstor.org/stable/2286407
http://www.jstor.org/stable/2289282
http://cocoa.dima.unige.it
http://cocoa.dima.unige.it

218 Bibliography

H. Cohen. A Course in Computational Algebraic Number eory. Graduate Texts in Mathematics .
Springer-Verlag, forth edition, . [, , , , , , , , , , , , ,]

H. Cohen. Number eory: Tools and Diophantine Equations, volume of Graduate Texts in Mathem-
atics . Springer-Verlag, . ISBN ----. [, ,]

H. Cohen and H. W. Lenstra, Jr. Primality testing and Jacobi sums. Mathematics of Computation,
():–, . [, , , ,]

H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans. Group-theoretic algorithms for matrix multiplica-
tion. In Annual IEEE Symposium on Foundations of Computer Science, pages –. IEEE Com-
puter Society, . ISBN ---. DOI http://doi.ieeecomputersociety.org/./SFCS..
. []

M. I. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation. Research Mono-
graphs in Parallel and Distributed Computing. Pitman, . [, , ,]

M. I. Cole and Y. Hayashi. Static performance prediction of skeletal programs. Parallel Algorithms and
Applications, ():–, . [,]

G. E. Collins and M. J. Encarnación. Efficient rational number reconstruction. Journal of Symbolic
Computation, ():–, . ISSN -. DOI http://dx.doi.org/./jsco... []

S. Cook. On theminimum computation time of functions. Transactions of the American Mathematical
Society, :–, . [,]

J.W. Cooley and J.W. Tukey. An algorithm for themachine calculation of complex fourier series. Math.
Comput., :–, . [, ,]

D. Coppersmith and S. Winograd. On the asymptotic complexity of matrix multiplication. In SFCS’
— ⁿ Annual Symposium on Foundations of Computer Science, pages –. IEEE, . [,]

D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal of sym-
bolic computation, ():–, . ISSN -. []

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT Press, .
[,]

D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: From lists to streams to nothing at all. In
ICFP — Proceedings of the ACM SIGPLAN International Conference on Functional Program-
ming, pages –. ACM Press, . [,]

R. Crandall, K. Dilcher, and C. Pomerance. A search for Wieferich and Wilson primes. Mathematics
of Computation, ():pp. –, . ISSN . URL http://www.jstor.org/stable/.
[]

R. Crandall, E. Jones, J. Klivington, and D. Kramer. Gigaelement FFTs on Apple G clusters. Technical
report, Advanced Computation Group, Apple Computer, August . [,]

R. E. Crandall and C. Pomerance. Prime numbers: a computational perspective. Springer-Verlag,
second edition, . ISBN . [,]

C. G. Cullen. Matrices and Linear Transformations. Dover, Mineola, New York, . Republication
of second edition by Addison–Wesley Publishing Company, . [,]

D.Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, andT.VonEicken.
LogP: Towards a realistic model of parallel computation. ACM SIGPLAN Notices, ():, . []

http://doi.ieeecomputersociety.org/10.1109/SFCS.2005.39
http://doi.ieeecomputersociety.org/10.1109/SFCS.2005.39
http://dx.doi.org/10.1006/jsco.1995.1051
http://www.jstor.org/stable/2153665

Bibliography 219

M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, M. Schörnig, and K. Wildanger. KANT V.
Journal of Symbolic Computation, (-):–, . ISSN -. DOI http://dx.doi.org/.
/jsco... Special Issue on Computational Algebra and Number eory. [,]

L. Dagum and R. Menon. OpenMP: An Industry-Standard API for Shared-Memory Programming.
IEEE Computational Science & Engineering, pages –, . []

L. Damas and R. Milner. Principal type-schemes for functional programs. In Proceedings of the
 ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’, pages
–. ACM Press, . ISBN ---. DOI http://doi.acm.org/./.. []

M. Danelutto and M. Stigliani. SKElib: Parallel programming with skeletons in C. In A. Bode,
T. Ludwig, W. Karl, and R. Wismüller, editors, Euro-Par Parallel Processing, LNCS , pages
–. Springer-Verlag, . DOI http://dx.doi.org/./---X_. []

M. Danelutto, F. Pasqualetti, and S. Pelagatti. Skeletons for Data Parallelism in P3L. In C. Lengauer,
M. Griebl, and S. Gorlatch, editors, Euro-Par’, LNCS , pages –. Springer-Verlag, .
[]

J. Darlington, A. Field, P. Harrison, P. Kelly, D. Sharp, Q. Wu, and R. While. Parallel programming
using skeleton functions. InPARLE’—Parallel Architectures and Languages Europe, pages –.
Springer-Verlag, . []

J. H. Davenport. Computer algebra – past, present and future. Euromath Bulletin, ():–, . []

M. de Kruijf and K. Sankaralingam. MapReduce for the Cell Broadband Engine architecture. IBM
Journal of Research and Development, ():–, . []

J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. In OSDI —
 Symposium on Operating Systems Design And Implementation, volume , page , Berkeley, CA,
USA, . USENIX Association. URL http://portal.acm.org/citation.cfm?id=.. []

J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. Communications
of the ACM, :–, . ISSN -. DOI http://doi.acm.org/./.. []

J. Dean and S. Ghemawat. MapReduce: a flexible data processing tool. Communications of the ACM,
:–, . ISSN -. DOI http://doi.acm.org/./.. []

W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. S -- — A computer algebra
system for polynomial computations, . URL http://www.singular.uni-kl.de. Retrieved ...
[,]

J. W. Demmel, J. R. Gilbert, and X. S. Li. An asynchronous parallel supernodal algorithm for sparse
Gaussian elimination. Siam Journal On Matrix Analysis And Applications, . [,]

J. W. Demmel, M. T. Heath, and H. A. van der Vorst. Parallel numerical linear algebra. Acta Numerica,
:–, . []

M. Díaz, B. Rubio, E. Soler, and J. M. Troya. SBASCO: Skeleton-based scientific components. In Eur-
oMicro Conference on Parallel, Distributed, and Network-Based Processing, page . IEEE Computer
Society, . DOI http://doi.ieeecomputersociety.org/./EMPDP... []

M. Dieterle. Parallele funktionale Implementierung von Master-Worker-Skeletten. Diplomarbeit,
Philipps-Universität Marburg, . [,]

M. Dieterle, J. Berthold, and R. Loogen. A skeleton for distributed work pools in Eden. In M. Blume,
N. Kobayashi, and G. Vidal, editors, Functional and Logic Programming, LNCS , pages –.
Springer-Verlag, a. DOI http://dx.doi.org/./----_. [, ,]

http://dx.doi.org/10.1006/jsco.1996.0126
http://dx.doi.org/10.1006/jsco.1996.0126
http://doi.acm.org/10.1145/582153.582176
http://dx.doi.org/10.1007/3-540-44520-X_166
http://portal.acm.org/citation.cfm?id=1251254.1251264
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1629175.1629198
http://www.singular.uni-kl.de
http://doi.ieeecomputersociety.org/10.1109/EMPDP.2004.1271461
http://dx.doi.org/10.1007/978-3-642-12251-4_24

220 Bibliography

M. Dieterle, T. Horstmeyer, and R. Loogen. Skeleton composition using remote data. In M. Carro
and R. Peña, editors, PADL : International Symposium on Practical Aspects of Declarative
Languages, volume of LNCS, pages –. Springer-Verlag, b. [, , , , , , , ,
, , ,]

E. W. Dijkstra. Hamming’s exercise in SASL. EWD, . []

A. Discolo, T. Harris, S. Marlow, S. Jones, and S. Singh. Lock free data structures using STM in Haskell.
In M. Hagiya and P. Wadler, editors, Functional and Logic Programming, LNCS , pages –.
Springer-Verlag, . DOI http://dx.doi.org/./_. []

P. Dmitruk, L. P. Wang, W. H. Matthaeus, R. Zhang, and D. Seckel. Scalable parallel for spectral
simulations on a beowulf cluster. Parallel Computing, (), . [,]

K. Doets and J. van Eijck. e haskell road to logic, math and programming. . []

P. Duhamel and M. Vetterli. Fast fourier transforms: a tutorial review and a state of the art. Signal
Processing, ():–, . [,]

J. Dunnweber and S. Gorlatch. HOC-SA: A grid service architecture for higher-order components. In
SCC — Proceedings of the IEEE International Conference on Services Computing, pages –.
IEEE, . ISBN . []

H.-D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, J. Neukirch, A. Prestel, R. Rem-
mert, and K. Lamotke. Zahlen. Springer-Verlag, third edition, . ISBN . [,]

G. L. Ebert. Some comments on the modular approach to Gröbner-bases. SIGSAM Bull., ():–,
. ISSN -. [, , ,]

Eden Skeletons, . Eden skeleton library. Soware package, . URL http://www.mathematik.
uni-marburg.de/~eden/doc/edenskel-.../index.html. Retrieved ... [, ,]

J. Edmonds. Systems of distinct representatives and linear algebra. J. Res. Natl. Bur. Stand., Sect. B, :
–, . []

D. Eisenbud. Computations in algebraic geometry with Macaulay . Springer-Verlag, . [, ,]

H. El-Rewini and M. Abd-El-Barr. Advanced Computer Architecture and Parallel Processing. Wiley
Series on Parallel and Distributed Computing. Wiley-Interscience, . ISBN . [,]

I. Z. Emiris andV. Y. Pan. Applications of FFT and structuredmatrices. InM. J. Atallah andM. Blanton,
editors, Algorithms and theory of computation handbook: general concepts and techniques, volume .
Chapman & Hall/CRC, . ISBN . [, , ,]

J. Epstein, A. P. Black, and S. Peyton-Jones. Towards Haskell in the cloud. In Proceedings of the th
ACM symposium on Haskell, Haskell ’, pages –. ACM Press, . ISBN ----.
DOI http://doi.acm.org/./.. [, ,]

H. W. Eves. An introduction to the history of mathematics. Saunders College Publishers, . [, ,
,]

J. F. Ferreira, J. L. Sobral, and A. J. Proenca. JaSkel: A Java skeleton-based framework for structured
cluster and grid computing. In Proceedings of the IEEE International Symposium on Cluster Com-
puting and the Grid, pages –. IEEE Computer Society, . ISBN . []

D. Flanagan and Y. Matsumoto. e Ruby Programming Language. O’Reilly, . [,]

M. J. Flynn. Very high-speed computing systems. Proc IEEE, ():–, . []

http://dx.doi.org/10.1007/11737414_6
http://www.mathematik.uni-marburg.de/~eden/doc/edenskel-1.0.1.1/index.html
http://www.mathematik.uni-marburg.de/~eden/doc/edenskel-1.0.1.1/index.html
http://doi.acm.org/10.1145/2034675.2034690

Bibliography 221

G. E. Forsythe, M. A. Malcolm, and C. B. Moler. Computer methods for mathematical computations.
Prentice Hall Professional Technical Reference, . []

S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings of the annual
ACM Symposium on eory of Computing, pages –. ACM, . []

I. Foster. Designing and building parallel programs: concepts and tools for parallel soware engineering.
Addison–Wesley, . [, ,]

D. Fowler. e mathematics of Plato’s academy. Oxford Clarendon, . []

A. S. Fraenkel. New proof of the generalized Chinese remainder theorem. Proceedings of the American
Mathematical Society, ():–, . ISSN . URL http://www.jstor.org/stable/.
[]

A. S. Fraenkel. Systems of numeration. eAmericanMathematicalMonthly, ():–, . ISSN
. URL http://www.jstor.org/stable/. []

M. Frigo and S. G. Johnson. e design and implementation of FFTW. Proc IEEE, (), . URL
http://www.fftw.org/fftw-paper-ieee.pdf. []

B. Fuchssteiner. MuPAD. Birkhäuser, . [,]

B. Fulgham and I. Gouy. e computer language benchmarks game, . URL http://shootout.alioth.
debian.org. Retrieved ... []

M. Fürer. Faster integer multiplication. In Proceedings of the annual ACM Symposium on eory
of Computing, STOC ’, pages –. ACM Press, . ISBN ----. DOI http://doi.
acm.org/./.. []

L. A. Galán, C. Pareja, and R. Peña. Functional skeletons generate process topologies in Eden. In
PLILP’ — Programming Languages: Implementations, Logics, and Programs, LNCS , pages
–. Springer-Verlag, . [,]

GAP, . GAP – Groups, Algorithms, and Programming, Version ... e GAP Group, . URL
http://www.gap-system.org. [,]

T. Gautier and N. Mannhart. Parallelism in aldor—the communication library πit for parallel, distrib-
uted computation. Euro-Par’ Parallel Processing, pages –, . []

K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for computer algebra. Kluwer, . []

D. Geer. Chip makers turn to multicore processors. Computer, ():–, . ISSN -. []

M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, and B. Mohr. e Scalasca performance
toolset architecture. Concurrency and Computation: Practice and Experience, (), . []

W. M. Gentleman. Some complexity results for matrix computations on parallel processors. Journal
of the ACM, ():–, . ISSN -. DOI http://doi.acm.org/./.. []

W. M. Gentleman and G. Sande. Fast fourier transforms: for fun and profit. In Proceedings of the
November -, , Fall Joint Computer Conference, AFIPS ’ (Fall), pages –. ACM Press,
. DOI http://doi.acm.org/./.. [,]

GiNaC. GiNaC program. URL http://www.ginac.de. []

O. Gloor and S. Muller. Parcan — a parallel computer algebra nucleus, . [,]

G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins Univ Pr, . [, ,]

http://www.jstor.org/stable/2034995
http://www.jstor.org/stable/2322638
http://www.fftw.org/fftw-paper-ieee.pdf
http://shootout.alioth.debian.org
http://shootout.alioth.debian.org
http://doi.acm.org/10.1145/1250790.1250800
http://doi.acm.org/10.1145/1250790.1250800
http://www.gap-system.org
http://doi.acm.org/10.1145/322047.322057
http://doi.acm.org/10.1145/1464291.1464352
http://www.ginac.de

222 Bibliography

H.González-Vélez andM. Leyton. A survey of algorithmic skeleton frameworks: high-level structured
parallel programming enablers. Soware: Practice and Experience, ():–, . ISSN
-X. DOI ./spe.. []

S. Gorlatch. Systematic extraction and implementation of divide-and-conquer parallelism. In
H. Kuchen and S. Doaitse Swierstra, editors, Programming Languages: Implementations, Logics,
and Programs, LNCS , pages –. Springer-Verlag, . DOI http://dx.doi.org/./
---_. [,]

S. Gorlatch. Programming with divide-and-conquer skeletons: A case study of FFT. Journal of Super-
computing, (-):–, a. [, , , ,]

S. Gorlatch. Abstraction and Performance in the Design of Parallel Programs. Habilitation thesis, Uni-
versität Passau, b. URL http://wwwmath.uni-muenster.de/pvs/publikationen/papers/Gora.ps.gz.
MIP-. Retrieved ... []

S. Gorlatch and H. Bischof. A generic MPI implementation for a data-parallel skeleton: Formal deriv-
ation and application to FFT. Parallel Processing Letters, (), . [, , ,]

D.Goswami, A. Singh, andB. R. Preiss. Fromdesign patterns to parallel architectural skeletons. Journal
of Parallel and Distributed Computing, ():–, . ISSN -. []

J. Grabmeier, E. Kaltofen, and V.Weispfenning. Computer algebra handbook: foundations, applications,
systems. Springer-Verlag, . ISBN . [, , , , , ,]

R. L. Graham, D. E. Knuth, andO. Patashnik. Concrete mathematics: a foundation for computer science.
Addison–Wesley, . []

A. Y. Grama, A. Gupta, and V. Kumar. Isoefficiency: Measuring the scalability of parallel al-
gorithms and architectures. IEEE Concurrency, ():–, . ISSN -. DOI http:
//doi.ieeecomputersociety.org/./.. []

A. Y. Grama, V. Kumar, A. Gupta, and G. Karypis. Introduction to parallel computing. Addison–Wesley,
. [, , , , , , , , , ,]

T. Granlund and A. B. Swox. e GNU multiple precision arithmetic library, . URL http://gmplib.
org/. Retrieved ... []

B. Grayson and R. Geijn. A high performance parallel Strassen implementation. Parallel Processing
Letters, ():–, . DOI http://dx.doi.org/./S. []

D. R. Grayson and M. E. Stillman. Macaulay, a soware system for research in algebraic geometry,
. URL http://www.math.uiuc.edu/Macaulay/. Retrieved ... [,]

R. T. Gregory. Error-free computation with rational numbers. BIT Numerical Mathematics, ():
–, . [, , , ,]

R. T. Gregory and E. V. Krishnamurthy. Methods and Applications of Error–Free Computation. Sprin-
ger-Verlag, . ISBN ---, ---. [, , , , , , , , , , ,
,]

C. Grelck and S.-B. Scholz. Towards an efficient functional implementation of the NAS benchmark FT.
In PaCT, LNCS , pages –. Springer-Verlag, . []

G.-M. Greuel, G. Pfister, and H. Schönemann. S .. A Computer Algebra System for
Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern, . URL
http://www.singular.uni-kl.de. Retrieved ... [,]

10.1002/spe.1026
http://dx.doi.org/10.1007/3-540-61756-6_91
http://dx.doi.org/10.1007/3-540-61756-6_91
http://wwwmath.uni-muenster.de/pvs/publikationen/papers/Gor98a.ps.gz
http://doi.ieeecomputersociety.org/10.1109/88.242438
http://doi.ieeecomputersociety.org/10.1109/88.242438
http://gmplib.org/
http://gmplib.org/
http://dx.doi.org/10.1142/S0129626496000029
http://www.math.uiuc.edu/Macaulay2/
http://www.singular.uni-kl.de

Bibliography 223

J. H. Griesmer and R. D. Jenks. SCRATCHPAD/: An interactive facility for symbolic mathematics. In
Proceedings of the ⁿ ACM Symposium on Symbolic and Algebraic Manipulation, pages –. ACM
Press, . []

L. C. Grove. Algebra. Dover, . Republication of an edition by Academic Press, . [, , ,
, , , , , ,]

H. Gupta and P. Sadayappan. Communication-efficient matrix multiplication on hypercubes. Parallel
Computing, ():–, . ISSN -. DOI http://dx.doi.org/./-()-.
[,]

S. K. S. Gupta, C.-H. Huang, P. Sadayappan, and R. W. Johnson. Implementing fast Fourier transforms
on distributed-memory multiprocessors using data redistributions. Parallel Processing Letters, ():
–, . []

J. L. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM, :–, . []

J. L. Gustafson, G. R. Montry, and R. E. Benner. Development of parallel methods for a -processor
hypercube. SIAM Journal on Scientific and Statistical Computing, ():–, . [,]

R. K. Guy. Unsolved problems in number theory. Springer-Verlag, . ISBN . []

J. S. Hadamard. Résolution d’une question relative aux déterminants. Bulletin des Sciences Math-
ématiques, ():–, . []

Hadoop, . Apache hadoop. Website, . URL http://hadoop.apache.org/. Retrieved ... []

T. Hahnel. e Rabin–Miller Prime Number Test on Systola on the Background of Cryptography.
Master’s thesis, University of Karlsruhe, . [,]

B. Haible and R. Kreckel. CLN, a class library for numbers manual, . URL http://www.ginac.de/
CLN/cln.ps. Retrieved ... []

P. Haller and M. Odersky. Event-based programming without inversion of control. Modular Program-
ming Languages, pages –, . [,]

P. Haller and M. Odersky. Actors that unify threads and events. In A. Murphy and J. Vitek, editors,
Coordination Models and Languages, LNCS , pages –. Springer Berlin / Heidelberg, .
DOI http://dx.doi.org/./----_. []

P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based programming. e-
oretical Computer Science, (-):–, . ISSN -. DOI http://dx.doi.org/./j.
tcs.... Distributed Computing Techniques. [, , ,]

R. H. Halstead Jr. MULTILISP: a language for concurrent symbolic computation. ACM Transactions
on Programming Languages and Systems (TOPLAS), :–, October . ISSN -. DOI
http://doi.acm.org/./.. []

M. Hamdi and C.-K. Lee. Dynamic load balancing of data parallel applications on a distributed net-
work. In ICS —Proceedings of the international conference on Supercomputing, pages –.
ACM, . ISBN ---. DOI http://doi.acm.org/./.. []

J. Hammes, S. Sur, and A. P. W. Böhm. On the effectiveness of functional language features: NAS
benchmark FT. J. Funct. Program., ():–, . [,]

K.Hammond, J. Berthold, andR. Loogen. Automatic Skeletons in TemplateHaskell. Parallel Processing
Letters, ():–, . []

http://dx.doi.org/10.1016/0167-8191(95)00058-5
http://hadoop.apache.org/
http://www.ginac.de/CLN/cln.ps
http://www.ginac.de/CLN/cln.ps
http://dx.doi.org/10.1007/978-3-540-72794-1_10
http://dx.doi.org/10.1016/j.tcs.2008.09.019
http://dx.doi.org/10.1016/j.tcs.2008.09.019
http://doi.acm.org/10.1145/4472.4478
http://doi.acm.org/10.1145/224538.224557

224 Bibliography

K. Hammond, D. Petcu, P. Trinder, A. A. Zain, S. Linton, and G. Michaelson. Project paper: the
SCIEnce joint research activity symbolic computing on the grid. InTFP’: International Symposium
on Trends in Functional Programming. Intellect, . Dra Proceedings. [,]

G. H. Hardy. A mathematician’s apology. Cambridge University Press, . ISBN ----.
Reprint. [,]

G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Oxford Clarendon, fourth
edition, . [,]

T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable memory transactions. Communic-
ations of the ACM, :–, . ISSN -. DOI http://doi.acm.org/./..
[,]

T. Harris, J. Larus, and R. Rajwar. Transactional memory. Synthesis Lectures on Computer Architecture,
():–, . URL http://www.morganclaypool.com/doi/abs/./SEDVYCAC.
[,]

L. Hatton. Language subsetting in an industrial context: A comparison of MISRA C and MISRA
C . Information and Soware Technology, ():–, . []

B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: a MapReduce framework on graphics
processors. InProceedings of the international conference on Parallel architectures and compilation
techniques, PACT ’, pages –. ACM Press, . ISBN ----. DOI http://doi.
acm.org/./.. []

A. C. Hearn. Computation of algebraic properties of elementary particle reactions using a digital
computer. Communications of the ACM, :–, . ISSN -. DOI http://doi.acm.org/
./.. []

A. C. Hearn. REDUCE — User’s Manual Version ., . reduce@rand.org. [,]

M. T. Heideman, D. H. Johnson, and C. S. Burrus. Gauss and the history of the FFT. IEEE Acoustics,
Speech, and Signal Processing Magazine, :–, . []

B. Hendrickson, David, and E. Womble. e torus–wrap mapping for dense matrix calculations on
massively parallel computers. SIAM J. Sci. Stat. Comput, :–, . []

K. Hensel. eorie der algebraischen Zahlen. BG Teubner, . []

M. Herlihy. Transactional memory today. In T. Janowski and H. Mohanty, editors, Distributed
Computing and Internet Technology, volume LNCS , pages –. Springer-Verlag, . DOI
http://dx.doi.org/./----_. stm. []

M.Herlihy and J. E. B.Moss. Transactionalmemory: architectural support for lock-free data structures.
In Proceedings of the th Annual International Symposium on Computer Architecture, ISCA ’,
pages –. ACM Press, . ISBN ---. DOI http://doi.acm.org/./..
[,]

C. A. Herrmann. e Skeleton-Based Parallelization of Divide-and-Conquer Recursions. PhD thesis,
Universität Passau, . ISBN ---. [, , , , ,]

C. Hewitt, P. Bishop, and R. Steiger. A universal modular ACTOR formalism for artificial intelligence.
In Proceedings of the International Joint Conference on Artificial Intelligence, pages –. Mor-
gan Kaufmann, . URL http://portal.acm.org/citation.cfm?id=.. [, , , ,]

A. J. G. Hey. Experiments in MIMD parallelism. Future Generation Computer Systems, ():–,
. ISSN -X. DOI ./-X()-. []

http://doi.acm.org/10.1145/1378704.1378725
http://www.morganclaypool.com/doi/abs/10.2200/S00272ED1V01Y201006CAC011
http://doi.acm.org/10.1145/1454115.1454152
http://doi.acm.org/10.1145/1454115.1454152
http://doi.acm.org/10.1145/365758.365766
http://doi.acm.org/10.1145/365758.365766
reduce@rand.org
http://dx.doi.org/10.1007/978-3-642-11659-9_1
http://doi.acm.org/10.1145/165123.165164
http://portal.acm.org/citation.cfm?id=1624775.1624804
10.1016/0167-739X(90)90018-9

Bibliography 225

M. Hidalgo-Herrero and Y. Ortega-Mallén. An operational semantics for the parallel language eden.
Parallel Processing Letters, ():–, . []

M. Hidalgo-Herrero and Y. Ortega-Mallén. Continuation semantics for parallel haskell dialects. In
A. Ohori, editor, Programming Languages and Systems, LNCS , pages –. Springer-Verlag,
. DOI http://dx.doi.org/./----_. []

M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era. Computer, . [,]

R. Hindley. e principal type-scheme of an object in combinatory logic. Transactions of the American
Mathematical Society, :–, . URL http://www.jstor.org/stable/. []

R. Hinze. Functional pearl: streams and unique fixed points. In ICFP ’ — Proceedings of the
ACM SIGPLAN International Conference on Functional Programming, pages –, . [, ,
]

C. A. R. Hoare. Communicating sequential processes. Communications of the ACM, :–, .
ISSN -. DOI http://doi.acm.org/./.. [, , ,]

T.Horstmeyer and R. Loogen. Graph-based comminication in Eden. In Z. Horváth, V. Zsók, P. Achten,
and P. Koopman, editors, TFP’ — Trends in Fuctional Programming, volume , pages –. In-
tellect, . []

C.-H.Huang. A fully parallelmixed-radix conversion algorithm for residue number applications. IEEE
Transactions on Computers, ():–, . ISSN -. []

C.-H. Huang, J. R. Johnson, and R. W. Johnson. A tensor product formulation of strassen’s matrix
multiplication algorithm. Applied Mathematics Letters, ():–, . ISSN -. DOI
http://dx.doi.org/./-()-. []

X. Huang and V. Y. Pan. Fast rectangular matrix multiplication and applications. Journal of complexity,
:–, . ISSN -X. [,]

P. Hudak and M. P. Jones. Haskell vs. Ada vs. C++ vs. awk vs. …: An experiment in soware proto-
typing productivity, . URL http://haskell.org/papers/NSWC/jfp.ps. []

S. Huss-Lederman, E. Jacobson, J. Johnson, A. Tsao, and T. Turnbull. Implementation of Strassen’s
algorithm for matrix multiplication. In Proceedings of the ACM/IEEE Conference on Supercom-
puting, pages –, . []

G.Hutton. A tutorial on the universality and expressiveness of fold. Journal of Functional Programming,
:–, July . ISSN -. DOI ./S. []

G. Hutton. Programming in Haskell. Cambridge University Press, . ISBN -. []

N. Idrees, G. Pfister, and S. Steidel. Parallelization of modular algorithms. Journal of Symbolic Compu-
tation, (): – , . ISSN -. DOI http://dx.doi.org/./j.jsc.... [, ,
, ,]

R. Ihaka and R. Gentleman. R: A language for data analysis and graphics. J. of computational and
graphical statistics, pages –, . []

E. Ipek, B. de Supinski, M. Schulz, and S. McKee. An approach to performance prediction for parallel
applications. In J. Cunha and P. Medeiros, editors, Euro-Par Parallel Processing, LNCS ,
pages –. Springer-Verlag, . DOI http://dx.doi.org/./_. []

ISO/IEC :. Programming languages – C, . [, , ,]

http://dx.doi.org/10.1007/978-3-540-40018-9_20
http://www.jstor.org/stable/1995158
http://doi.acm.org/10.1145/359576.359585
http://dx.doi.org/10.1016/0893-9659(90)90139-3
http://haskell.org/papers/NSWC/jfp.ps
10.1017/S0956796899003500
http://dx.doi.org/10.1016/j.jsc.2011.01.003
http://dx.doi.org/10.1007/11549468_24

226 Bibliography

P. A. Jackson, C. P. Chan, J. E. Scalera, C. M. Rader, and M. M. Vai. A systolic FFT architecture for
real time FPGA systems. In Proceedings of the High Performance Embedded Computing Conference,
. []

V. Janjic and K. Hammond. Granularity-aware work-stealing for computationally-uniform grids. In
 IEEE/ACM International Conference onCluster, Cloud andGrid Computing, pages –. IEEE,
. []

T. Jebelean. Using the parallel Karatsuba algorithm for long integer multiplication and division. In
Euro-Par’ Parallel Processing, pages –. Springer-Verlag, . []

R. D. Jenks and R. S. Sutor. Axiom — e Scientific Computation System. Springer-Verlag, . []

G. Jones and G. Jones. Programming in occam. Prentice-Hall International, . []

J. P. Jones, D. Sato, H. Wada, and D. Wiens. Diophantine representation of the set of prime numbers.
American Mathematical Monthly, pages –, . []

H. G. Kahrimanian. Analytical differentiation by a digital computer. Master’s thesis, Temple University,
. []

N. H. Kapadia, J. A. B. Fortes, and C. E. Brodley. Predictive application-performance modeling in a
computational grid environment. In Proceedings of the International Symposium on High Per-
formance Distributed Computing, pages –. IEEE, . []

A. Karatsuba. e complexity of computations. Proc. Steklov Inst. Math, :–, . [,]

A.Karatsuba andY.Ofman. Multiplication ofmany-digital numbers by automatic computers. Doklady
Akad. Nauk SSSR, :–, . Translation in Physics–Doklady , –, . [, ,]

J. Karczmarczuk. Scientific computation and functional programming. Computing in Science & En-
gineering, ():–, . []

J. Karczmarczuk. Lazy processing and optimization of discrete sequences. In Proceedings of the JFLA,
. []

A. H. Karp and H. P. Flatt. Measuring parallel processor performance. Comm. ACM, ():–,
. [, , ,]

M. Kesseler. Constructing skeletons in Clean: the bare bones. In HPFC’ — Proceedings of High
Performance Functional Computing, pages –, . []

A. Y. Khinchin. Continued Fractions. Dover Publications, Inc., . Translation originally published
by University of Chicago Press, . Russian edition in year . []

S. Khirevich. LBM and RWPT timings on Jülich Blue Gene. Private communication, May . [,
,]

S. Khirevich and A. Daneyko. Simulation of fluid flow andmass transport at extreme scale. In B.Mohr
and W. Frings, editors, Jülich Blue Gene/P Extreme Scaling Workshop . Jülich Supercomputing
Centre, . []

S. Khirevich, A. Höltzel, S. Ehlert, A. Seidel-Morgenstern, and U. Tallarek. Large-scale simulation
of flow and transport in reconstructed hplc-microchip packings. Analytical Chemistry, ():
–, a. DOI ./acd. []

S. Khirevich, A. Höltzel, A. Seidel-Morgenstern, and U. Tallarek. Time and length scales of eddy dis-
persion in chromatographic beds. Analytical Chemistry, ():–, b. DOI ./
acd. []

10.1021/ac900631d
10.1021/ac901187d
10.1021/ac901187d

Bibliography 227

U. Klusik, R. Loogen, and S. Priebe. Controlling parallelism and data distribution in Eden. In SFP
 — Scottish Functional Programming Workshop, volume of TFP, pages –. Intellect, .
[]

U. Klusik, R. Loogen, S. Priebe, and F. Rubio. Implementation skeletons in Eden — low-effort parallel
programming. In IFL — Implementation of Functional Languages, LNCS , pages –.
Springer-Verlag, . [, , , , ,]

T. Knight. An architecture formostly functional languages. In Proceedings of the ACM Conference
on LISP and Functional Programming, LFP ’, pages –. ACMPress, . ISBN---.
DOI http://doi.acm.org/./.. [,]

D. E. Knuth. e Art of Computer Programming, volume . Addison–Wesley, third edition, . [,
, , , , , ,]

N. Koblitz. p-adic Numbers, p-adic Analysis, and Zeta-Functions. Springer-Verlag, . ISBN
. [,]

N. Koblitz. A course in Number eory and Cryptography. Springer-Verlag, . ISBN .
[]

P.Kornerup andR. T.Gregory. Mapping integers andHensel codes onto Farey fractions. BITNumerical
Mathematics, ():–, . [, ,]

P. Kornerup andD.W.Matula. Finite Precision Number Systems and Arithmetic. Cambridge Univeristy
Press, . ISBN . [,]

H. Koy and C. Schnorr. Segment LLL-reduction with floating point orthogonalization. Cryptography
and Lattices, pages –, . []

H. Kredel. Distributed hybrid Gröbner bases computation. Complex, Intelligent and Soware Intensive
Systems, International Conference, pages –, . []

H. Kuchen. e Münster skeleton library Muesli, . URL http://www.wi.uni-muenster.de/pi/
forschung/Skeletons/index.html. Retrieved ... []

H. Kuchen and J. Striegnitz. Features from functional programming for a C++ skeleton library. Con-
currency and Computation: Practice and Experience, (-):–, . ISSN -. []

W. Kuechlin. PARSAC-: Parallel Computer Algebra on the Desk Top. In Computer Algebra in Science
and Engineering. World Scientific Publishing Company, . [,]

V. Kumar and A. Gupta. Analyzing scalability of parallel algorithms and architectures. Journal of
Parallel and Distributed Computing, ():–, . []

Y.-K. Kwok and I. Ahmad. Benchmarking and comparison of the task graph scheduling algorithms.
Journal of Parallel and Distributed Computing, ():–, a. ISSN -. DOI http:
//dx.doi.org/./jpdc... []

Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task graphs to mul-
tiprocessors. ACM Computing Surveys, :–, December b. ISSN -. DOI
http://doi.acm.org/./.. []

J. Laderman, V. Pan, and X.-H. Sha. On practical algorithms for accelerated matrix multiplication. Lin-
ear Algebra and its Applications, -:–, . ISSN -. DOI ./-()
-O. [,]

R. Lämmel. Google’s mapreduce programming model — revisited. Science of Computer Programming,
(): – , . ISSN -. DOI ./j.scico.... []

http://doi.acm.org/10.1145/319838.319854
http://www.wi.uni-muenster.de/pi/forschung/Skeletons/index.html
http://www.wi.uni-muenster.de/pi/forschung/Skeletons/index.html
http://dx.doi.org/10.1006/jpdc.1999.1578
http://dx.doi.org/10.1006/jpdc.1999.1578
http://doi.acm.org/10.1145/344588.344618
10.1016/0024-3795(92)90393-O
10.1016/0024-3795(92)90393-O
10.1016/j.scico.2007.07.001

228 Bibliography

S. Lang. Linear Algebra. Springer-Verlag, third edition, . [,]

S. Lang. Algebra. Graduate Texts in Mathematics . Springer-Verlag, third edition, . ISBN
X. [, , ,]

D. H. Lehmer. Euclid’s algorithm for large numbers. American Mathematical Monthly, pages –,
. []

E. Lehmer. On the magnitude of the coefficients of the cyclotomic polynomial. Bull. Amer. Math. Soc,
:–, . []

H.W. Lenstra, Jr. Divisors in residue classes. Mathematics of Computation, ():–, . URL
http://www.jstor.org/stable/. [,]

V. Levandovskyy. Non–commutative computer algebra for polynomial algebras: Gröbner bases, applica-
tions and implementation. PhD thesis, Universität Kaiserslautern, . []

M. Leyton and J. M. Piquer. Skandium: Multi-core programming with algorithmic skeletons. In
Euromicro Conference on Parallel, Distributed and Network-based Processing, pages –. IEEE,
. []

K. Li, Y. Pan, and S. Q. Zheng. Fast and processor efficient parallel matrix multiplication algorithms
on a linear array with a reconfigurable pipelined bus system. IEEE Transactions on Parallel and
Distributed Systems, ():–, . ISSN -. [, ,]

C. Limongelli. On an efficient algorithm for big rational number computations by parallel p-adics.
Journal of Symbolic Computation, :–, . ISSN -. []

O. Lobachev. Multimodulare Arithmetik. Diplomarbeit, Justis-Liebig-Universität Gießen, Mar. .
[, , , , , , , ,]

O. Lobachev. Multimodulare Arithmetik. Logos, Berlin, Germany, a. ISBN ----.
[, , , , , , , , ,]

O. Lobachev. On an implementation of parallel computation skeletons with premature termination
property. International Journal of High Performance Computing and Networking, b. Submitted
to the Special Issue on Multicore Programming. []

O. Lobachev and R. Loogen. Towards an implementation of a computer algebra system in a functional
language. In S. Autexier, J. Campbell, J. Rubio, V. Sorge, M. Suzuki, and F. Wiedijk, editors, Intel-
ligent Computer Mathematics, LNAI , pages –. AISC : International Conference
on Artificial Intelligence and Symbolic Computation, Springer-Verlag, . [B, , , , , , ,
,]

O. Lobachev and R. Loogen. Implementing data parallel rational multiple-residue arithmetic in Eden.
In V. P. Gerdt, W. Koepf, E. W. Mayr, and E. H. Vorozhtsov, editors, CASC’: Computer Algebra
in Scientific Computing, LNCS , pages –. Springer-Verlag, a. Extended and revised
version in [Lobachev and Loogen, b]. [B, , , , , , ,]

O. Lobachev and R. Loogen. Implementing data parallel rational multiple-residue arithmetic in Eden.
Technical Report bi-, Fachbereich Mathematik und Informatik der Philipps-Universität Mar-
burg, b. [, , , , , , , ,]

O. Lobachev and R. Loogen. Estimating parallel performance, a skeleton-based approach. In Proceed-
ings of International Workshop on High-level Parallel Programming and Applications, pages –.
ACM Press, c. [B, , , , , , , ,]

O. Lobachev, M. Guthe, and R. Loogen. Estimating parallel performance. International Journal of
Parallel Programming, . Submitted. [,]

http://www.jstor.org/stable/2007582

Bibliography 229

H.-W. Loidl. Linsolv: A case study in strategic parallelism. In Glasgow Workshop on Functional Pro-
gramming, . [, ,]

H.-W. Loidl, F. Rubio Diez, N. Scaife, et al. Comparing parallel functional languages: Programming
and performance. HOSC, (), . []

R. Loogen, Y. Ortega-Mallén, R. Peña, S. Priebe, and F. Rubio. Parallelism abstractions in Eden. In
F. A. Rabhi and S. Gorlatch, editors, Patterns and Skeletons for Parallel and Distributed Computing,
pages –. Springer-Verlag, . ISBN ---. [, , , , , , , , , , , ,
]

R. Loogen, Y. Ortega-Mallén, and R. Peña-Marí. Parallel Functional Programming in Eden. Journal
of Functional Programming, ():–, . [, , , , , , , , ,]

Q. Luo and J. B. Drake. A scalable parallel Strassen’s matrix multiplication algorithm for distributed-
memory computers. In SAC ’: Proceedings of the ACM Symposium on Applied Computing,
pages –. ACM Press, . ISBN ---. DOI http://doi.acm.org/./..
[,]

R. G. Lyons. Understanding digital signal processing. Prentice Hall, . ISBN . [,]

MacTutor. History of mathematics archive, . URL http://www-history.mcs.st-and.ac.uk/. Retrieved
... [, , ,]

U. Manber. Introduction to algorithms: a creative approach. Addison–Wesley, . ISBN .
[]

S. Marlow, S. Peyton-Jones, and S. Singh. Runtime support for multicore Haskell. ACM SIGPLAN
Notices, ():–, . [, , ,]

S.Marlow, P.Maier, H.W. Loidl, M. K. Aswad, and P. Trinder. Seq nomore: better strategies for parallel
Haskell. In Proceedings of the ACM Symposium on Haskell, Haskell ’, pages –. ACM Press,
. []

S. Marlow, R. Newton, and S. Peyton Jones. A monad for deterministic parallelism. In Proceedings
of the ACM Symposium on Haskell, Haskell ’, pages –. ACM Press, . ISBN ---
-. DOI http://doi.acm.org/./.. [, , ,]

P. Marti-Puig, R. R. Bolaño, and V. P. Baradad. Radix-R FFT and IFFT factorizations for parallel
implementation. In International Symposium on Distributed Computing and Artificial Intelligence,
DCAIA ’, pages –. Springer-Verlag, . []

W. A. Martin and R. J. Fateman. e MACSYMA system. In Proceedings of the ⁿ ACM Symposium
on Symbolic And Algebraic Manipulation, SYMSAC ’, pages –. ACM Press, . DOI http:
//doi.acm.org/./.. [,]

R. Martínez and R. Peña. Building an interface between Eden and Maple: A way of parallelizing
computer algebra algorithms. In P. W. Trinder, G. Michaelson, and R. Peña, editors, IFL —
 International Workshop on Implementation of Functional Languages, Revised Papers, LNCS ,
pages –. Springer-Verlag, . [,]

Yu. V. Matiyasevich. Diophantine representation of the set of prime numbers. In Dokl. Akad. Nauk
SSSR, volume , pages –, . []

Yu. V. Matiyasevich. Primes are nonnegative values of a polynomial in variables. Journal of Math-
ematical Sciences, ():–, . DOI http://dx.doi.org/./BF. Translation of
publication in eoretical application of methods of mathematical logic. Part II, Zap. Nauchn. Sem.
LOMI. URL http://www.ams.org/mathscinet-getitem?mr=. []

http://doi.acm.org/10.1145/315891.315965
http://www-history.mcs.st-and.ac.uk/
http://doi.acm.org/10.1145/2034675.2034685
http://doi.acm.org/10.1145/800204.806267
http://doi.acm.org/10.1145/800204.806267
http://dx.doi.org/10.1007/BF01404106
http://www.ams.org/mathscinet-getitem?mr=505376

230 Bibliography

K. Matsuzaki, H. Iwasaki, K. Emoto, and Z. Hu. A library of constructive skeletons for sequential
style of parallel programming. In Proceedings of the International Conference on Scalable Inform-
ation Systems, InfoScale ’. ACM Press, . ISBN ---. DOI http://doi.acm.org/./
.. [,]

M. M. Maza, B. Stephenson, S. M. Watt, and Y. Xie. Multiprocessed parallelism support in ALDOR
on SMPs and multicores. In Proceedings of the International Workshop on Parallel Symbolic
Computation, PASCO ’, pages –. ACM Press, . ISBN ----. DOI http:
//doi.acm.org/./.. []

M. D. McIlroy. Power series, power serious. Journal of Functional Programming, ():–, .
DOI http://dx.doi.org/./S. Functional pearl. [, , ,]

M. D. McIlroy. e music of streams. Information Processing Letters, (-):–, . DOI
http://dx.doi.org/./S-()-. [, , ,]

S. D. Mechveliani. Haskell and computer algebra. Manuscript, . URL http://www.botik.ru/pub/
local/Mechveliani/basAlgPropos/haskellInCA.ps.zip. Pereslavl-Zalessky, Russia. [,]

S. D. Mechveliani. DoCon the algebraic domain constructor program, a. URL http://www.haskell.
org/docon/. Retrieved ... [, ,]

S. D. Mechveliani. DoCon. e Algebraic Domain Constructor Manual. Program Systems Institute,
Pereslavl–Zalessky, Russia, b. Version .. [,]

H. Meuer, E. Strohmaier, H. Simon, and J. Dongarra. Top supercomputing sites, . URL http:
//www.top.org. Retrieved ... []

G. Michaelson, N. Scaife, P. Bristow, and P. King. Nested Algorithmic Skeletons from Higher Order
Functions. Parallel Algorithms and Appl., :–, . [,]

A. Migotti. Zur eorie der Kreisteilungsgleichung. In Sitzber. der Classe der Kaiserlichen Akademie
der Wissenschaen, volume , pages –, Wien, . []

P. Mihăilescu. Cyclotomy primality proving – recent developments. In J. Buhler, editor, Algorithmic
Number eory, LNCS , pages –. Springer-Verlag, . DOI http://dx.doi.org/./
BFb. []

G. L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer and System Sciences,
():–, . [,]

R. Milner. A theory of type polymorphism in programming. Journal of Computer and System Sciences,
():–, . ISSN -. DOI http://dx.doi.org/./-()-. []

M. Monagan. Maximal quotient rational reconstruction: an almost optimal algorithm for rational
reconstruction. In Proceedings of the International Symposium on Symbolic and Algebraic
Computation, ISSAC ’, pages –. ACM Press, . ISBN ---X. DOI http:
//doi.acm.org/./.. []

M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. McCarron, and P. DeMarco.
Maple Programming Guide. Mapleso, . [, , ,]

P. L. Montgomery. Modular multiplication without trial division. Mathematics of Computation,
():–, . [,]

P. L.Montgomery. Five, six, and seven-termKaratsuba-like formulae. IEEETransactions on Computers,
pages –, . []

http://doi.acm.org/10.1145/1146847.1146860
http://doi.acm.org/10.1145/1146847.1146860
http://doi.acm.org/10.1145/1278177.1278188
http://doi.acm.org/10.1145/1278177.1278188
http://dx.doi.org/10.1017/S0956796899003299
http://dx.doi.org/10.1016/S0020-0190(00)00201-5
http://www.botik.ru/pub/local/Mechveliani/basAlgPropos/haskellInCA2.ps.zip
http://www.botik.ru/pub/local/Mechveliani/basAlgPropos/haskellInCA2.ps.zip
http://www.haskell.org/docon/
http://www.haskell.org/docon/
http://www.top500.org
http://www.top500.org
http://dx.doi.org/10.1007/BFb0054854
http://dx.doi.org/10.1007/BFb0054854
http://dx.doi.org/10.1016/0022-0000(78)90014-4
http://doi.acm.org/10.1145/1005285.1005321
http://doi.acm.org/10.1145/1005285.1005321

Bibliography 231

G. E. Moore. Cramming more components onto integrated circuits. Proceedings of the IEEE, ():
–, . ISSN -. Original publication was in April , , in Electronics. []

J. F. Morrison. Parallel p-adic computation. Information Processing Letters, ():–, . ISSN
-. DOI ./-()-. [,]

MPI, . MPI: A Message-Passing Interface Standard — Version .. High Performance Computing
Center Stuttgart, . [, ,]

H. Naundorf. Parallelism in MuPAD. In M. Wester, S. Steinberg, and M. Jahn, editors, Electronic
Proceedings of the International IMACS Conference on Applications of Computer Algebra, May .
[,]

D. K. Nguyen, I. Lavallèe, M. Bui, and Q. T. Ha. A general scalable parallelizing of Strassen’s algorithm
for matrix multiplication on distributed memory computers. In ICIS ’ — Fourth ACIS Intl. Conf.
Computer and Information Science, pages –. IEEE Computer Society, . ISBN --
-. DOI http://doi.ieeecomputersociety.org/./ICIS... [,]

P. Q. Nguyen and D. Stehlé. Floating-point LLL revisited. In Advances in Cryptology – EUROCRYPT
, pages –. Springer-Verlag, . [,]

B. Nichols, D. Buttlar, and J. Farrell. Pthreads Programming: A POSIX Standard for Better Multipro-
cessing. Reilly, California, . []

R. Nikhil and L. A. Arvind. Implicit Parallel Programming in pH. Morgan Kaufmann, . [,]

R. S. Nikhil, L. A. Arvind, J. Hicks, S. Aditya, L. Augustsson, J. Maessen, and Y. Zhou. pH Language
Reference Manual, Version .. Massachusetts Institute of Technology, . URL http://csg.csail.mit.
edu/pubs/memos/Memo-/memo-.pdf. Computation Structures Group Memo No. . []

J. F. Nolan. Analytical differentiation on a digital computer. Master’s thesis, Massachusetts Institute of
Technology, . []

H. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Springer-Verlag, . [, ,
, ,]

M. Odersky, L. Spoon, and B. Venners. Programming in Scala. Artima Inc, . ISBN . []

M. E. O’Neill. e genuine sieve of Eratosthenes. Journal of Functional Programming, ():–,
. [,]

O.Ore. e general Chinese remainder theorem. e American Mathematical Monthly, ():–,
. ISSN . URL http://www.jstor.org/stable/. []

B. O’Sullivan, D. Stewart, and J. Goerzen. Real World Haskell. O’Reilly Media, . ISBN ---
-. [,]

V. Y. Pan. How to multiply matrices faster. LNCS . Springer-Verlag, a. ISBN ---.
[,]

V. Y. Pan. How can we speed up matrix multiplication? SIAM review, ():–, b. ISSN
-. [,]

F. Pauer. On lucky ideals for Gröbner basis computations. Journal of Symbolic Computation, ():
–, . []

M. C. Pease. An adaptation of the fast fourier transform for parallel processing. Journal of the ACM,
():–, April . []

10.1016/0020-0190(88)90159-7
http://doi.ieeecomputersociety.org/10.1109/ICIS.2005.8
http://csg.csail.mit.edu/pubs/memos/Memo-369/memo-369.pdf
http://csg.csail.mit.edu/pubs/memos/Memo-369/memo-369.pdf
http://www.jstor.org/stable/2306804

232 Bibliography

S. Pelagatti. Task and data parallelism in PL. In F. A. Rabhi and S. Gorlatch, editors, Patterns and
skeletons for parallel and distributed computing, pages –. Springer-Verlag, . ISBN --
-. []

R. Peña and F. Rubio. Parallel Functional Programming at Two Levels of Abstraction. In PPDP’
— Intl. Conf. on Principles and Practice of Declarative Programming, pages –, Firenze, Italy,
September –, . [, , , , ,]

A. J. Perlis. Special feature: Epigrams on programming. ACM SIGPLAN Notices, :–, September
. ISSN -. DOI http://doi.acm.org/./.. []

O. Perron. Die Lehre von den Kettenbrüchen, volume I. Teubner, third edition, . []

S. Peyton-Jones, editor. Haskell Language and Libraries: e Revised Report. Cambridge University
Press, . [, , , ,]

S. Peyton-Jones. Beautiful concurrency. In G. Wilson, editor, Beautiful Code, pages –. O’Reilly,
. [,]

S. Peyton-Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Proceedings of POPL ’, pages
–, New York, NY, USA, . ACM Press. [,]

B. Pickenbrock. Optimierung der Eden-Kommunikation auf Multicores. Bachelor’s thesis, Philipps-
Universität Marburg, . In German. To appear. []

M. Poldner andH. Kuchen. Skeletons for divide and conquer algorithms. In Proceedings of the IASTED
International Conference on Parallel and Distributed Computing and Networks, PDCN ’, pages
–, Anaheim, CA, USA, a. ACTA Press. ISBN ----. URL http://portal.acm.
org/citation.cfm?id=.. [, ,]

M. Poldner and H. Kuchen. Optimizing skeletal stream processing for divide and conquer. In Pro-
ceedings of the International Conference on Soware and Data Technologies, ICSOFT ’, pages
–, b. [, ,]

J. M. Pollard. e fast Fourier transform in a finite field. Mathematics of Computation, ():–,
. []

S. Priebe. Dynamic task generation and transformation within a nestable workpool skeleton. In Euro-
Par, LNCS , . [, , , , ,]

S. Priebe. Structured Generic Programming in Eden. PhD thesis, Philipps-Universität Marburg, .
[,]

D. M. Priest. Algorithms for arbitrary precision floating point arithmetic. In Proc. th Symposium on
Computer Arithmetic, pages –. IEEE, . []

PVM, . Parallel Virtual Machine, . URL http://www.csm.ornl.gov/pvm/. Retrieved ...
[,]

A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics. Springer-Verlag, . []

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, . URL http://www.R-project.org. [,]

F. A. Rabhi and S. Gorlatch, editors. Patterns and Skeletons for Parallel and Distributed Computing.
Springer-Verlag, . []

M. O. Rabin. Probabilistic algorithm for testing primality. Journal of Number eory, ():–,
. [,]

http://doi.acm.org/10.1145/947955.1083808
http://portal.acm.org/citation.cfm?id=1722252.1722286
http://portal.acm.org/citation.cfm?id=1722252.1722286
http://www.csm.ornl.gov/pvm/
http://www.R-project.org

Bibliography 233

M. A. Rainey and D. S. Wise. Embedding quadtree matrices in a functional language. Technical report,
Opie Research Group, Department of Computer Science, Indiana Univeristy, USA, . [, ,
]

M. Rao et al. Conversion of Hensel codes to rational numbers. Computers & Mathematics with Applic-
ations, ():–, . ISSN -. []

R. Rāshid. e development of Arabic mathematics: between arithmetic and algebra. Springer-Verlag,
. ISBN . []

D. Redfern. e Maple Handbook: Maple V Release . Springer-Verlag, December . [, , ,]

P. Ribenboim. e little book of bigger primes. Springer-Verlag, . ISBN . [,]

R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM, :–, . ISSN -. DOI http://doi.acm.
org/./.. []

J. L. Roda, C. Rodríguez, D. G. Morales, and F. Almeida. Predicting the execution time of message
passing models. Concurrency: Practice and Experience, ():–, . []

R. H. Saavedra and A. J. Smith. Analysis of benchmark characteristics and benchmark performance
prediction. ACM Transactions on Computer Systems, :–, . ISSN -. DOI
http://doi.acm.org/./.. []

L. Sánchez-Gil, M. Hidalgo-Herrero, and Y. Ortega-Mallén. Trends in Functional Programming,
volume , chapter An Operational Semantics for Distributed Lazy Evaluation, pages –. In-
tellect, . Final Proceesings of TFP . []

T. Sasaki and F. Kako. Computing floating-point Gröbner bases stably. In SNC ’: Proceedings of the
 international workshop on Symbolic-numeric computation, pages –. ACM Press, .
ISBN ----. DOI http://doi.acm.org/./.. [,]

T. Sasaki and M. Sasaki. On integer-to-rational conversion algorithm. ACM SIGSAM Bulletin, ():
–, . [,]

T. Sasaki, Y. Takahashi, and T. Sugimoto. A divide-and-conquer method for integer-to-rational con-
version. In Symposium in Honor of Bruno Buchberger’s th Birthday, page , . [,]

T. Sauer. Computeralgebra. Lecture notes, Justus-Liebig-Universität Gießen, . [, ,]

T. Sauer. Numerische Mathematik I. Lecture notes, Justus-Liebig-Universität Gießen, . []

B. Schmidt, M. Schimmler, and H. Schroeder. Embedded Cryptographic Hardware: Methodologies &
Architectures, chapter High-Speed Cryptography. Nova Science Publishers, . ISBN ---
. [,]

E. Scholz. Four concurrency primitives for Haskell. In ACM/IFIP Haskell Workshop, . []

A. Schönhage. Asymptotically fast algorithms for the numerical muitiplication and division of polyno-
mials with complex coefficients. In J. Calmet, editor, Computer Algebra, volume of LNCS, pages
–. Springer-Verlag, . DOI http://dx.doi.org/./---_. [,]

A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, (–):–,
. [, , , ,]

W. Schreiner. Parallel Functional Programming for Computer Algebra. PhD thesis, Johannes Kepler
University, Research Institute for Symbolic Computation (RISC-Linz), . [,]

http://doi.acm.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
http://doi.acm.org/10.1145/235543.235545
http://doi.acm.org/10.1145/1277500.1277526
http://dx.doi.org/10.1007/3-540-11607-9_1

234 Bibliography

W. Schreiner and H. Hong. e design of the PACLIB kernel for parallel algebraic computation. In
J. Volkert, editor, Parallel Computation, LNCS , pages –. Springer-Verlag, . DOI http:
//dx.doi.org/./---_. [,]

W. Schreiner, C.Mittermaier, and K. Bosa. DistributedMaple: Parallel computer algebra in networked
environments. Journal of Symbolic Computation, ():–, . [,]

SCIEnce, . Symbolic Computation Infrastructure for Europe project, . URL http://www.
symbolic-computation.org/. Retrieved ... [, , ,]

S. M. Sedjelmaci. A parallel extended GCD algorithm. Journal of Discrete Algorithms, :–, .
ISSN -. DOI http://dx.doi.org/./j.jda.... []

J. Sérot, D. Ginhac, and J. P. Dérutin. SKiPPER: a skeleton-based parallel programming environment
for real-time image processing applications. In Parallel Computing Technologies, LNCS , pages
–. Springer-Verlag, . ISBN ----. []

G. Shao. Adaptive scheduling of master/worker applications on distributed computational resources. PhD
thesis, University of California, San Diego, CA, USA, . AAI. []

G. Shao, F. Berman, and R. Wolski. Master/slave computing on the grid. Heterogeneous Computing
Workshop, pages –, . ISSN -. DOI http://doi.ieeecomputersociety.org/./HCW.
.. []

N. Shavit and D. Touitou. Soware transactional memory. In Proceedings of the annual ACM
Symposium on Principles of Distributed Computing, PODC ’, pages –. ACM Press, .
ISBN ---. DOI http://doi.acm.org/./.. [,]

N. Shavit and D. Touitou. Soware transactional memory. Distributed Computing, :–, .
ISSN -. DOI http://dx.doi.org/./s. [,]

J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric predicates.
Discrete and Computational Geometry, ():–, . []

V. Shoup. NTL: A library for doing number theory, . URL http://www.shoup.net/ntl/. Retrieved
... [,]

K. Siegl. Parallelizing algorithms for symbolic computation using ∥Maple∥. In In ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages –. ACM Press, . [,
,]

D. B. Skillicorn. Foundations of parallel programming. Cambridge University Press, . ISBN
. []

M. Snir, S. Otto, D. Walker, J. Dongarra, and S. Huss-Lederman. MPI: e Complete Reference. MIT
Press, . [,]

D. Stehlé. Floating-point LLL: theoretical and practical aspects. In P. Q. Nguyen and B. Vallée, editors,
e LLL Algorithm, Information Security and Cryptography, pages –. Springer-Verlag, .
[]

W.Stein. Elementary number theory: primes, congruences, and secrets. A computational approach. Sprin-
ger-Verlag, . ISBN . []

W. Stein and D. Joyner. SAGE: system for algebra and geometry experimentation. ACM SIGSAM
Bulletin, :–, . ISSN -. DOI http://doi.acm.org/./.. [,]

W. A. Stein et al. Sage Mathematics Soware (Version ..). e Sage Development Team, . URL
http://www.sagemath.org. [,]

http://dx.doi.org/10.1007/3-540-57314-3_17
http://dx.doi.org/10.1007/3-540-57314-3_17
http://www.symbolic-computation.org/
http://www.symbolic-computation.org/
http://dx.doi.org/10.1016/j.jda.2006.12.009
http://doi.ieeecomputersociety.org/10.1109/HCW.2000.843728
http://doi.ieeecomputersociety.org/10.1109/HCW.2000.843728
http://doi.acm.org/10.1145/224964.224987
http://dx.doi.org/10.1007/s004460050028
http://www.shoup.net/ntl/
http://doi.acm.org/10.1145/1101884.1101889
http://www.sagemath.org

Bibliography 235

J. Stillwell. Numbers and geometry. Springer-Verlag, . ISBN -. []

G. Strang. Wavelet transforms versus Fourier transforms. Bulletin of the American Mathematical
Society, ():–, . [,]

V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, ():–, . [, ,
, ,]

M. Sulzmann. Haskell actors library, . URL http://hackage.haskell.org/package/actor. Retrieved
... [,]

M. Sulzmann, E. S. L. Lam, and P. Van Weert. Actors with multi-headed message receive patterns.
In Proceedings of the International Conference on Coordination Models and Languages, pages
–. Springer-Verlag, . ISBN . [,]

V. S. Sunderam. PVM: a framework for parallel distributed computing. Concurrency: Practice and
Experience, :–, . [,]

A. Svoboda andM.Valach. Rational system of residue classes. Stroje na Zpraccorani Informaci, Sbornik,
Nakl. CSZV, Prague, pages –, . []

N. S. Szabo and R. I. Tanaka. Residue arithmetic and its applications to computer technology. McGraw-
Hill, . [,]

A. Tantawi and D. Towsley. Optimal static load balancing in distributed computer systems. Journal of
the ACM, ():–, . ISSN -. []

B. L. van der Waerden. Algebra, volume I. Springer-Verlag, . [,]

D. omas, C. Fowler, and A. Hunt. Programming Ruby: e Pragmatic Programmers’ Guide. Prag-
matic Bookshelf, second edition, . []

M. ottethodi, S. Chatterjee, and A. Lebeck. Tuning Strassen’s matrix multiplication for memory
efficiency. In Proceedings of the ACM/IEEE conference on Supercomputing (CDROM), pages
–. IEEE Computer Society Washington, DC, USA, . []

D. urston, H. ielemann, and M. Johansson. Haskell Numeric Prelude program, . URL http:
//code.haskell.org/numeric-prelude/. Retrieved ... [, ,]

R. G. Tobey. Experience with FORMAC algorithm design. Communications of the ACM, ():–,
. ISSN -. DOI http://doi.acm.org/./.. [, , ,]

A. L. Toom. e complexity of a scheme of functional elements realizing the multiplication of integers.
In Soviet Mathematics Doklady, volume , pages –, . [,]

P.Trinder, K.Hammond,H.-W. Loidl, and S. Peyton-Jones. Algorithm+Strategy=Parallelism. Journal
of Functional Programming, ():–, a. DOI http://dx.doi.org/./S. URL
http://www.macs.hw.ac.uk/~dsg/gph/papers/ps/strategies.ps.gz. [, ,]

P. W. Trinder, K. Hammond, J. S. Mattson Jr., A. S. Partridge, and S. Peyton-Jones. GUM: a Portable
Parallel Implementation of Haskell. In PLDI’. ACM Press, a. []

P. W. Trinder, K. Hammond, et al. GUM: a portable parallel implementation of Haskell. In PLDI’.
ACM Press, b. [,]

P. W. Trinder, E. Barry Jr., M. K. Davis, K. Hammond, S. B. Junaidu, U. Klusik, H.-W. Loidl, and
S. Peyton-Jones. GpH: An Architecture–Independent Functional Language. In Glasgow Functional
Programming Workshop, Pitlochry, Scotland, September b. [, ,]

http://hackage.haskell.org/package/actor
http://code.haskell.org/numeric-prelude/
http://code.haskell.org/numeric-prelude/
http://doi.acm.org/10.1145/365758.365773
http://dx.doi.org/10.1017/S0956796897002967
http://www.macs.hw.ac.uk/~dsg/gph/papers/ps/strategies.ps.gz

236 Bibliography

P. W. Trinder, E. Barry Jr, et al. GPH: an architecture-independent functional language. IEEE Trans.
Soware Engineering, . [, ,]

P. W. Trinder, H.-W. Loidl, and R. F. Pointon. Parallel and distributed Haskells. Journal of Functional
Programming, (,):–, . []

L. G. Valiant. A bridging model for parallel computation. Communications of the ACM, ():, .
[]

R. A. van de Geijn and J. Watts. SUMMA: Scalable universal matrix multiplication algorithm. Concur-
rency: Practice and Experience, ():–, . []

B. L. van der Waerden and H. Habicht. Erwachende Wissenscha. Birkhäuser, . []

G. van Rossum. e Python Language Reference Manual. Network eory Ltd., . [, ,]

J. von zur Gathen. Parallel algorithms for algebraic problems. SIAM Journal on Computing, ():
–, . DOI ./. URL http://link.aip.org/link/?SMJ///. []

J. von zur Gathen and J. Gerhard. Polynomial factorization over F2. Mathematics of Computation,
():–, . []

J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, second
edition, . [B, ,
, , , ,]

P. S. Wang. A p-adic algorithm for univariate partial fractions. In Proceedings of the ACM Sym-
posium on Symbolic and Algebraic Computation, pages –. ACM Press, . [,]

P. S. Wang, M. J. T. Guy, and J. H. Davenport. p-adic reconstruction of rational numbers. ACM
SIGSAM Bulletin, ():, . [,]

H.-J. Waschkies. Anfänge der Arithmetik im alten Orient und bei den Griechen. John Benjamins, .
[]

S. M. Watt. Bounded parallelism in computer algebra. PhD thesis, University of Waterloo, . [,]

S. M. Watt. Making computer algebra more symbolic. In In Proceedings of Transgressive Comput-
ing : A conference in honor of Jean Della Dora, . DOI http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=..... []

A.Weimerskirch andC. Paar. Generalizations of theKaratsuba algorithm for efficient implementations.
Cryptology ePrint Archive /, Ruhr Universität Bochum, Lehrstuhl für Embedded Security,
. []

A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable transactions and their applications. In Proceed-
ings of the Annual Symposium on Parallelism in Algorithms and Architectures, SPAA ’, pages
–. ACM Press, . ISBN ----. DOI http://doi.acm.org/./..
[]

P. H. Welch. Graceful termination–graceful resetting. pages –, Netherlands, . IOS Press.
[]

P. H. Welch and F. R. M. Barnes. Communicating mobile processes: introducing occam-pi. LNCS
. Springer-Verlag, . []

S. Wetzel. An efficient parallel block-reduction algorithm. In Algorithmic Number eory, pages
–. Springer-Verlag, . []

10.1137/0213050
http://link.aip.org/link/?SMJ/13/802/1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.126.5233
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.126.5233
http://doi.acm.org/10.1145/1378533.1378584

Bibliography 237

K. B. Wheeler and D. ain. Visualizing massively multithreaded applications with readScope. Con-
currency and Computation: Practice and Experience, ():–, . []

H. S. Wilf. Algorithms and complexity. AK Peters, second edition, . ISBN . [,]

J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice Hall, . []

L. H. Williams. Algebra of polynomials in several variables for a digital computer. Journal of the ACM,
:–, . ISSN -. DOI http://doi.acm.org/./.. []

F. Winkler. A p-adic approach to the computation of Gröbner bases. Journal of Symbolic Computation,
(-):, . [, ,]

S. Winograd. On multiplication of × matrices. Linear Algebra and its Applications, ():–,
. ISSN -. DOI http://dx.doi.org/./-()-. [,]

S. Winograd. On computing the discrete Fourier transform. Proceedings of the National Academy of
Sciences of the United States of America, ():, . []

N. Wirth. e programming language Pascal. Acta informatica, ():–, . [,]

S. Wolfram. Mathematica: a system for doing mathematics by computer. Wolfram Research, Inc., .
[,]

S. Wolfram. e Mathematica Book. Wolfram Research Inc., . [,]

S. C. Wray and J. Fairbairn. Non-strict languages — programming and implementation. Computer
Journal, ():–, . ISSN -. [, , ,]

S. Y. Yan and M. E. Hellman. Number theory for computing. Springer-Verlag, . ISBN .
[]

C. Yap andC. Li. QuickMul: Practical FFT-based integermultiplication. Technical report, Department
of Computer Science Courant Institute, New York, . [,]

M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica. Improving MapReduce performance
in heterogeneous environments. In Proceedings of the USENIX Conference on Operating Systems
Design and Implementation, OSDI’, pages –. USENIX Association, . URL http://portal.
acm.org/citation.cfm?id=.. []

C. J. Zarowski and H. C. Card. On addition and multiplication with hensel codes. IEEE Transactions
on Computers, :–, . DOI http://dx.doi.org/./.. []

A. Zavanella. Skeletons, BSP and performance portability. Parallel Processing Letters, ():–,
. [,]

http://doi.acm.org/10.1145/321105.321109
http://dx.doi.org/10.1016/0024-3795(71)90009-7
http://portal.acm.org/citation.cfm?id=1855741.1855744
http://portal.acm.org/citation.cfm?id=1855741.1855744
http://dx.doi.org/10.1109/12.61062

INDEX OF PERSONAL IT I E S

Adleman, L. M., ,
Amdahl, G. M.,

Bachmann, P. G. H.,

Cohen, H., , ,

Dijkstra, E. W.,
Dirichlet, P. G. L.,

Eratosthenes of Cyrene,
Euclid of Alexandria, ,
Euler, L., , ,

Farey, Sr., J.,
Fermat, P. de, , , ,
Flatt, H. P.,

Galois, É.,
Gauß, C. F., , , –, ,

Hadamard, J. S.,
Hamming, R.,
Hardy, G. H.,
Hensel, K. W. S., ,
Hilbert, D., ,

Jiushao, Q.,

Karatsuba, A. A.,
Karp, A. H.,
Kolmogorov, A. N.,

Landau, E. G. H.,
Laplace, P.-S. marquis de,
Lehmer, E.,
Leibniz, G. W., Freiherr von, ,
Lenstra, Jr, H. W., ,

Matiyasevich, Yu. V.,
Mersenne, M., ,
Miller, G. L.,

Napier, J., Laird of Merchiston, ,

Pomerance, C., ,

Rabin, M. O.,
Rumely, R. S., ,

INDEX

Amdahl’s
law,

APRCL test, see Jacobi sum test

Bachmann–Landau notation, see big Oh nota-
tion

big Oh notation,

character
Dirichlet,

Chinese residue theorem, –, , –
cyclotomic

field,
implementation,

polynomial, ,

determinant
computation, ,
definition,

discrete logarithm,
DPH,

EA, see euclidean algorithm
Eden, –

remote data, , , ,
EDI,
EEA, see extended euclidean algorithm
efficiency,
estimation of runtime, –

FFT,
Gauß elimination, –,
Hamming numbers, –
Jacobi sum test, ,
Karatsuba multiplication,
lattice-Boltzmann method, –
Rabin–Miller test,

euclidean algorithm, –
extended, see extended euclidean algorithm
for integers,
subtraction-based,

Euler’s
totient

function,
theorem,

evaluation strategies, –
extended euclidean algorithm, –

implementation,
integer-to-rational mapping, , –

rational-to-integer mapping, , , –

Farey
fraction, , , , , , –
measure,
sequence,

Fermat’s
little theorem,

generalised, see Euler’s totient theorem
in Jacobi-sum test,

FFT, –
convolution,
decimation in frequency,
decimation in time,
estimation of runtime, see estimation of runtime,

FFT
multiplication, –
parallel penalty, see parallel penalty, FFT
serial fraction, see serial fraction, FFT
speedup, see speedup, FFT
timing, see timing, FFT
trace, see trace, FFT

fluid flow simulation, see lattice-Boltzmannmethod
Fourier

matrix,
transform,

fast, see FFT

Gauß
elimination, –

estimation of runtime, see estimation of
runtime, Gauß elimination

parallel penalty, , see parallel penalty,
Gauß elimination

serial fraction, , see serial fraction, Gauß
elimination

speedup, see speedup, Gauß elimination
timing, , see timing, Gauß elimina-

tion
trace, see trace, Gauß elimination

sum,
GpH,

Hadamard
inequality,

Hamming
numbers, –

242 Index

estimation of runtime, see estimation of
runtime, Hamming numbers

parallel penalty, seeparallel penalty, Ham-
ming numbers

serial fraction, see serial fraction, Ham-
ming numbers

speedup, see speedup, Hamming num-
bers

timing, see timing, Hamming numbers
hardware,

sakania, , , , , –, –, ,
, , , , , , , , ,
,

Beowulf cluster, , , , –,
Blue Gene/P, –
local workstations, , , , –, –

, , –
Hensel

p-adic numbers,
codes,
liing,

intermediate expression swell, , , ,

Jacobi sum, ,
test, see Jacobi sum test

Jacobi sum test, –,
estimation of runtime, see estimation of runtime,

Jacobi sum test
helper algorithms, , –
main algorithm, ,
parallel penalty, see parallel penalty, Jacobi

sum test
serial fraction, see serial fraction, Jacobi sum

test
speedup, see speedup, Jacobi sum test, see

speedup, Jacobi sum test
timing, see timing, Jacobi sum test, see tim-

ing, Jacobi sum test
trace, see trace, Jacobi sum test, see trace,

Jacobi sum test

Karatsuba
multiplication, –, ,

estimation of runtime, see estimation of
runtime, Karatsuba multiplication

parallel penalty, see parallel penalty, Kar-
atsuba multiplication

serial fraction, see serial fraction, Karat-
suba multiplication

speedup, see speedup, Karatsuba multi-
plication

timing, see timing, Karatsuba multiplic-
ation

trace, see trace, Karatsubamultiplication

Landau
notation, see big Oh notation

lattice-Boltzmann method, –
estimation of runtime, see estimation of runtime,

lattice-Boltzmann method
parallel penalty, see parallel penalty, lattice-

Boltzmann method
serial fraction, see serial fraction, lattice-Boltzmann

method
speedup, see speedup, lattice-Boltzmannmethod
timing, see timing, lattice-Boltzmannmethod

laziness, –, , , ,
LBM, see lattice-Boltzmann method
Linux, , ,

Maple, , –
master theorem,
matrix

determinant, see determinant
minor,
multiplication

Gentleman,
Strassen, see Strassen, multiplication

representation,
singular,
unimodular,

methodology,
MPI,
multiple-residue arithmeric

arithmeric, –
multiple-residue arithmetic, –

arithmetic,
backward mapping, ,
forth mapping, , ,

multiplication
FFT-based, see FFT, multiplication
Karatsuba, see Karatsuba, multiplication
matrix, see Strassen, multiplication

NESL,

Padé
reconstruction,

parallel language classification, –
parallel overhead, –, see parallel penalty
parallel penalty, , ,

FFT, –
flat expansion, ,
map-and-transpose, ,

Gauß elimination, –
Hamming numbers, ,
Jacobi sum test,

Index 243

Karatsuba multiplication,
lattice-Boltzmann method, ,
Rabin–Miller test, ,
Strassen multiplication,

pH,
powering algorithm, ,
prime, ,

Mersenne, , , , ,
strong pseudo-prime,

primitive root modulo p,
process

definition,
instantiation,

PVM,

Rabin–Miller test, –
estimation of runtime, see estimation of

runtime, Rabin–Miller test
parallel penalty, seeparallel penalty, Rabin–Miller

test
serial fraction, see serial fraction, Rabin–Miller

test
speedup, see speedup, Rabin–Miller test
trace, see trace, Rabin–Miller test

random close-sphere packing,
random-walk particle tracking,
reference point

absolute,
relative,

root of unity, , ,
primitive, ,

serial fraction, ,
FFT, –

flat expansion, ,
map-and-transpose, ,

Gauß elimination, –
Hamming numbers,
Jacobi sum test,
Karatsuba multiplication,
lattice-Boltzmann method,
Rabin–Miller test,
Strassen multiplication,

skeletons, –
farm+reduce, , , ,
farm, ,
map+reduce, –, ,
map-reduce, –
map-like
farm, ,
parMap,
ssf,
workpool, –

parMap+reduce,
workpool+reduce, , –
workpool, , , ,
divide and conquer, –, –, –
dcFarm, ,
dcNtickets, ,
divConFlat, , , , , ,
divConPar,
divConSeq, , , , ,
classification,

iteration,
speedup,

Rabin–Miller test,
FFT, –

flat expansion, ,
map-and-transpose, ,

Gauß elimination, –
Hamming numbers,
Jacobi sum test,
Karatsuba multiplication,
lattice-Boltzmann method,
Rabin–Miller test, ,
Strassen multiplication

actors, ,
flat expansion, ,

Strassen
multiplication, –, –

estimation of runtime, see estimation of
runtime, Strassen multiplication

implementation, –
parallel penalty, seeparallel penalty, Strassen

multiplication
serial fraction, see serial fraction, Strassen

multiplication
speedup, see speedup, Strassenmultiplic-

ation
trace, see trace, Strassen multiplication

sum
Gauß, see Gauß, sum
Jacobi, see Jacobi sum

task distribution, , , , , , , ,
timing

FFT
distributed expansion,
flat expansion,
map-and-transpose,

Gauß elimination,
Hamming numbers,
Jacobi sum test, ,
Karatsuba multiplication,
lattice-Boltzmann method,

trace,

244 Index

Eden TraceViewer,
FFT

distributed expansion,
flat expansion,
map-and-transpose, ,

Gauß elimination,
Jacobi sum test, –,

initial,
Karatsuba multiplication, ,
Rabin–Miller test, ,
Strassen multiplication, ,

Wieferich
congruence,

LEBENSLAUF

Oleg Lobachev
Hangelsteinring
D– Gießen
Tel.: –
E-Mail: oleg.lobachev@gmail.com

Persönliche Daten

geboren am .. in Kiew, Ukraine

Seit . in Deutschland

Staatsangeh. deutsch

Familienstand ledig

Studium

– Studium an der Justus-Liebig-Universität Gießen
Diplomstudiengang Mathematik mit Nebenfach Informatik
Schwerpunkt: Computeralgebra, Diplomnote: 1,0.

seit . Promotionsvorhaben an der Philipps-Universität Marburg
in theoretischer Informatik

Berufserfahrung

.–. Systemadministrator an der Justus–Liebig–Universität Gießen

.–. Sowareentwickler für Embedded– und PC–Systeme bei
Identass GmbH & Co. KG, Gießen

.–. Wissenschalicher Mitarbeiter im Drittmittelprojekt an der
Philipps-Universität Marburg

seit . Wissenschalicher Mitarbeiter im Drittmittelprojekt an der
Philipps-Universität Marburg

Schulbildung

.–. Gymnasium Nr. mit Tiefenfach Englisch in Kiew, Ukraine

.–. Herderschule Gießen, englischer Bilingualzweig. Abschluß: Abitur

Sprachen Verhandlungssicheres Deutsch

Verhandlungssicheres Englisch

Russisch und Ukrainisch als Muttersprachen

Gießen, . August

oleg.lobachev@gmail.com

ERKLÄRUNG

Ich versichere, dass ich meine Dissertation »Implementation and Evaluation of Algorithmic Skeletons:
Parallelisation of Computer Algebra Algorithms« selbstständig und ohne fremde Hilfe verfasst, nicht
andere als die in ihr angegebenen Quellen oder Hilfsmittel benutzt, alle vollständig oder sinngemäß
übernommenen Zitate als solche gekennzeichnet sowie die Dissertation in der vorliegenden oder einer
ähnlichen Form noch bei keiner anderen in- oder ausländischen Hochschule anlässlich eines Promo-
tionsgesuchs oder zu anderen Prüfungszwecken eingereicht habe.

Gießen, . August .

	Abstract
	Dedication
	Acknowledgements
	Contents
	Introduction
	Parallel Programming
	Goals of This Work
	Structure of The Thesis

	Programming Languages And Symbolic Computation
	Symbolic Computation
	Language Unity
	Dependent Typing
	An Example: Laziness
	Conclusions and Outlook

	Parallel Programming With Eden
	Eden as Haskell Extension
	Skeletons Survey
	Eden Tracing
	Measurement Methodology
	Conclusions

	Estimating Parallel Performance
	Related Work for Parallel Performance
	Our View on Parallel Computation
	Estimation
	Example I: Hamming Numbers
	Example II: Lattice-Boltzmann Method
	Comparing Serial Fraction and Parallel Penalty
	Related Work on Performance Estimation
	Conclusions

	Primality Testing — Repeated Computation
	Repeated Computation Skeletons
	Map+Reduce
	Case Studies
	Rabin–Miller Test
	Jacobi Sum Test
	Conclusions

	Fast Multiplication — Divide and Conquer
	History
	Divide and Conquer Skeletons
	Univariate Polynomials
	Fast Fourier Transform
	Matrices
	Divide and Conquer with Actors
	Conclusions

	Data Parallel Arithmetic
	Why We Cannot Use Vulgar Fractions
	Single Integer Residue Class
	Mapping a Fraction to Integer and Back
	An Integral Multiple-Residue Arithmetic
	Rational Multiple-Residue System
	Counterexample for Mbold0mu mumu false
	Correctness of Wbold0mu mumu false
	Parallelism
	Related Work
	Conclusions and Future Work

	Conclusions, Future, and Related Work
	Contributions
	Related Work
	Future Work

	Foundations
	Notation
	Groups, Rings, Fields I: The Definitions
	The Numbers
	Euclidean Algorithm
	Primes
	Groups, Rings, Fields II: Domains and Ideals
	Matrices and Vectors

	Code
	Helper Functions for Rabin–Miller Test
	Helper functions for Jacobi sum test
	Skeletons of dcF Class
	The Optimised Boilerplate Code for Gauß Elimination

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography
	Index of Personalities
	Index
	Lebenslauf
	Erklärung

