
Parallel iso-surface extraction and simplification
Christine Ulrich

University Marburg
FB 04 – Psychology

35032 Marburg, Germany
ulrichch@staff.uni-marburg.de

Nico Grund Evgenij Derzapf
Sirona Dental Systems GmbH

64625 Bensheim, Germany
evgenij.derzapf@sirona.com

nico.grund@sirona.com

Oleg Lobachev Michael Guthe
University Bayreuth

CS 5 – Visual Computing
95447 Bayreuth, Germany

oleg.lobachev@uni-bayreuth.de
michael.guthe@uni-bayreuth.de

ABSTRACT
When extracting iso-surfaces from large volume data sets, long processing times are required and a high number of
polygons is generated. We propose a massively parallel iso-surface extraction and simplification algorithm. The
extraction is based on the marching cubes algorithm. In order to process large volume data sets, we perform the
extraction with an interleaved simplification step using parallel edge collapses and the quadric error metrics.
Interleaving extraction and simplification is based on locally postponing collapse operations close to the processing
front. In contrast to previous methods, we do not need an explicit simplfication error fall-off close to the front.
Thus we can produce meshes with the same quality as if we would simplify the complete mesh after extraction. By
implementing both extraction and simplification on the GPU, we can reconstruct high quality iso-surfaces from
large data sets within a few seconds.

Keywords
marching cubes, simplification, reconstruction.

Figure 1: Iso-surface extraction and simplification results for the Porsche data set with an iso-value of 14. The left
image shows an intermediate result during the interleaved extraction and simplification and the right image shows
the triangles of the generated mesh.

1 INTRODUCTION
In the last decades, the resolution of volume data sets has
constantly grown and memory requirements increased.
When extracting iso-surfaces from such large volume
data sets, a high number of polygons is generated, which
also results in long processing times. To efficiently gen-
erate meshes from such volumes (e.g. medical data sets),
a fast and efficient algorithm is needed. We combine a
massively parallel iso-surface reconstruction algorithm
with efficient, high quality parallel simplification.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

The marching cubes algorithm is commonly used for
iso-surface extraction. It allows producing meshes from
large data sets in reasonable time, but – like almost
all of its variants – has the disadvantage to produce
a high number of triangles. Hierarchical approaches
(e.g. [MS93]) were proposed to reduce the triangle count
during iso-surface extraction. These are however less
efficient for tubular structures because they can only
uniformly adapt the resolution. To further reduce the
mesh, simplification algorithms can be used after the
extraction or directly during this process. The latter can
be implemented using a plane sweep algorithm or by
partitioning the volume into a regular grid or a space
partitioning hierarchy. The processing front – i.e. the
outer surface of the already processed volume – needs
to be constrained during simplification. Vertices on
the front must not collapse, which leads to artifacts,
like sliver triangles. The so-called tandem algorithm

[ACE05] alleviates this problem using a time-lag. The
simplification error gradually falls off closer to the front
and thus the vertex density increases. While the mesh
quality is better, the error falloff constitutes a trade-off
between memory consumption and mesh quality.

The main contribution of this paper is a novel formu-
lation of the tandem algorithm that does not require a
time-lag. The key advantage of our approach is that the
resulting mesh is equivalent to that produced by a com-
plete extraction followed by a sequential simplification.
Our implementation is based on a parallel edge collapse
algorithm using the quadric error metrics to optimize
the vertex positions and normals. Using the GPU for
both extraction and simplification allows us to quickly
produce high quality meshes from large volume data
sets.

2 RELATED WORK
The main idea of our approach is to directly interleave
iso-surface extraction and simplification on the GPU.
We therefore review related approaches on iso-surface
extraction and simplification, as well as combinations of
both.

2.1 Iso-surface extraction
The marching cubes (MC) algorithm [LC87] divides a
voxel grid into cubes and processes each of them in-
dependently. Several improvements, including adap-
tive and dual algorithms, were proposed [WMW86,
HGB93, MSS94, SW04], mainly to prevent holes in
the mesh or to improve the mesh quality. Using tetra-
hedrons [TPG99] instead of cubes is also possible. It
prevents holes but drastically increases the amount
of triangles. Chernyaev proposed a topologically
correct iso-surface generation based on tri-linear in-
terpolation [Che95]. Other approaches directly re-
construct the surface from sets of orthogonal slices
(e.g. [SS02, SS04]) using contour matching instead of
interpolation. Newman and Yi [NY06] provide an ex-
tensive survey on different MC algorithms and variants.

Performance optimizations include using a modified
branch-on-need-octree with min-max decisions [WG90]
and span spaces [SHLJ96, Liv99] which represent the
cubes as two-dimensional points of their min-max val-
ues. For a fast extraction of the iso-surface, partitions
(lattice elements) or k-d-trees are used.

The splitting boxes algorithm [MS93] was one of the
first adaptive methods. A cube intersected by the iso-
surface is recursively split and simply checked for sign-
changes in every edge. The dual marching cubes algo-
rithm [SW04] improves the mesh quality and is able to
also generate quad meshes. It is based on using the dual
of the volume grid, i.e. it places a vertex in each cell that
is crossed by the iso-surface. The quadric error func-
tion combined with the method of Lindstrom [Lin00]

for positioning dual vertices generate a mesh with better
quality and less triangles. This algorithm is also very
good in reconstructing sharp features (e.g. edges or cor-
ners) but the surface does not accurately approximate
the tri-linearly interpolated iso-value.

Recent approaches exploit the processing power of mas-
sively parallel graphics processors (GPUs). Reck et
al. [RDG+04] proposed an algorithm to extract iso-
surfaces from tetrahedral volumes. They pre-select the
intersections of surface and voxel grid on the CPU and
generate the mesh on the GPU using an interval tree. For
rectilinear grids, a tetrahedralization is required, which
leades to a higher number of triangles and also intro-
duces artifacts. Johansson et al. [JC06] also use span
spaces for pre-selection and pre-classification. They
utilize GPU for interpolation and their approach is not
restricted to tetrahedral grids any more. Tatarchuk et
al. [TSD07] propose a hybrid implementation of march-
ing cubes and marching tetrahedra running on the GPU.
The iso-surface is generated on the GPU but again con-
tains a higher number of triangles than the original
marching cubes algorithm du to the tetrahedrization.
A recent improvement to marching cubes on the GPU
uses the so-called HistoPyramids [DZTS08].

2.2 Simplification
Mesh simplification is one of the most common tech-
niques for real-time rendering of complex polygonal
models and has been an active field of research over the
last two decades. A detailed review of simplification
algorithms is given by Luebke [Lue01]. As we aim at
efficient iso-surface reconstruction and simplification
from large volumes, we focus on real-time capable sim-
plification algorithms.

Uniform vertex clustering [RB93] subdivides the bound-
ing box of the model into cells uing a regular grid. All
vertices inside the same grid cell are collapsed to their
mean. An improved variant is weighted vertex clus-
tering [LT97]. It better preserves features that are not
aligned with the grid. Uniform clustering is relatively
fast and gives a precise upper bound for the simplifica-
tion error. However, a further reduction in flat regions is
still possible without increasing the simplification error.

The vertex pair contraction [GH97, PH97] has become
the most common technique for the simplification of
mid-sized triangle meshes. In combination with the
introduced quadric error metric, it allows a flexible con-
trol over the geometric error and can be used to calcu-
late optimal vertex positions. This approach was also
extended to handle an arbitrary number of vertex at-
tributes [GH98]. A combination of vertex clustering
with error quadrics [Lin00] improves the placement of
the clustered vertices, but still uses a high number of
triangles in flat regions. Shaffer and Garland [SG01]
proposed to overcome this problem by using a BSP tree

instead of a uniform grid. This increased the runtime
significantly compared to uniform clustering, but the
method is still faster than edge collapse simplification.
An adaptive vertex clustering using octrees was also
proposed by Schaefer and Warren [SW03]. Here the
runtime is even higher than using a BSP tree, but the
quality of the simplified mesh can almost compete with
edge collapse simplification.

DeCoro and Tatarchuk [DT07] proposed a parallel GPU
implementation of vertex clustering [SW03] by imple-
menting an efficient GPU based data structure. While
the performance is very high, it still has the same quality
problems as uniform vertex clustering. Recently, a paral-
lel GPU implementation of edge collapse simplification
using quadric error metrics [GDG11] has been proposed,
which we extend in our work.

2.3 Hybrid algorithms
The hybrid algorithms of Attali et al. [ACE05] and
Dupuy et al. [DJG+10] directly simplify the iso-surface
mesh during extraction. The first one uses a sequential
marching cubes in a tandem with a simplification algo-
rithm. The extraction and simplification steps alternate
layer-by-layer. A time-lag is introduced to delay col-
lapses until the extraction front is further away, resulting
in a better quality of the simplified mesh. The algo-
rithm of Dupy et al. [DJG+10] improves this approach
by using a load-balanced cluster to parallelize extraction
and simplification. In addition, they do not use a plane
sweep any more but partition the volume using an octree.
Finally, those parts of the mesh that cannot be further
simplified are stored on disk to reduce the memory con-
sumption. A similar approach has been proposed for the
reconstruction of surfaces from point clouds has been
proposed by Cuccuru et al. [CGM+09]. It combines
streaming, isosurface extraction, and simplification by
applying local vertex clustering with topology preserva-
tion to produce good quality meshes.

3 OVERVIEW
The core idea of our approach is to interleave a massively
parallel marching cubes with a parallel stream simplifier.
As both algorithms run on the GPU, we also minimize
communication between host and device since we only
transfer the reduced mesh. We chose a plane sweep
partitioning due to simplicity, i.e. we process the data
in layers, although other partitionings would easily be
possible.

Our method consists of two basic modules. The first one
is the actual surface extraction based on the marching
cubes algorithm. The second module is the mesh simpli-
fication that receives the output of the first one as input.
The simplification is based on edge collapse operations
that contract edges by collapsing two connected vertices.

The position and normal of the collapse vertex are com-
puted by minimizing the quadric error metric [GH97]
which also defines the collapse cost.

4 PARALLEL MARCHING CUBES
Similar to Attali et al. [ACE05], we partition the volume
into layers for processing. We do however split the
volume into partitions containing multiple layers if they
fit into memory and process them in parallel. The first
kernel calculates the cube codes – i.e. eight-bit values
encoding if the vertices are inside or outside. This kernel
also calculates the intersections between the iso-surface
and the cube edges if there are any. Assuming that the
four corners and four edges of the cube’s bottom are
already processed, every thread processes vertex v4 and
the edges e4, e7 and e8 only (drawn blue in Figure 2). In
addition, the kernel computes the gradient at vertex v4.
Note, that we use a specific kernel for the first slice of
each partition to improve performance.

28.04.2012

1

e0

e8

e3

v0 v1

v4

v2

v3

v5

v6v7

e1

e2

e5

e4

e6

e10

e7

e11

e9

Figure 2: Edge and vertex indices.

The second kernel produces the triangles and thus gener-
ates the mesh contained in the layers. It uses the classical
marching cubes look up table defining the surface topol-
ogy. This kernel also removes degenerate triangles and
feeds the mesh to the second module, the simplification.

We divide a volume of dimension dimX ×dimY ×dimZ
into layers and slices like Attali et al. [ACE05]. The kth

slice contains all vertices with the same y-coordinate.
The kth layer is the set of all vertices, edges and patches
between or on the kth and the (k+ 1)st slice. Figure 3
shows the relationship between slices and layers. So
the volume comprises the slices from 0 to dimY −1 and
layers from 0 to dimY −2. We then process the layers in
ascending order.

We group the slices and layers into partitions during
surface extraction. Every partition is composed of N
slices and N−1 layers respectively. These are processed
in two loops and mainly two kernels (see Algorithm 1).
Note that two additional slices are required to compute
the surface normals from the gradients. Consequently,
the partitions overlap by one slice in each direction. As
the vertices of the first slice were already calculated in
the previous partition, we do however only need one
additional slice in each partition. This means that a

Figure 3: Relationship between slices and layers.

partition with N slices only contains N− 2 layers that
can be used for the extraction (see Algorithm 1). In
addition, we use separate kernels for the first and last
slices for this reason.

Partitions, Remainder = gen_partitions(dimY)
kernel_cubecode_init()
for each partition_index in Partitions do

kernel_cubecode(partition_index, N−2)
kernel_generate(partition_index, N−2)
call_simplification_module()

kernel_cubecode_other(Remainder)
kernel_generate_other(Remainder)
call_simplification_module()

Algorithm 1: Parallel extraction and simplification.

The cube code kernel is executed for each cube (see
Algorithm 2) using a thread block dimension of 16×16
or 32× 32 depending on the GPU. Assuming that the
four corners and four edges of the cube’s bottom are
already processed, every single thread just processes
vertex v4 and the edges e4, e7 and e8 (see Figure 2). An
exception are threads on the ‘right’ and/or ‘front’ border
of a grid that need to process additional vertices.

Every thread also calculates the gradient of vertex v4.
The gradients and the cube codes always have to be
calculated for the previous layer as well. A thread sets
the first four bits of the cube code and then shifts the
code four bits to the right at the end. The paralleliza-

k = partition_index(N−2)
// compute the global index k
for each layer in a partition do
// a partition consists of N−2 layers

for each cube ∈ kth-layer do in parallel
calculate_gradients()
generate_cubecode()
if 0 < cubecode < 255

calculate_intersections()
shift_cubecode()

k = k+1
Algorithm 2: Cube code kernel.

tion enforces to enumerate cube edges not just locally, as
depicted in Figure 2, but also globally. This prevents a re-
peated calculation of intersection points between the iso-
surface and cube edges. Algorithm 2 gives an overview
of the cube code kernel. Note that Algorithms 1 and 2
omit special cases that have to be handled explicitly, e.g.
when the volume contains only a single partition.

After the first kernel has calculated the intersections,
gradients and cube codes, kernel_generate produces the
mesh using the classical marching cubes look up table.
The look up table stores the topology of the surface. This
means that and only intersections of cube edges and the
iso-surface have to be calculated and the corresponding
mesh is fetched from the look up table. The result is
a level set Iρ := {v ∈ R3 : f (v) = ρ}, whose equation
can be simplified by subtracting the iso value ρ from the
whole dataset. Table 1 lists all data structures required
during iso-surface extraction. Finally, this kernel also
removes degenerate triangles and feeds the mesh to the
second module, the simplification.

buffers memory (bytes)

slices NdimX dimZ
gradients 12NdimX dimZ
voxel edges 24((3N−1)dimX dimZ −N(dimX +dimZ))
cube code (N−1)(dimX −1)(dimZ −1)
triangles 60(N−1)(dimX −1)(dimZ−1)

Table 1: Memory consumption and data structures re-
quired for the iso-surface extraction. The size of the
input grid is dimX ×dimY ×dimZ , while N is the num-
ber of slices in each partition.

5 PARALLEL SIMPLIFICATION
The simplification module is based on a parallel GPU
simplification [GDG11] originally developed for in-core

level complete

no

remove illegal
collapses

compact mesh

quadric error
optimization

parallel
edge collapses

connectivity
update

edge compaction

extensions modifications previous

connect meshes

append mesh of
next N slices

all slices processed

yes

no

save mesh

update vertex
quadrics

yes

Figure 4: Extensions (left) and modifications (middle)
of the previous simplification algorithm (right).

Figure 5: Interleaved extraction and simplification (bonsai #2, iso 50).

processing of a single mesh. We implemented the fol-
lowing changes to combine it with the stream extraction:
First, the mesh generated from N slices is transferred
from extraction module. At this point, it does not matter
anymore how the extraction module operates, i.e. we
could simply replace the marching cubes algorithm with
marching tetrahedrons or dual marching cubes. Then the
vertex quadrics are computed for all new vertices and
vertices on the previous processing front. The vertices
along the processing front are marked in the extracted
mesh such that they can be identified for the constrained
simplification and to later combine the mesh with the
next partition. The edge data structure is filled as in
the original simplification algorithm [GDG11] and the
parallel simplification loop starts. The quadric error is
optimized and illegal collapses are removed. An edge
can only collapse if it is not connected to the processing
front, i.e. none of its vecrtices are marked. In addition,
collapses of direct neighbors are also not possible since
we do not know their local ordering yet. This can be
easily achieved by setting the error of edges connected
to the processing front to −1. After removing all illegal
collapses, the operations are applied. Finally, the col-
lapsed edges are removed after updating the face and
edge connectivity. If no further collapses are possible,
the next partition is added to the partially simplified
mesh. During compaction, the new positions of the pro-
cessing front vertices inside the vertex buffer are stored
in a look up table. Figure 4 shows an overview of the
simplification process.

Instead of a time-lag [ACE05], our simplification algo-
rithm locally postpones only those collapse operations
that cannot be performed yet. As the collapse operations
are local, a mesh with same quality can be produced by
any global operation ordering, as long as the local order
remains fixed. We exploit this by simply blocking all
operations in the direct neighborhood of the processing
front. When additionally enforcing the correct local or-
dering, the simplification error automatically decreases

for vertices close to the current boundary (see Figure 5).
This way, the result will be identical to a simplification
of the complete mesh and the operations are performed
as soon as possible minimizing memory consumption.

The claim above can be proven by analyzing which
operations are performed in a sequential simplification
and if these are the same in our algorithm. A sequential
simplification collapses the vertex pair with the smallest
error until a given threshold is reached. As the error
of the neighboring edges increases during the collapse,
their error will always be higher after collapsing them,
if it was higher before. This implies that the edge is
also collapsed by our method at some time during the
simplification. If an edge is collapsed by our method,
then all neighboring edges have a higher error. This
means that a sequential algorithm also has to collapse
exactly this edge before neighboring edges could be
collapsed. Finally, setting the error of edges connected to
boundary vertices temporally to −1 and preventing their
collapse, only causes a local delay of the simplification,
because the neighboring edges also cannot collapse yet.

When the next partition is added, we simply need to
check the marked vertices – i.e. those on the processing
front – and find the in the next partition. Using a plane
sweep algorithm, these will simply be the first extracted
vertices. For other partitioning schemes we simply need
to assure that the vertex order is the same in the partitions
to combine both meshes in linear time.

6 RESULTS
We performed our evaluations on a PC with Intel Core
i7 CPU (3.33 GHz), 6 GB of main memory, and an
NVIDIA GTX 580 graphics card. We used CUDA
5.0 to implement the parallel reconstruction and sim-
plification. The models are taken from “The Volume
Library” [Roe13]. Table 2 gives an overview of the
volume datasets we used for evaluation. The largest
volume is the “Porsche” car model. It also produces

bonsai #2 CTA head
is

o
20

is
o

50

is
o

25

is
o

60

is
o

50

is
o

25
0

Figure 6: Renderings of the generated meshes of bonsai #2 (iso 20, 25, and 50) on the left and the CTA head (iso 50,
60, and 250) on the right. For all models, closeups with wire frame overlay are shown besides of them.

model dimensions size

bonsai #2 512 × 189 × 512 48.384
CTA head 512 × 120 × 512 30.720
Porsche 559 × 347 × 1023 193.784

Table 2: Dimension and file size of the models [Roe13]
used for evaluation. The size denotes MBytes in RAW
format.

the highest number of faces and thus has the highest re-
source consumption. Bith, “bonsai #2” and “CTA head”
are medium sized. The bonsai contains many ramifica-
tions, leading to a high number of faces in the simplified
model. Table 3 shows the relative and absolute number
of cubes crossed by the iso-surface, where the number of
generated triangles is roughly twice of that. As the gen-

model
crossed cubes

faces
% #

bonsai #2 (20) 4.49 2,203,645 4,405,952
bonsai #2 (25) 2.29 1,125,808 2,252,046
bonsai #2 (50) 0.67 329,858 658,158
CTA head (50) 3.08 956,441 1,913,256
CTA head (60) 9.53 2,961,041 5,878,764
CTA head (250) 2.24 694,745 1,392,432
Porsche (14) 2.40 4,744,499 9,580,084

Table 3: Relative and absolute number of crossed cubes
depending on the iso-value, given in parenthesis. In addi-
tion, the number of generated faces before simplification
is shown.

erated mesh also depends on the iso-value, we denote it
together with the model in the following.

6.1 Performance

We used 12 layers per iteration of the algorithm as par-
tition size. The extraction time is almost linear in the
number of cubes and slightly increases with the number
of generated faces (see Table 4). The extraction perfor-
mance ranges from 12.0M (CTA head, 60) to 12.9M
(Porsche, 14) cubes per second and the number of tri-
angles from 174k (bonsai #2, 25) to 2.24M (CTA head,
60) per second. The memory consumption is dominated
by the volume and gradient data in the current partition
with a small overhead for the simplified mesh. Note that
there is no significant difference in processing times or
memory consumption between medical and other data
sets.

model extr. simp. # faces mem.

bonsai #2 (20) 4.09s 5.74s 4,396,060 480.5
bonsai #2 (25) 3.99s 2.86s 2,245,412 430.6
bonsai #2 (50) 3.78s 0.95s 658,158 394.7
CTA head (50) 2.58s 1.19s 1,845,976 423.4
CTA head (60) 2.62s 5.31s 1,216,734 514.2
CTA head (250) 2.58s 1.37s 1,392,432 411.5
Porsche (14) 15.34s 21.12s 4,140,690 923.2

Table 4: Computation time in seconds for surface extrac-
tion and simplification, number of faces after simplifica-
tion and maximum memory consumption (in MBytes).
Cf. Table 2 for number of faces before simplification.

The generated meshes are shown in Figure 1 and 6. The
lowest simplification performance is achieved for the
“bonsai #2” due to the highly curved surfaces and the
highest performace is achieved for the “Porsche” data
set which contains many almost flat regions. The ratio
of triangles before and after simplification ranges from
20.7% (CTA head, 60) to 100% (bonsai #2, 50). The
meshes are simplified at up to 258k collapses per second.
The bonsai #2 data set (iso 25) has similar character-
istics as the “old bone” [ACE05] but almost three the
size. With an iso-value of 20 it resembles the “young
bone” data set, again with about three times the size.
Unfortunately, the original data sets used by Attali et
al. [ACE05] were not available for a direct comparison.
On our system, the algorithm of Attali et al. needs about
60 seconds for the bonsai #2 (iso 25) and approximately
125 seconds for bonsai #2 (iso 20), so our algorithm is
8.8 times and 12.7 times faster respectively.

6.2 Memory Consumption
Figure 7 shows the total memory consumption when
processing the “Porsche” data set in detail. Note that
the GTX 580 does not have enough memory to store the
complete model, so we have to use the partitioning. For
each partition, we plot the maximum memory consump-
tion during extraction and simplification along with the
number of faces after simplification. While the mem-
ory gradually increases with the size of the generated
mesh, it is dominated by the data required to process the
current partition.

Figure 7: Total memory consumption and number of
faces in the extracted and simplified mesh after complete
processing of the “Porsche” data set.

6.3 Mesh Quality
As shown above, our method produces meshes of the
same quality as the underlying simplification algorithm.
We compared our simplification with simplifying the
complete extracted mesh using the algorithm of Grund
et al. [GDG11]. For the smaller models, the runtime and
the simplified mesh were the same (up to floating point
round-off errors). The larger models like “CTA-head” at
iso-value 60 and “Porsche” do not fit into the graphics

memory of the GTX 580 and cannot be simplified with
that algorithm.
We experimented with the error-threshold and analyzed
the directional bias. In contrast to Attali et al. [ACE05],
the directional bias is – as expected – almost zero be-
cause we do not require any time lag.

7 CONCLUSION AND FUTURE
WORK

Removing the explicit time-lag by locally block-
ing/postponing simplification operations enables us to
reduce memory consumption and processing time. Due
to the massively parallel implementation on the GPU,
our approach can process large volumes within a few
seconds. In addition, it directly benefits from the future
improvements of graphics hardware or other parallel
systems.
By guaranteeing the same local ordering of collapse op-
erations as a sequential simplification of the complete
mesh, we achieve the same quality as the underlying sim-
plification algorithm. This also implies that no artifacts
at partition boundaries are introduced. Our improved
simplification algorithm works with any mesh genera-
tion algorithm. So we could easily replace the marching
cubes algorithm with dual marching cubes, marching
tetrahedrons, or others.
Our current implementation is limited to models for
which at least three slices – i.e. one layer – fit into
memory because of the plane sweep partitioning. For
very large volume data sets, we could use a regular
grid instead without changing the core algorithm. The
only part that needs to be modified is the fusion of the
next partition’s mesh with the already simplified one.
However, the runtime complexity of this step will still be
linear as the vertex ordering of the iso-surface extraction
is fixed within each partition.

8 REFERENCES
[ACE05] D. Attali, D. Cohen-Steiner, and H. Edels-

brunner. Extraction and simplification of iso-
surfaces in tandem. In Proc. 3rd Eurographics
Symp. Geometry Processing, SGP ’05. Eurograph-
ics, 2005.

[CGM+09] G. Cuccuru, E. Gobbetti, F. Marton, R. Pa-
jarola, and R. Pintus. Fast low-memory streaming
mls reconstruction of point-sampled surfaces. In
Graphics Interface, pages 15–22, May 2009.

[Che95] E. V. Chernyaev. Marching cubes 33: Con-
struction of topologically correct isosurfaces, 1995.
(Retrieved 2013-05-22).

[DJG+10] G. Dupuy, B. Jobard, S. Guillon, N. Keskes,
and D. Komatitsch. Parallel extraction and simpli-
fication of large isosurfaces using an extended tan-
dem algorithm. Comput. Aided Design, 42(2):129–
138, 2010.

[DT07] C. DeCoro and N. Tatarchuk. Real-time mesh
simplification using the GPU. In Proc. Symp. In-
teractive 3D Graphics and Games, pages 161–166,
2007.

[DZTS08] C. Dyken, G. Ziegler, C. Theobalt, and H.-P.
Seidel. High-speed marching cubes using histopy-
ramids. Comput. Graph. Forum, 27(8):2028–2039,
2008.

[GDG11] N. Grund, E. Derzapf, and M. Guthe. In-
stant level-of-detail. In Vision, Modeling, and
Visualization, VMV ’11, pages 293–299, 2011.

[GH97] M. Garland and P. S. Heckbert. Surface simpli-
fication using quadric error metrics. In Proc. 24th

Conf. Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’97, pages 209–216, 1997.

[GH98] M. Garland and P. S. Heckbert. Simplifying
surfaces with color and texture using quadric error
metrics. In Proc. Conf. Visualization, pages 263–
269, 1998.

[HGB93] W. Heiden, T. Goetze, and J. Brickmann.
Fast generation of molecular surfaces from 3D
data fields with an enhanced “marching cubes”
algorithm. J. Comput. Chem., 14(2):246–250,
1993.

[JC06] G. Johansson and H. Carr. Accelerating march-
ing cubes with graphics hardware. In Proc. Conf.
Center for Advanced Studies on Collaborative
research, CASCON ’06. ACM, 2006.

[LC87] W. E. Lorensen and H. E. Cline. Marching
cubes: A high resolution 3D surface construction
algorithm. Comput. Graph. (ACM), 21(4):163–
169, 1987.

[Lin00] P. Lindstrom. Out-of-core simplification of
large polygonal models. In Proc. Conf. Computer
Graphics and Interactive Techniques, SIGGRAPH
’00, pages 259–262, 2000.

[Liv99] Y. Livnat. Noise, Wise and Sage: Algorithms
for Rapid Isosurface Generation. PhD thesis,
University of Utah, 1999.

[LT97] K.-L. Low and T.-S. Tan. Model simplification
using vertex-clustering. In Proc. Symp. Interactive
3D Graphics, pages 75–81, 1997.

[Lue01] D. P. Luebke. A developer’s survey of polyg-
onal simplification algorithms. IEEE Comput.
Graph., 21, 2001.

[MS93] H. Müller and M. Stark. Adaptive genera-
tion of surfaces in volume data. Visual Comput.,
9(4):182–199, 1993.

[MSS94] C. Montani, R. Scateni, and R. Scopigno. A
modified look-up table for implicit disambiguation
of marching cubes. Visual Comput., 10(6):353–
355, 1994.

[NY06] T. S. Newman and H. Yi. A survey of the

marching cubes algorithm. Comput. Graph.,
30(5):854–879, 2006.

[PH97] J. Popović and H. Hoppe. Progressive sim-
plicial complexes. In Proc. Conf. Computer
Graphics and Interactive Techniques, SIGGRAPH
’97, pages 217–224. ACM/Addison-Wesley, 1997.

[RB93] J. Rossignac and P. Borrel. Multi-resolution
3D approximations for rendering complex scenes.
In Modeling in Computer Graphics, IFIP, pages
455–465. Springer, 1993.

[RDG+04] F. Reck, C. Dachsbacher, R. Grosso,
G. Greiner, and M. Stamminger. Realtime iso-
surface extraction with graphics hardware. In
Eurographics 2004, Short Presentations and Inter-
active Demos, pages 33–36, 2004.

[Roe13] S. Roettger. The volume library, 2013. Re-
trieved 2013-05-22.

[SG01] E. Shaffer and M. Garland. Efficient adaptive
simplification of massive meshes. In Proc. Conf.
Visualization ’01, pages 127–134, 2001.

[SHLJ96] H.-W. Shen, C. D. Hansen, Y. Livnat, and
C. R. Johnson. Isosurfacing in span space with
utmost efficiency (ISSUE). In Proc. Conf. Visu-
alization ’96, VIS ’96, pages 287–295. IEEE CS,
28-29 October 1996.

[SS02] R. Sviták and V. Skala. Surface reconstruction
from orthogonal slices. In ICCVG 2002, 2002.

[SS04] R. Sviták and V. Skala. A robust technique
for surface reconstruction from orthogonal slices.
MG&V, 13(3):221–233, January 2004.

[SW03] S. Schaefer and J. Warren. Adaptive vertex
clustering using octrees. In Proc. SIAM Conf.
Geometric Design and Computing, 2003.

[SW04] S. Schaefer and J. Warren. Dual marching
cubes: Primal contouring of dual grids. In Proc.
Pacific Conf. Computer Graphics, pages 70–76,
2004.

[TPG99] G. M. Treece, R. W. Prager, and A. H. Gee.
Regularised marching tetrahedra: improved iso-
surface extraction. Comput. Graph., 23(4):583–
598, 1999.

[TSD07] N. Tatarchuk, J. Shopf, and C. DeCoro. Real-
time isosurface extraction using the GPU pro-
grammable geometry pipeline. In ACM SIG-
GRAPH 2007 courses, SIGGRAPH ’07, pages
122–137. ACM, 2007.

[WG90] J. Wilhelms and A. V. Gelder. Octrees for
faster isosurface generation. Comput. Graph.
(ACM), 24(5):57–62, November 1990.

[WMW86] G. Wyvill, C. McPheeters, and B. Wyvill.
Data structure for soft objects. Visual Comput.,
2(4):227–234, 1986.

