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Figure 1: From left to right: One slide of an immunostained specimen of the human spleen stained for CD34 occurring endothelial
cells of capillaries and larger blood vessels and in a small fibroblast population; the scan resolution is 25856×32000. Detail
of the slide showing the stained capillaries. Detail of the iso-surface reconstruction from the aligned serial sections. Volume
rendering of a further spleen immunostained for CD34, smooth muscle alpha actin and CD271 (first two targets colored brown,
the latter one colored blue), both aligned with our technique.

Abstract
The spleen is one of the organs, where the micro-structure and the function on that level are not completely
understood. It was for example only recently found that is has an open circulation, which distinguishes it from all
other organs. Imaging the complete vascular network from the arteries to open-ended capillaries would greatly
facilitate research in this area.
The structure of such tissue is best uncovered using immunehistological staining. This can however only be applied
to thin tissue sections and larger structures span several slices. Due to the deformation induced when cutting the
specimen, standard registration algorithms cannot be used to merge the images into a volume.
We propose a specialized matching algorithm to robustly determine corresponding regions in the images. After
a rigid alignment of the scans, we use a cubic B-spline to deform and align the images. During this process we
minimize the total deformation to produce as accurate results as possible.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Image Processing and Computer Vision]:
Enhancement—Registration

1. Introduction

Imaging blood vessels, nerves or other mesoscopic structures
has several applications in biology and anatomy. Such struc-
tures may span regions of one or several millimeters and
specimen of such size need to be digitized as a whole. On

the other hand, small structures of less than 1 µm are also im-
portant to understand the structure and function of the tissue.
Therefore, only microscopy based approaches are applicable
in this context.

Our methods aim at providing insights into the course of
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arterial blood vessels in the human spleen. The spleenic vas-
cular network is open: the capillaries have open ends and
no connections to the venous sinuses. Thus, the blood flows
through the connective tissue without any separating wall
and – interestingly – without clotting. This behavior is be-
lieved to be unique to the spleen, signifying the importance
of the study of its blood vessel system. In addition, the human
spleen has specialized capillary vessels (called sheathed cap-
illaries), which do not occur in any other organ. The location,
shape and function of these vessels need to be clarified. Our
goal is to enable answers to these questions by depicting the
shape of the vessels in an aligned stack of serial sections.
Registered serial sections are then used to obtain volume or
mesh data of the capillary network. It does not make sense to
regard a single slide, as it is too thin to contain blood vessels
connected at a mesoscopic dimension.

Injections or genetic modifications, which are commonly
used in biological models, are not possible in humans. As a
consequence, staining of specific cells to discriminate them,
has to be performed after removal of the specimen. The only
applicable technique that is versatile enough, is immuno-
histological staining. Unfortunately, staining substances do
not penetrate a specimen further than a few micrometers.
Despite recent advances in confocal microscopy, it is there-
fore not possible to examine specimens with a thickness of
more than approximately 50 µm using immunostaining. The
only technique left is preparing 5–10 µm thick serial sections.
This allows immunohistological staining, but disassembles
the overall structure in mesoscopic dimension and produces
deformations. As a result aligning the sections and recon-
structing the volume is needed. Series with up to 400 sections
are possible, amounting to a total thickness of up to 4 mm.
Smaller series with up to 50 sections are simpler to produce
and we thus currently work with this range. Our techniques
are however applicable to these larger series as well.

So far only small details of serial sections have been used to
examine blood vessels or nerves. With the recent introduction
of automated slide scanning microscopes, large serial sections
can be digitized with high resolution. However, the special
properties of serial sections pose several challenges for such
a reconstruction, which we will discuss in the following.

1.1. Immunohistological Staining

Immunohistological staining is a procedure to detect proteins
or other antigens in thin sections of tissue that have been
either fixed and embedded in paraffin or a similar material for
cutting with a microtome. Alternatively, frozen sections may
be used. There are different detection systems available. The
system used for our experiments is called the “ABC”-system
(avidin-biotinylated peroxidase complex system).

For processing of the sections the embedding material
needs to be removed in a first step. Then appropriate antigen
retrieval is performed and endogenous biotin and peroxidase

activity is blocked. We first use a specific antibody, which
binds to the surface and/or the interior of the cut cell. Then
a second antibody binding to the first one is subsequently
applied. This secondary antibody has been conjugated to the
small molecule biotin. Biotin is used, because it is bound by
the protein avidin at one of the highest affinities known in
biological systems. To detect the biotin-labeled secondary
antibody, we using a molecular complex of avidin and biotiny-
lated peroxidase containing many unoccupied biotin-binding
sites in the avidin molecules.

When the molecular complex is applied to the sections, it
binds to the biotin of the secondary antibodies. This means,
that many peroxidase molecules are present at the site of
the antigen. Peroxidase is an enzyme which catalyzes an
oxidative polymerization of soluble color substances such as
diaminobenzidine to an insoluble product in the presence of
hydrogen peroxide. Thus, a permanent brown precipitate is
deposited, where the enzyme has exerted its function at the
location of the first antibody.

After sealing the stained section it with a cover slip, the
slide can be scanned for further digital processing. Figure 1,
left, shows a detail of a scanned immunostained specimen
using diaminobenzidine (brown) only. This staining desig-
nates capillary endothelial cells, blood stem cells, and certain
fibroblasts in the spleen. We use it to visualize the vascular
network. Some specimen (like Figure 1, right) are also im-
munostained for further targets, shown in brown and blue
color. In our experiments, we utilize CD34 immunostaining
as a standard.

We used a Leica SCN 400 slide scanner with an opti-
cal magnification factor of 20. With this magnification, the
scanner produces images with a spatial resolution of about
0.33× 0.33 µm per pixel. The section thickness is approxi-
mately 7 µm.

1.2. Aligning Serial Sections

After scanning the immunostained serial section, the images
have to be aligned to assemble them back into a volume. This
alignment process however poses several challenges.

• The sections are significantly deformed by the cutting
knife of the microtome. While small deformations are
tolerable for a single section, they need to be corrected for
a 3D reconstruction. This means that some non-linear local
deformations have to be applied to the scanned slides.

• Removing the embedding material has the consequence
that no external markers can be used for the alignment.
In contrast to many other applications, it is therefore not
possible to use registration markers since they would be
lost during staining.

• The specimen is human or animal tissue scanned at a high
resolution. Therefore, the images contain highly repetitive
structures – i.e. cells – and pose high demands on the
processing algorithms. Among other things, this implies
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that gradient domain, block- and feature matching cannot
be used directly.

The main contribution of the paper is a novel, feature based
registration and alignment algorithm that was specifically de-
signed for immunostained serial sections of tissue. It solves
several problems that render classical image registration tech-
niques unsuitable in the context of serial section alignment. It
is robust to highly repetitive smaller structures that otherwise
lead to erroneous alignments. Using an iterative re-matching
of the features, it is able to find correct correspondences for a
large number of features and automatically removes outliers.
It minimizes the overall deformation of the specimen since
we do not align to a single reference slice. Thus it reduces the
influence of the cutting-induced distortions in the individual
slices.

2. Related Work

Shams et al. [SSKH10] provide an extensive survey of paral-
lelized algorithms for medical image registration. The meth-
ods they discuss are however all based on local difference
measures and thus not directly suitable for our problem. Sim-
ilarly, Hill et al. [HBHH01] compared various approaches to
register MRI and PET images with CT data.

There are also several books on medical image regis-
tration algorithms. Goshtasby [Gos05] gives a very broad
overview of the methodology and applications of differ-
ent techniques. More detailed descriptions of various ap-
proaches and a deeper mathematical background are provided
by [SWL05, Sch06, HH10]. All of these books explicitly dis-
cuss non-rigid registration methods in the context of clinical
imaging, i.e. CT, MRI, and PET data. An overview of bio-
imaging software tools is given by Eliceiri et al. [EBG∗12].

2.1. Registration of Serial Sections

Only few methods to align serial sections of tissue exist.
Among these are manual alignment techniques [vKTVHW85,
SRB03]. This approach was later improved by Steiniger et
al. [SBS11] using a joystick as input device.

One of the first practical approaches was the ICP algo-
rithm [BM92]. Several semi-automatic approaches for the
registration of immunostained serial sections of human capil-
laries in tumors targeting CD34 [GWM∗05,GvdLP∗06] were
proposed. After an approximate manual pre-alignment using
a rigid transformation, an affine transformation is computed,
that minimizes the pixel-wise normalized cross-correlation.
These are however only suitable for small regions due to the
pure linear correction and for small series because of the
manual pre-alignment.

A fully automatic approach was proposed by Ourselin
et al. [ORS∗01] that is based on block matching. Nikou et
al. [NHN∗03] minimize a global energy function for auto-
radiography sections, however, they operate on a very small

MRT data sets. Ma et al. [MLW∗08] developed a method
to align sections of a mouse lymph node. It is based on
first globally aligning a binary image generated by a fore-
ground/background segmentation. Then a multi-resolution
algorithm is used to refine the rigid alignment. A similar ap-
proach was proposed by Tanacs and Kato [TK11] for MRT
images. Ju et al. [JWC∗06] utilize the continuity of the bio-
logical matter to reduce “jitter” in the registration of a slide
series with warp filtering.

As Steiniger et al. already noted: “Slight distortions of the
single sections during the cutting process (and other reasons)
led to an irregular outline of the vessels” [SRB03]. Rigid-only
registration was studied in context of MRI and similar kinds
of data [RPMA01, JS01, MBNV04].

2.2. Non-rigid Registration

Cifor et al. [CBP11] register 2D histological scans using the
smoothness assumption: the surface-to-reconstruct is a bio-
logical artifact that should not have non-continuous jumps.
The elastic method is a quite popular approach [GBB∗01,
CBR∗11]. Gefen et al. [GTN03] use a 3D wavelet to
elastically transform histological images. Bajcsy and Ko-
vačič [BK89] developed a multi-resolution elastic algorithm
to register CT data sets. Saalfeld et al. [SFCT12] use a 2D
elastic triangulation of Hookean springs for block matching.
Wirtz et al. [WPFS05] use higher-order image derivatives.
Thirion [Thi98] used a diffusion model based on thermody-
namic concepts to register two images. Bagci et al. [BCU12]
review the modern state of the art approach based on multi-
resolution methods. All multi-resolution methods however
require data containing large structures which are not present
in our specimen.

Rueckert et al. [RSH∗99] developed a non-rigid registra-
tion of 3D models, especially breast MRTs. It is similar to
our work as it also uses a B-spline based deformation. The
matching is however based on the mutual information of the
images [WVA∗96, PLD05] and thus requires clear edges and
larger uniform areas in the images. This approach was fur-
ther improved to utilize multi-level B-splines [SRQ∗01]. This
allows simulating a non-uniform control point grid, but the
similarity measure is still not suitable for our context. Com-
pared to Xie and Farin [XF04], our work features orders of
magnitude larger data sets with comparable execution time.

Chui and Rangarajan [CR03] developed an algorithm
for non-rigid registration of medical data sets, especially
CT/MRT data. They also include a survey on different reg-
istration methods in their work. Their method circumvents
the matching problem by reformulating the registration as
point cloud matching of the features. This idea however does
not work in our case, because the point cloud formed by
the features is a dense random point set without much struc-
tural information. In the context of CT data the results of the
EMPIRE10 challenge are of interest [MvGR∗11].
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Wan et al. [WBDM13] also use feature detection based
on SURF and thin-plate splines for the non-rigid registra-
tion of a set of synthetic brain MRI images. This method
however requires an exhaustive training step for feature se-
lection and thus cannot be used for “one-shot” specimen
in the context of medical research. Kim et al. [KBFM97]
utilize thin-plate splines for alignment of auto-radiography
images. They used a low-resolution undistorted video feed
as guide images. Again, large structures are required for
this method. In contrast to Auer et al. [ARH05] we oper-
ate on much larger images – complete histological scans at
20× magnification. Auer et al. combine a multi-resolution
rigid registration with thin-plate spline non-rigid step. We
use one-step rigid transform and a B-spline-based non-rigid
step. Song et al. [STBM13] register a set of immunostained
sections with alternated different staining.

Existing methods all rely on a reference slice to which all
others are deformed. As shown by Bagci and Bai [BB10],
selecting the “best” reference is crucial for the final result.
In contrast to that, we perform a global optimization step to
minimize the energy of the non-linear distortions of all slides.

2.3. General Image Registration

There is an extensive research on image registration and its
various applications. Early works [LK81] date back more
than 30 years ago. Friston et al. [FAF∗95] describe the im-
age registration process as a least-squares problem where the
differences between images are minimized. Several surveys
on image registration methods exist [Bro92, ZF03]. Image
registration, as a process of overlaying different images of
the same or similar objects typically consists of four phases:
feature detection, feature matching, estimation of the trans-
formation, application of the transformation. In our case we
first estimate the rigid transformation and then the non-rigid
one.

2.4. Feature Detection and Matching

Numerous image feature detection algorithms exist. Re-
cent algorithms detect scale and rotation invariant features.
Among them are the SIFT features [Low04], SURF is
their improvement in term of run-time efficiency [BETV08].
BRISK [LCS11] aims to further reduce run-time compared
to SURF without sacrificing the detection quality. Due to the
low run-time and memory consumption, we chose to use this
detector in our work. Further feature detectors can be found
in the survey of Heinly et al. [HDF12]. The n-SIFT [CH09]
is a generalization of SIFT to volume and otherwise multi-
dimensional data. n-SIFT can be used in the registration of
multiple volume data sets against each other.

After the features are detected, they need to be matched in
pairs between two images. Typically, each feature is matched
with the most similar one in the other image. Despite prun-
ing strategies, like only keeping pairs where the matching in

the other direction is the same, some mismatches almost al-
ways remain. These are usually filtered out using the random
sample consensus algorithm [FB81] or one of its variants.

3. Overview

The overall registration and alignment algorithm is split
into three steps. First, we determine suitable features in all
scanned sections. Then we use those features to perform an
initial pairwise rigid alignment of all sections. This alignment
is used to iteratively deform the images and to identify the fea-
ture correspondences. The non-rigid alignment is performed
in such a way, that the overall deformation of the images is
minimized. Minimizing the deformation leaves an overall
rigid transformation of the images as only degree of freedom.
We fix this by preventing rotation and translation of the first
slice. This means that the remaining ones are rigidly aligned
to the first, but all of them are deformed. This does not mean
that the first slide is used as a reference for the distortion of
all other slides. Finally, the deformed images are generated,
forming an aligned stack. Figure 2 shows the overall work
flow of our method.

Detect
features

Input images

Rigid feature
alignment

Find pairwise
correspondences

Non-rigid fea-
ture alignment

Iteration
converged?

Deform images Image stack

no

yes

Figure 2: Overall work flow of our non-rigid registration and
alignment algorithm.

4. Initial Rigid Alignment

The purpose of the initial rigid alignment step is to roughly
register the slices and to facilitate the non-rigid alignment.
First, we need to choose adequate feature candidates and then
perform a pairwise matching. Based on these matches that
still contain a high number of outliers, we then calculate a
robust alignment.

4.1. Choosing Candidate Features

The first step we perform for each input image, is finding
all feature points. The slides have been normalized prior to
feature detection. For this purpose, we use the BRISK feature
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detector [LCS11]. Unfortunately, we cannot directly use the
detected features and compute pairs by searching for the
most similar one in the reference image as shown in Figure 3.
The reason for this is that many small features cannot be
reliably used because they originate from single cells or other
common structures.

Figure 3: Using standard image registration results in almost
random matches due to ambiguous features. Every 10th match
is shown only to reduce visual clutter.

On the other hand, larger features – about an order of
magnitude larger than a single cell – are usually much less
ambiguous. Therefore, we select the Nselect features in each
input image i whose descriptors have the largest diameters.
Then we compute pairs by selecting the most similar feature
in the reference image i− 1. The possible candidates can
again be reduced by exploiting the fact that there is not much
scaling between structures in adjacent sections. Thus we only
consider features with a similar descriptor diameter.

1
1+ εl

≤ dtgt

dref
≤ 1+ εl , (1)

where dtgt and dref are the target and reference diameters
respectively, and the threshold εl the maximum local stretch.
Figure 4 shows the matches found when only using larger
features. Although the quality improved, the matches still
contain a high amount of outliers and we have to perform a
robust alignment procedure.

4.2. Pairwise Alignment

After finding initial pairs, we perform a random sample con-
sensus (RANSAC) [FB81] based registration. A rigid trans-
formation in 2D is defined by two points and their movement.
Actually, this has one degree of freedom more than a rigid
transformation because the distance of points cannot change.
Since we know that the distance between two corresponding
point pairs on neighboring sections can only change due to
deformation of the specimen, we can restrict the candidate
set. We choose two random matches a and b, and only use

Figure 4: The relative number of false matches is reduced
using larger features only. Nevertheless, still many outliers
exist. As before, we show only each 10th match to reduce
visual clutter.

this pair, if

1
1+ εg

≤
‖Pa,tgt−Pb,tgt‖
‖Pa,ref −Pb,ref ‖

≤ 1+ εg (2)

‖Pa,tgt−Pb,tgt‖ ≥ dmin · simage (3)

‖Pa,ref −Pb,ref ‖ ≥ dmin · simage, (4)

where Pa,tgt is the position of a in the target image, etc., εg
the maximum global stretch, with εg ≤ εl , simage the image
size, and dmin the minimum relative distance between the
points. Based on the selected pair, we compute a candidate
transformation Ri.

In addition to quickly rejecting futile candidates, we also
augment computing the consensus score with the matching
score of the pairs that are determined as inliers for the given
transformation. Instead of simply counting all matches j with
‖RiPj,tgt−Ri−1Pj,ref ‖ ≤ simage · εg, we accumulate

1
1+wmatchδ j

, (5)

where δmatch is the difference of the descriptors and wmatch a
weighting constant.

After finding a good transformation using the RANSAC
algorithm, we again compute the inlier set. From this, we
compute a rigid transformation with a weighted least squares
error. The weighting is the same that we already used to
compute the consensus score (see Equation 5). Figure 5 shows
the found rigid transformation between two sections together
with the matches in the consensus set.

5. Non-rigid Alignment

The non-rigid alignment is an iterative process because each
deformation of the images may change the inlier/outlier clas-
sification and thus the matching pairs. We first start by find-
ing a corresponding feature in the reference images. Then
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Figure 5: Rigid registration between two sections with the
consensus set of matching features. Notice that the upper area
cannot be aligned due to local deformations.

we perform a least-squares deformation trying to align all
found pairs. Finally, we compute the feature positions after
deformation and check if the matches are still valid or if we
can find a better correspondence that is now within the local
search radius. If all pairs remain – or if we have performed a
maximum number of iterations itmax – the registration termi-
nates. We do not select a reference slide and deform all slides
to match it, but rely on global optimization to minimize the
energy of the deformation.

5.1. Finding Pairwise Matches

In each iteration, we first start finding new matches. For each
feature j in image i we search a corresponding feature k
in image i− 1 with the most similar descriptor under the
constraint that

‖Ti
(
Pj,i

)
−Ti−1

(
Pk,i−1

)
‖ ≤ simage · εg, (6)

where Ti is the non-rigid transformation of image i. Note
that in the first iteration, this is the rigid transformation Ri.
Figure 6 shows the matches found in the first iteration.

5.2. Computing Image Deformations

The non-linear deformation is based on a uniform bi-cubic B-
spline over a 9×9 control point grid with three additional con-
trol points outside the image. The control point net initially
covers the first image. The aligned images are constructed in
the parameter domain of the B-spline that is scaled such that
it has the same size as the first input image. This means that
we can simply evaluate the B-spline to compute the source
position in the deformed image for each pixel of the output.

We register each image to the previous one, starting with
the registration of the second to the first. For each matching
feature pair j,k in image i and i−1 respectively, we have the

Figure 6: Pairwise matches found in the first iteration, where
only high confidence matches – i.e. weight≥ 0.2 – are shown.
Note that despite the increased density of matches, there are
still very sparsely covered regions where large deformations
are present, e.g. at the top of the image.

following constraint of the control points:

14

∑
l=0

14

∑
m=0

Bl(u)Bm(v)αi
l,m = RiPj,i, (7)

ui = u
(
Ti(Pj,i))

)
vi = v

(
Ti(Pj,i))

)
, (8)

where u and v are the mappings of a pixel in the aligned
image to the parameter values, and α

i
l,m are the control points

of the B-spline of image i. Again, we use the same confidence
weighting described in Equation 5.

In addition, we want to prevent large deformations and
smooth areas where we have no matches. We achieve this by
adding a constraint for each edge of the control meshes:(

α
i
l+1,m−α

i
l,m

)
wα =

(
dx
0

)
(9)(

α
i
l,m+1−α

i
l,m

)
wα =

(
0
dy

)
, (10)

where dx and dy are the distances between two neighboring
control points in the output image in x and y direction and wα

is the smoothing weight. Note that this also induces a penalty
for rotations but this is unproblematic because we already
performed a global rigid alignment.

Combining all of the constraints leads to a sparse linear
equation system. We solve this using the conjugate gradient
method [PTVF07] for sparse matrices. As initial value we
use the control points from the previous iteration. For the
first iteration, we simply set α

i
l,m = ((l−3)dx,(m−3)dy)

T

which is a non-deformed control grid.

As the first image is not deformed, this leaves an overall
deformation of all images as a degree of freedom. We use
this to minimize the mean square deformation of all images
after each registration pass. Moving each control point of all
images by the same offset does not change the matching. We
can thus minimize the mean square deformation by moving
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the control points, such that the average of each control point
l,m over all images (including the first one) lies on a grid. In
other words, we constrain the control points such that:

Nimg

∑
i=1

α
i
l,m =

(
(l−3)dx
(m−3)dy

)
. (11)

This uses the remaining degrees of freedom in the align-
ment to force the “average deformation” to be zero. Previous
approaches simply fixed a reference slice such that it was not
deformed at all.

5.3. Deforming the Images

To deform the images, we use the OpenCV [Bra00] func-
tion remap. First, we compute the position in the source
image for each pixel of the output image and store it in an
array. Instead of evaluating the complete B-spline function
for each pixel, we can exploit the fact that the image is a
uniform grid. For each row of control points, we evaluate the
1D cubic B-spline for the x-coordinate of each pixel. Then
we only need to compute 1D cubic B-splines instead of bi-
cubic B-splines per pixel. As the number of image lines is
significantly higher than the number of control point rows
we only need to compute 4 basis functions instead of 8 per
pixel and accumulate 4 instead of 16 control points. In total,
this roughly saves 70% of the computation time. Then, the
computed pixel location array is used to generate the aligned
image. For the reconstruction, we use bi-linear filtering.

6. Results

Figure 7 shows an overview of the complete data set of the
human spleen specimen consisting of 24 sections with a reso-
lution of 25856×32000 pixels each. The thickness of each
section is approximately 7 µm, so the digitized specimen has
a total thickness of about 170 µm. The image is generated us-
ing a volume renderer that combines all sections into a single
thick specimen. Such view would be impossible without the
registration.

Figure 8 shows two interesting areas of the spleen speci-
men. On the left, it shows the shape of a larger artery, dividing
up further until the capillaries, and the right side shows the
blood supply of a follicle. Single sections do not contain
longer portions of blood vessel, as Figure 1, second image,
visually depicts. On a larger scale, the shape of the capillary
network in the spleen can be reconstructed from our volume
data using standard visualization algorithms like marching
cubes (third image).

6.1. Alignment

The complete registration and alignment pipeline is imple-
mented in C++ using the OpenCV Library [Bra00] version
2.4.8. The run-times are measured on an Intel Core i7 with
16 GB of RAM running Windows 7 64 bit and the executable

Figure 7: Overview of the complete aligned data set of the
human spleen specimen. Capillary and larger vessel endothe-
lia and certain fibroblasts are colored brown, visualizing the
vascular network.

is also compiled as 64 bit. We use the following constants for
the alignment:

• Number of features selected per image Nselect = 20,000
• Minimum RANSAC edge length dmin = 0.1
• Maximum local deformation εl = 0.01
• Maximum global deformation εg = 0.005
• Descriptor weight for matches wmatch = 10
• Maximum number of non-rigid iterations itmax = 20
• Smoothing weight wα = 0.2

The final matches found for the alignment of two sections
are shown in Figure 9. Matching feature pairs have been
found for the whole area.

In our experiments we also encountered teared or otherwise
damaged slides. Because of our global optimization approach
it was possible to register the batch with sufficient accuracy.
The final aligned data set is shown in Figure 1, right. Although
the damage was not “repaired” by our method, it is robust
enough to align all parts.

Figure 10 compares our registration with the standard ICP
algorithm [BM92]. We used the implementation of Pomer-
leau et al. [PCSM13]. Starting from the original images, the
ICP algorithm converges to a local minimum (top left). Using
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Figure 8: In the top left a larger artery develops into a network
of smaller vessels. The shape of the blood vessel network
in human spleens is unexplored, except for the fact that it
has open ends. The top right image shows the blood supply
of a lymphatic follicle. The bottom images show similar
structures in the two-color specimen. Such in-depth views of
were impossible so far.

Figure 9: Final matches found during alignment of two sec-
tions, where only high confidence matches – i.e. weight
≥ 0.2 – are shown. The whole images are densely covered
with correctly matched feature pairs.

a manual pre-alignment, it obtains better results (top right).
Due to the ambiguities, caused by the repetitive structures in
human tissue, a consecutive non-rigid alignment, e.g. using
the method of Chui and Rangarajan [CR03] cannot correctly
align the scans. In contrast to that, our method achieves much
better results on the same data with the rigid stage only (bot-
tom left). The final non-rigid stage (bottom right) drastically
improves the alignment.

Figure 10: Alignment comparison showing the upper right
corner of two consecutive spleen sections stained for CD34
and smooth muscle alpha actin in brown, and for CD271 in
blue. Top left: result of the ICP algorithm applied to the orig-
inal images. Top right: ICP with initial manual positioning
of the sections. Bottom left: result of our rigid registration.
Bottom right: the result of our non-rigid registration (final
output of our method).

Table 1 shows the timings for the different steps of the
algorithm. The initial number of features detected per image
is between 430k and 450k, so we keep the 4–5% largest
ones. Despite the iterative non-rigid alignment procedure,
the actual deformation of the images requires most of the
time. This is due to the fact, that the bi-cubic B-spline has
to be evaluated for every pixel of the output images. Note
that using thin plate splines, this step would take significantly
longer due to the high number of matched features. The run
times for both data sets were identical since the images have
the same size and both contain 24 slides. Due to the pairwise
matching and the sparse linear system, our method is linear
in the number of slides.

time feature rigid non-rig. image
(mm:ss) detection transf. transf. recon.

imagea/pairb 0:42a 0:08b 1:03b 1:17a

total 16:58 3:20 24:02 30:35

Table 1: Execution times for the spleen data sets with 24
sections. The first line shows the average time for various
phases of our method that is required per image or pair. The
second line shows total time for each phase.

c© The Eurographics Association 2014.
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7. Conclusion and Limitations

After aligning stacks of immunostained spleen serial sections,
we have produced volume renderings of two different speci-
men, as well as a 3D-model of the vessels (Figures 1 and 7).
These enable the domain experts to analyze and discuss the
shape and function of capillaries and arterial blood vessels in
the spleen at a level impossible without our method. Details
of interesting areas already discovered are shown in Figure 8.

To achieve this goal, we have presented a method that
is able to robustly register and align immunostained serial
sections. This is an especially challenging task due to the
highly repetitive cellular structures in the tissue. Our algo-
rithm tolerates relatively large local and global deformations.
We measured a global deformation of up to 2% of the image
diagonal and a local stretch of up to 5%.

The most time consuming part of our method is the re-
construction of the deformed images. Therefore, we plan
to implement this step on the GPU in the future. A second
candidate for a GPU implementation is the conjugate gra-
dient solver which needs most of the time in the non-rigid
alignment phase.

Although we have developed and used our approach for
human spleen specimens, it is much more widely applicable.
Due to the use of feature detection to find similar structures
in adjacent sections, our approach is only limited to tissue
that contains at least some special histological structures. At
a mesoscopic scale this is however no limitation, as blood
vessels always provide sufficient landmarks in human organs.

While our method appears to be robust even to teared
or damaged slides, explicitly repairing the damage before
alignment would have several advantages. The alignment
will be more precise close to the fracture as there will be
consistent feature pairs on both sides. On the other hand, the
reconstructed volume will also not be fractured any more. We
therefore want to develop a method to find and “repair” the
fractures in the scanned slides.
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