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Abstract. A parallel computation with early termination property is
a special form of a parallel for loop. This paper devises a generic high-
level approach for such computation which is expressed as a scheme
for algorithmic skeletons. We call this scheme map+reduce, in similarity
with the map-reduce paradigm. The implementation is concise and relies
heavily on laziness. Two case studies from computational number theory
support our presentation.

Algorithmic skeletons are parallel algorithm abstractions, which concentrate
on the parallelisation and not on the algorithm [1]. We regard here skeletal im-
plementation of a parallel computation with early termination. An imperative
equivalent is a for−break parallel loop. An overview is in Section 1. This paper
discusses an implementation of this kind of a loop in lazy parallel functional pro-
gramming language Eden [2]. We will present this language briefly in Section 2.
We devise a classification of new and existing related skeletons in Section 3. We
develop there a more special approach. The desired parallel behaviour has a well-
known functional counterpart: a map-reduce combination with added possibility
of premature termination. This premature abort part is new. We find some fea-
tures of the Eden language useful in this context, as the premature termination
is granted for free in our setting. We discuss it in Section 4. Section 5 highlights
two primality tests used as examples. We do not discuss their implementation in
full detail and focus on parallelisation results. Section 6 discusses further related
work. Section 7 concludes and outlines future work.

Contributions. The contributions of this paper are

– Definition of the map+reduce skeleton scheme for the parallel computation
with premature termination.

– Discussion of the importance of laziness in the context of speculative paral-
lelisation and premature termination.

– High-level parallelisation of two primality tests. We were the first to paral-
lelise one of them, the Jacobi sum test.
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1 Introduction

Iteration is an important concept in the computation theory, especially in sci-
entific computation. For example, a for loop or a while loop are ubiquitous in
imperative programming. The purely functional counterpart of these constructs
is often expressed using recursive calls or corresponding combinators, e.g., map
and fold, or with a contraction, e.g., iterate.

A special kind of “repeated computation”, as described below, is the goal
of this paper. A classical imperative for loop can be implemented in parallel
in some cases. Assume that the loop is executed n times. If, for some positive
integer p, the loop body can be partitioned into dn/pe blocks, and if in each
of these blocks single loop iterations do not depend on each other, then the
loop can be implemented in parallel on p processors. This scheme is known as
speculative parallelisation. The first p loop iterations are executed in parallel,
then the second p loop iterations follow, until the dn/peth block of at most p
loop iterations is executed. We will regard the case when computation can be
aborted before the loop is over as the parallel functional equivalent of the for
loop with a conditional break.

Such kind of a computation is a quite typical task in computational mathe-
matics. Given some data x1, x2, . . . , we apply some function f to them, result-
ing in f(x1), f(x2), . . . , until a predicate p is not satisfied for some f(xn). See
Section 5 for presentation of the particular methods from computational num-
ber theory. We abbreviate the processing elements of a parallel system as PEs.
Nowadays the PEs are typically cores of a multicore system. Below, we inves-
tigate combinations of three distinct features of the algorithmic skeletons: task
creation, task balancing, and premature abort.

The first feature—dynamic internal task creation—allows creation of new
tasks from within the skeleton while the computation is progressing. Essential
for this is the opportunity to use intermediate results inside the skeleton and to
transform its task pool. In absence of these facilities, the ability to create tasks
from the final results is available with a wrapper around standard map skeletons
in a lazy functional language. We call this dynamic external task creation. This
approach is similar to non-monadic I/O in Haskell and will be elaborated on
later. If all tasks are known beforehand and no new tasks emerge, no task creation
takes place.

Task balancing is how the tasks are allocated in the progress of computation
in order to maintain a similar load on all PEs. Dynamic task balancing is a prime
feature of workpools (see below). It is another name for load balancing, as in
this case we do indeed balance the actual load. Here the decisions are made at
runtime. In contrast, we can balance the tasks not while the computation is in
progress but beforehand. We call this static task balancing ; it is implemented
in a task farm. Finally, a simple parallel map does no task balancing by itself,
but merely creates all tasks simultaneously. Still, the OS could load-balance the
simultaneously created threads, however this is beyond the scope of this work.

We discuss the premature abort feature in Sections 3 and 4. The essential
idea is to terminate a computation in progress basing on available information.
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Twelve combinations of the above distinct features are possible. We will ad-
dress only these with premature abort property. The no task creating skeletons
can be easily upgraded to dynamic external task creation with a wrapper. Au-
thor’s thesis [3] discusses such an extension for a farm skeleton in Chapter 6.
Further extensions are known, see, e.g., the orbit skeleton [4]. The literature
is mainly concerned with three internal task creation versions, see page 5 for a
discussion. We define and use here a generic scheme for three no task creation
versions.

2 Eden

Eden [2] is a parallel Haskell extension that features explicit processes creation.
We assume a certain degree of familiarity with Haskell [5]. Laziness is important
in Eden, as we will see below.

Eden processes. The parallelism model in Eden is implemented with processes
that are executed on remote machines. Before that, a process needs to be defined.
The process abstraction is defined with the smart constructor function process.
The process abstraction is a mould from which multiple “actual” processes can
be obtained. Processes are started with the instantiation operator #.

The input is communicated to the started process and the output is com-
municated back to its parent implicitly. One could say that1 (#) ◦ process in
Eden is similar to the $! operator from Haskell. Of course, Eden processes have
a side effect of a parallel application. Because of the evaluation of data to be
sent, # is a strict operator.

Why Eden matters. The strong sides of Eden include

– Distributed memory model. There is no need for sophisticated virtual shared
heap implementations in a distributed setting. Moving the data between
Eden heaps on a shared memory machine is essentially copying. An imple-
mentation of parallel garbage collection is not required with Eden.

– No separate skeleton language. In Eden skeletons are expressed as higher-or-
der functions. There is no separation between skeleton language and appli-
cation language, which is good for the programmer’s flexibility.

– Usual Haskell traits. Eden supports everything GHC (the flagship Haskell
compiler) supports.

Demand and evaluation control. Haskell is a lazy programming language—
expressions are evaluated only if required. The actual GHC implementation
determines that Haskell is a demand-driven language: expression is evaluated
just when demand for its value occurs. Demand on expression that depends on
another expression will issue a demand on both expressions. For example: the
output of expression value on the display forces demand on the expression.

1 With ◦ we denote Haskell’s composition combinator. It holds (f ◦ g) x = f (g x).
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The need for demand is an obstacle to parallelism. If no expressions are eval-
uated before they are needed, then no parallelism occurs. Thus, most parallel
extensions to functional languages with demand-driven evaluation create arti-
ficial demand in expressions dealing with parallelism, see, e.g., GpH [6,7]. For
the current state of the evaluation strategies’ library in Haskell see the paper by
S. Marlow et al. [8].

The transmissible types in Eden, i.e., types which can be communicated to
other machines, must be instances of the Trans type class. As Eden semantics
forces the evaluation of data before sending, the Trans type class instances can
be derived only for instances of NFData, i.e., types that can be evaluated to
normal form. To give an example, the Int type is transmissible, it is an instance
of Trans.

Skeletons in Eden. The Eden application library [9] contains multiple algorith-
mic skeletons. The skeletons are implemented in Eden as higher-order functions,
see [10,11,12]. Related skeleton libraries in other languages were presented in
[13,14,15,16,17,18].

Several of Eden skeletons have a type signature similar to that of a map.
An overview is in Table 1. The simplest one is parMap. It has exactly the map

signature—up to the Trans context. So, let
type Map a b = (a → b) → [a] → [b],

then we can write both map :: Map a b and parMap :: (Trans a, Trans b)

⇒ Map a b. The semantic equivalent of parMap f is zipWith (#) (repeat $

process f). We see that a process is created for each element of the input list.
This approach is not efficient in cases where the list length exceeds the number of
PEs. The next skeleton relaxes this restriction. We will use the map-like skeletons
throughout this paper.

A classical approach in parallel computing is farm [19,11]. It can be imple-
mented using a statically task-balanced parallel map: we divide the input into
blocks, which are assigned to PEs. Thus, no more processes than PEs are cre-
ated, but each process typically processes multiple tasks. This approach works
best if the processing time of individual tasks is identical. The type of the farm

skeleton is the same as that of a parMap.

skeleton task balancing

parMap none
farm static
workpool dynamic

Table 1. An overview
of map-like skeletons pre-
sented here.

Workpools. The dynamically task-balanced parallel
map is an example of a master-worker computa-
tion scheme—the more generic name is workpool.
The cost of processing separate elements may vary.
Hence, it is better to do load balancing at execution
time [20,21]. These skeletons have the same type as
the parallel map.

We can classify workpools by whether it is pos-
sible to create tasks dynamically while the computation progresses. This is done
using a worker function not of type a → b, but of type a → (b, [a]). In
other words, worker function might produce new tasks, but not necessarily in
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farm+and :: Trans a ⇒ (a → Bool) → [a] → Bool

farm+and f xs = and $ farm f xs

Fig. 1. A simple skeleton with premature termination but without task creation.

each run. Dynamic task creation is possible for both master-worker-based (for
Eden implementations see [22,4]) and distributed workpools (viz. [23]).

Iteration skeleton. An iteration skeleton iterUntil has been defined in [12].
This skeleton allows introduction of further iterations while the loop is already
being executed. Its sequential imperative counterpart is a do–while loop. We
start a few speculative tasks in parallel and repeat this over and over again. It
is possible to produce more tasks during the computation.

This skeleton has dynamic task creation, but no task balancing. We do not
elaborate on it, see [12] for details.

3 Skeletons With Premature Termination: The Beginning

Starting point. In case of using a functional lazy programming language and
opting for no task creation, we can sketch much of the skeleton with premature
termination. Our simple Eden implementation, called here farm+and, is shown
in Figure 1.2 We emphasise that this version does have task management and can
abort the computation early, but it disallows internal task creation. The version
shown is very simple and assumes worker functions of type a → Bool. A worker
function returning a False causes collapse of the skeleton. This happens because
of properties of the and function [5]. Namely, and [True, False, ⊥] = False.
The and function stops traversing the list, once a False occurs. A call to the farm
skeleton does the actual parallel evaluation. It is straightforward to generalise
the farm+and skeleton: we replace and with a parameter function. We call the
resulting skeleton farm+reduce. Further generalisation is presented in Section 4.

Related work. Another approach to parallel functional “repeated computation”
is to use an advanced workpool with dynamic internal task creation. As the name
suggests, dynamic load balancing is already supported in this setting. Two possi-
bilities for premature termination exist. One is to extend the skeleton with state
management. However, if global task pool transformation is available, a stateless
version is possible. Such transformations are often used as a generalisation for
new tasks placement. It suffices to introduce a new, special task that will be
issued by the worker function as a termination signal. The task pool transfor-
mation function would simply empty the task pool seeing such a task. So, the
purge happens here on the input side. However, our approach is different.

We display a classification of existing map-like skeletons with the possibility to
abort the computation early in Table 2. We differentiate among them by method
of task creation and by the type of task balancing. The skeletons shown here are

2 Note that strict Haskell syntax disallows such function name, so we use farmPlusAnd

in the actual implementation.
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task creation
internal external/no

task balancing

no [12] (iterUntil) parMap+reduce

static [4] farm+reduce

dynamic [22,24,4] workpool+reduce

abstracted not known to us map+reduce

Table 2. The map-like skeletons with premature termination property.

identified by their names. The skeletons known in the literature are referenced by
the appropriate citation. We observe that internal task creation skeletons with
dynamic task balancing have been quite intensely studied, since they comprise
an extension to the well-known workpool scheme. The skeletons parMap+reduce

and workpool+reduce are equivalents of the farm+reduce skeleton with an
obvious change in the map implementation. In the next section we will generalise
these skeletons under an umbrella approach called map+reduce.

The key difference between our approach and the naive parallel while con-
struct, like parallel do from Intel Threading Building Blocks library [25], is the
reduce function, accounting for the termination of the computation. Both in the
dynamic task creation workpools and in parallel do the termination of the compu-
tation is implemented with emptying the task queue. Our approach implements
the termination by not demanding the results anymore.

4 Map+Reduce

Fig. 2. A standard
reduce.

Given the higher-order function farm+and from Fig-
ure 1, we aim to generalise it. This specific implementa-
tion of a parallel for-loop turns out to be nothing more
than a primitive combination of parallel map and a spe-
cific reduce function. Note that reduce is another name
for a fold. However, we have further requirements for
the reduce function. These are satisfied by and, but not
by an arbitrary reduce. We call the map–reduce combi-
nation incorporating some parallel map-like skeletons and
a special reduce implementation a map+reduce skeleton
scheme. This generic scheme is our original contribution.

The key feature of our Eden implementation should
also be granted in a generic map+reduce case: if our reduce function returns
the result before evaluating the whole input list, e.g., and [True, False, ⊥
] = False, then the parallel map instance still computing further list entries
should be terminated. In the following we seek for a formalisation of this issue
and develop a generic skeleton using the gained knowledge.

Our required property for reduce is shortcutting. If some input element pro-
duces all the information necessary to produce the final result, then no further
input elements need to be evaluated. Figure 2 shows the standard reduce, Fig-
ure 3 displays such special input element and information propagation in red.
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map+reduce :: (Trans a, Trans b, Trans c)

⇒ (Map a b) -- ^ map

→ ((c → b → c) → c → [b] → c) -- ^ reduce

→ (a → b) -- ^ map worker

→ (c → b → c) -- ^ reduce worker

→ c -- ^ reduce zero

→ [a] → c -- ^ input and output

map+reduce amap areduce f g z xs = areduce g z $ amap f xs

-- a version with applied worker functions

map+reduce ’ :: (Trans a, Trans b, Trans c)

⇒ ([a] → [b]) -- ^ partially applied map

→ ([b] → c) -- ^ partially applied reduce

→ [a] → c -- ^ input and output

map+reduce ’ = flip (◦)

Fig. 4. A generic map+reduce skeleton

Note that it is not possible to encode shortcutting in Haskell’s type system,
rather like the inability to encode laziness in its type system.

 

Fig. 3. A standard
reduce with short-
cutting. The compu-
tation at  has no de-
mand.

We stress again that map+reduce that we de-
scribe here differs from map-reduce skeleton. The lat-
ter assumes distributed reduce. Also, the data flow in
map-reduce leaves the data distributed between the map
and reduce phases. This is one of the main reasons for
its success, see [26,27]. However, in our case a special
reduce is needed. We use the sequential implementa-
tion of reduce and do not employ a distributed reduce

with shortcutting. Since we use reduce to control termi-
nation, it is acceptable to use sequential implementation:
the actual processing is done with the (parallel) map. The
time spent in the reduce phase is negligible, compared
with the time spent in the parallel map. This is another
difference of our map+reduce scheme from map-reduce.

Following the example in Figure 1, we aim to implement a more generic
map+reduce skeleton. In effect, we need to abstract the reduce function. This
is done by adding another parameter. The implementation is surprisingly simple,
see Figure 4. The map+reduce function receives a skeleton for map (parameter
function amap) and an implementation of a reduce (parameter areduce), as well
as corresponding parameters (f, g, z), and simply builds them together, such
that areduce consumes the output of the amap skeleton.

The version with already applied worker functions, called map+reduce’,
takes the map and reduce functions, which are already partially applied to their
respective arguments. Let paMap be the partially applied map and paReduce be
the partially applied reduce. Such partial application yields the types [a] →
[b] and [b] → c, appropriately for the paMap and the paReduce functions. For
paReduce to consume the output of paMap we need to write
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farm+reduce ’ :: Trans a ⇒ (a → Bool) → [a] → Bool

farm+reduce ’ f = map+reduce ’ (farm f) and

Fig. 5. Implementing farm+reduce in a simpler way

-- simplified

class (AddMonoid a, MultMonoid a) ⇒ Ring a where

zero :: a

unity :: a

add :: a → a → a

mult :: a → a → a

instance Ring Int where ... -- instantiation is trivial

instance Ring Bool where ...

Fig. 6. Commutative rings in Haskell.

map+reduce ’ paMap paReduce xs = paReduce (paMap xs)

which is written in the point-free style as flip (◦), seen in the bottom of Fig-
ure 4. Note, however, that the type of map+reduce’ is more constrained than
that of the composition operator ◦.

The farm+reduce skeleton can be implemented using this generic skeleton,
as shown in Figure 5. Note that map+reduce is a skeleton to build on other
skeletons.

A different view on the map+reduce functionality is based on streams [28,29,30].
To recapitulate, the idea of a stream is that of a (potentially infinite) lazy list.
A stream processing function can handle streams efficiently. The premature ter-
mination feature of the map+reduce skeleton operates only if both its compo-
nents are stream processing functions.

Laziness. The map+reduce works because of a special property of the reduce

function that we now examine in detail. We define (commutative) rings in Fig-
ure 6. It is not quite the algebraic definition, but it suffices for our purpose.
Additionally, it is easily encoded in Haskell’s type system. The zero (unity) is
the neutral element w.r.t. add (mult). Also, zero is the absorbing element w.
r.t. mult. The commutativity is not required here, we just spare two different
declarations for left and right fold.

We define reduce, or, to be more exact, a fold for the multiplicative oper-
ation, but keep in mind the possibility of a zero occurrence. The shortcut case
is nothing other than an occurrence of zero in a product-based fold. We stress
that the only required property to implement premature termination is that the
folding operator has a zero absorbing element. It is the left zero in case of the
left fold:

lfold :: (Ring a, Eq a) ⇒ [a] → a
lfold xs = lfoldAcc xs unity

where lfoldAcc (x:xs) acc
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| x==zero = zero -- sic!
| otherise = lfoldAcc xs (mult acc x)

lfoldAcc _ acc = acc

Assuming the laziness of mult in its second argument, i.e., if mult zero ⊥
= zero holds, we can write a similar right fold:

rfold :: Ring a ⇒ [a] → a
rfold (x:xs) = mult x (rfold xs)
rfold [] = unity

From now on we base our presentation on the rfold code. We have no special
comparison with zero here, instead rfold relies on mult to preserve zero and
not to evaluate the recursive call. In other words, zero needs to make mult

non-strict in its second parameter. To generalise even more: with zero’ 6= ⊥
mult zero ⊥ = zero’

should hold. This means, that upon a zero occurrence the second parameter of
the mult should be not evaluated, but the result of mult in this case could be
something different from zero.

In the above example in Figure 1 the mult function was the && operator for
booleans and zero was False.

Connection to or parallelism. The premature termination case has similarities
to the or parallelism in parallel logic languages [31]. We regard the deterministic
case here. As soon as termination signal is issued, all other running and pending
computations are not required anymore. In our case the or parallelism may
happen only in the outer loop of the computation; the termination signal stops
the whole computation.

Byline. The premature termination feature of map+reduce skeletons is granted
for free in a lazy setting if the shortcutting property of the reduce holds. The
map+reduce scheme is a new, concise functional implementation of the for–break
imperative pattern.

5 Parallelisation Results

Our test cases originate from computational number theory [32]. The thesis [3]
studies such algorithms and their parallelisation in detail.

Both cases presented in this paper are concerned with probabilistic primality
testing. Such tests consist of many smaller checks. If one of these checks fails,
the complete test can be aborted. All checks are known beforehand.

Speedup. One of the most crucial measures of parallel performance is the speedup.
It is defined as the quotient of the sequential and parallel execution time of a
program. The ideal speedup is the linear speedup. It occurs if the program scales
perfectly, e.g., it is 10 times faster on 10 processors, compared to its speed on
a single processor. In a contrast to this ideal value, the speedup values com-
puted from the measured execution times are sometimes referenced here as the
observed speedup values.
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Fig. 7. Speedup of Rabin–Miller test on a multicore machine.

Important for the speedup is the choice of the sequential reference value. In
the following, if we use the run time of the sequential pure Haskell program as the
sequential value, we obtain the absolute speedup. If merely the time measured
with a parallel program on a single PE is used, we call it the relative speedup.

Setup. The test programs were executed on multiple machines. The “multicore
machine”, referenced below, is an 8-core dual Intel Xeon platform with 16 GB
RAM, running 64 bit CentOS Linux. The “network of workstations” is a set of
workstations at the Faculty for Mathematics and Computer Science in Marburg.
Each workstation is an Intel Core2Duo machine with 2 GB RAM. Workstations
are interconnected with Fast Ethernet and run 64 bit Fedora Linux OS. We used
the Eden implementation atop of GHC 6.12. The same GHC version was used to
produce the sequential reference binary. Each test program in every configuration
was run 5 times, we took the average run time.

Rabin–Miller test. The Rabin–Miller test is a probabilistic primality test that
typically involves 20 checks [33,34]. If a check fails, the input number is definitely
not a prime. However, a passed check is not a guarantee of primality: the proba-
bility of a false positive is 1/4 for an individual check. However, if all checks are
satisfied, then we have a very high probability that the input is indeed prime.

The parallel speedup of our implementation is displayed in Figure 7, we used
the eight core multicore machine. The speedup is 6.61 on 7 PEs with input size
29689 − 1. The best speedup value is 6.63 for the input size 211213 − 1 on the
same number of cores. The sequential program in this case took 71.13 seconds
to complete. The efficiencies are 0.944 and 0.947 respectively. Note the linear
speedup for up to 5 PEs and the erratic behaviour for 6–8 PEs. The reason for the
latter is not bad parallelism but problems involving task placement. We always
issue 20 tasks corresponding to the checks in the test. In some configurations
this may lead to problems. 10 PEs sounds like a good configuration, we show
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Fig. 8. Speedup of Rabin–Miller test on networked workstations.

the speedup of the same program on a network of workstations in Figure 8. The
resulting speedup is 8.72 for 10 PEs. The presented result supports our reasoning
on the speedup behaviour: the speedup improves greatly at 10 PEs.

Jacobi Sum Test. The Jacobi sum test, also known as APRCL [35,36], is a so-
phisticated primality test. In contrast to the Rabin–Miller test, if it acknowledges
a number as a prime, then it is indeed a prime number. However, the test may
fail in a very few circumstances. See [32] for a detailed presentation of Jacobi
sum test.

The key idea of the test is to check for a generalised small Fermat condition
in a carefully designed extension field. There are multiple such checks in an
individual run of the test. The input for each check can be encoded as a pair of
primes (p, q) and the output is written in the output set lp, which depends on p.
We have shown in [3] that the individual checks do not depend on each other.
Hence it is possible to run them simultaneously and to merge the resulting sets
lp afterwards.

We applied our map+reduce scheme to effect the parallelisation of Jacobi
sum test. The single checks were expressed in the working function of the map,
the merge of the lp sets and the termination control was done in reduce. Fig-
ure 9 shows the speedup curves. These results were obtained on the eight core
Xeon machine described above. We observed a confident, even if not fully linear
speedup growth. We used the same compiler. To facilitate dynamic load balanc-
ing, a workpool skeleton was used in the map phase. The reason for this design
decision was the extremely different run time of the checks.

In the test implementation we successfully solved some technical problems,
both on the mathematical side (e.g., implementation of adjunction) and in par-
allel computing (e.g., extreme task imbalance in the naive implementation). We
do not give the details here.
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Fig. 9. Speedups for Jacobi sum test. The input was 21279 − 1. Tests were per-
formed on a multicore machine. Red line denotes relative speedup, blue line
shows absolute speedup.

Benefits from map+reduce. To underline the benefits from our early termination
feature, we executed Rabin–Miller test for the input value 29690 − 1 using the
parallel implementation on 7 cores. The test returned the correct negative result
and was 3.93 times faster than the same program in the same setting for the
input value 29689−1 with the positive result. Note that the non-prime input was
almost the double of the prime input, but the termination made the program
almost four times faster.

We will present a similar result for the Jacobi sum test using Eden Trace-
Viewer [37]. It is possible to instrument Eden binaries with the output of the
current parallel activity: each parallel process logs whether it is running, could
run, or is blocked in the current moment. These logs, called traces, can be visu-
alised after the program termination. The visualisation diagram shows the time
in the horizontal axis and the PEs in the vertical axis. The processes are visu-
alised as horizontal bars, emphasising the process start and termination. The
colour of the bar encodes the state of the process. It corresponds to the traffic
light: red is blocked, yellow is runnable, green is running. The message exchange
between processes can be visualised with arrows. As expected, the arrow tip
designates the receiver.

Two trace visualisations of particular Jacobi sum test executions are shown in
Figure 10. The visualisations are displayed with the same time scale. The prime
number candidate used as the input was ≈ 2607. In the top visualisation, the
number was composite. We see, the computation terminated in 0.55 seconds. The
bottom diagram shows the same test in the same setting, but for a prime number
input. It takes 2.5 seconds to complete. Thus, the the premature termination
property in a parallel implementation of Jacobi sum test benefits us with a
speedup of 4.55.

The next example is based on message arrival times from a non-shown trace
diagram of the full Jacobi sum test on 24 networked workstations. We regard
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Fig. 10. Two trace visualisations for Jacobi sum test. Top: premature termina-
tion, bottom: full run.

a smaller example to simplify the analysis: the larger is the input, the more
tasks are issued. When compared with a parallel implementation without the
premature termination property, our implementation would yield the speedup of
7.34, 5.24, 2.82, or 2.62 for the pivotal task completed at 0.15, 0.21, 0.39, or 0.42
seconds appropriately. Comparing this data with the sequential implementation
without premature termination, we would obtain the speedup of 69.11, 49.36,
26.58, or 24.68 appropriately.

6 Further Related Work

We discussed related skeleton approaches in Sections 2 and 3, see also Table 2.
The skeletons were initially introduced by Cole [1]. To our knowledge, no one has
explicitly addressed premature termination with skeletons. However, the poison
concept of Hoare’s CSP [38,39] is related to our premature abort notion.

Laziness is one of the main features of Haskell [5]. Stream processing functions
were regarded by Wray and Fairbairn [29]. One of the first publications on this
topic is by Friedman [28].

Rabin–Miller test has been parallelised in [40,41,42]. These papers focus on
(parallel) hardware design. In contrast, we suggested a high-level parallelisation
with the map+reduce skeleton scheme. Our approach supports premature termi-
nation of computation. We are not aware of map+reduce skeletons and parallel
Jacobi sum test presentations in literature.

7 Conclusions and Future Work

From a decision to implement a skeleton with premature termination we have de-
veloped the map+reduce skeleton scheme. We found it sufficient for the parallel
implementation of two primality tests with very good parallel performance. For
that purpose the possibility of premature abort was important, but granted for
free in a lazy parallel functional setting. We quantified the effect of the prema-
ture termination to the factor 4.55 at 8 PEs. Features of lazy evaluation account
for the concise representation of the presented skeleton scheme. Parallelisation
of the Jacobi sum test is a new result. Generic map+reduce skeleton scheme is
a major part of our contribution.
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Future work. We would like to apply the presented technique to further al-
gorithms, search problems seem to be good candidates. Laziness was very im-
portant in our implementation, we would like to continue our research on the
impacts of laziness on parallelism. Tackling the premature termination in the
similar manner as presented here, but in the context of the dynamic task cre-
ation is an important future extension of our work.
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PhD thesis [3]. I thank Rita Loogen, Yolanda Ortega-Mallén, Paul Tarau and
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presentation.
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