
Parallel FFT With Eden Skeletons

Jost Berthold, Mischa Dieterle, Oleg Lobachev, and Rita Loogen

Philipps-Universität Marburg, Fachbereich Mathematik und Informatik
Hans Meerwein Straße, D-35032 Marburg, Germany

{berthold,dieterle,lobachev,loogen}@informatik.uni-marburg.de
Tel.: +49-6421-28-21525, Fax: +49-6421-28-25419

Abstract. The notion of Fast Fourier Transformation (FFT) describes
a range of efficient algorithms to compute the discrete Fourier transfor-
mation, frequency distribution in a signal. FFT plays a major role both
for pure mathematical applications and for real-life scenarios such as
digital signal processing. The paper investigates and compares skeleton-
based parallel Haskell implementations of different FFT-algorithms on
workstation clusters with distributed memory. Our experiments show
that the original divide-and-conquer versions suffer from an inherent in-
put distribution and result collection problem, because huge amounts of
data have to be communicated. Advanced approaches like distributable
homomorphism FFT or multidimensional FFT provide more flexibility
to overcome these problems. Assuming a distributed access to input data
and re-organising computation in such a way that the results can be re-
turned in a distributed way leads to versions with an acceptable parallel
runtime behaviour.
Keywords. Algorithmic Skeletons, Parallel Functional Programming,
Fast Fourier Transformation

1 Introduction
The well-known Fourier transform, which describes frequency distribution in a
signal, finds diverse applications from pure mathematical applications to real-life
scenarios such as digital signal processing. Today’s state of the art is the Fast
Fourier Transform (FFT). Cooley and Tukey [2] were the first to propose an
FFT algorithm in 1965 (known as 2-radix FFT) with time complexity O(n log n).
A range of other FFT algorithms have been discovered since then: besides the
Cooley-Tukey, different r-radix, mixed-radix, and multidimensional versions [14].

In the broader context of an implementation for parallel computer algebra
algorithms implemented in the parallel Haskell extension Eden [13, 11], we in-
vestigate parallelisation strategies for different FFT algorithms. In essence, FFT
algorithms are based on divide & conquer strategies, which we implement using
suitable algorithmic skeletons [1, 12]. In Eden, such skeletons are higher-order
functions defining general parallel evaluation schemes. In this paper, we define
skeletons for two variations of parallel divide-and-conquer evaluations: a dis-
tributed expansion scheme which unfolds the computation tree dynamically and
spawns parallel processes for the evaluation of sub-trees as long as processor el-
ements (PEs) are available, and a flat expansion scheme which unfolds the tree
up to a given depth and evaluates all sub-trees at this depth in parallel. In ad-
dition, we present a parallel map-and-transpose skeleton for the implementation

of more advanced FFT methods. Our skeletons are applicable to a whole class
of algorithms, those which rely on fixed-branching divide & conquer or paral-
lel map-and-transpose schemes. In this paper we focus on their application for
the parallelisation of FFT algorithms. We analyse the parallel runtime behav-
iour of various skeleton/algorithm combinations using activity profiles of parallel
program executions on networks of workstations, i. e. distributed-memory par-
allel machines. In addition, we investigate their scalability when increasing the
number of PEs.
Plan of Paper. The following two sections elaborate on divide & conquer ap-
proaches of parallel FFT (Section 2) and on advanced approaches (Section 3).
In each section, we will describe the corresponding FFT algorithms, appropriate
skeletons for their parallelisation and an experimental evaluation of the paral-
lelised algorithms. Section 4 discusses related work, the final section concludes.

2 Divide & Conquer FFT
The classic 2-radix FFT algorithm by Cooley and Tukey works as follows.
The input vector xs of length n (which we shall denote as −→xs0:n−1) is divided
into two halves

−→
ls = −→xs0:n/2−1 and −→rs = −→xsn/2:n−1, to compute the element-wise

sum (
−→
ls+−→rs) and the difference of the two (

−→
ls-−→rs). The latter is multiplied with

powers −→ws of an n-th primitive root of unity, the twiddle factors. The algorithm
recursively computes the FFT of these vectors, and combines the results simply
by interleaving them element-wise. Recursion ends at singleton vectors which
are returned unmodified. This version is called decimation in frequency. The
corresponding Haskell code is shown in Figure 1. Vectors are represented as
lists. The Prelude function splitAt :: Int → [a] → ([a],[a]) divides a list at
the given position into two parts. The function transpose :: [[a]] → [[a]],
defined in the library module Data.List, takes a matrix as a list of rows and
transforms it into a list of columns. Function concat :: [[a]] → [a] flattens a
list of lists into a single list. Function zipWith :: (a → b → c) → [a] → [b]

→ [c] combines two lists element-wise using the given operation. It is used to
implement basic vector arithmetic by applying standard arithmetic operations
element-wise to lists.

fftDF :: [Complex Double] -> [Complex Double]

fftDF [x] = [x]

fftDF xs = shuffle [fftDF (ls @+ rs), fftDF ((ls @- rs)@* ws)]

where (ls, rs) = splitAt (length xs ‘div‘ 2) xs

shuffle = concat . transpose

(@+) :: [Complex Double] -> [Complex Double] -> [Complex Double]

(@+) xs ys = zipWith (+) xs ys

-- @-, @* are defined in the same way

-- ws is the list of powers of an n-th primitive root of unity

Fig. 1. A 2-radix FFT Implementation (Decimation in Frequency).

2

fftDT :: [Complex Double] -> [Complex Double]

fftDT [x] = [x]

fftDT xs = combine2 [fftDT ls, fftDT rs] where [ls, rs] = unshuffle 2 xs

unshuffle :: Int -> [a] -> [[a]]

unshuffle n = transpose . (chunk n)

chunk :: Int -> [a] -> [[a]]

chunk n [] = []

chunk n xs = ys : chunk n zs where (ys,zs) = splitAt n xs

combine2 :: [[Complex Double]] -> [Complex Double]

combine2 [es,os] = (es@+ts) ++ (es@-ts) where ts = os@*ws

Fig. 2. A 2-radix FFT Implementation (Decimation in Time).

Decimation in Time. An alternative version, called decimation in time, es-
sentially consists of the opposite dividing and combining steps. The input vec-
tor −→xs(0:n−1) is split by unshuffling elements with even and odd indices into−→
ls = x0 : x2 : x4 : . . . and −→rs = x1 : x3 : x5 . . . (inverse to the interleaving
step above). After evaluating the recursive calls of FFT for

−→
ls and −→rs, the com-

bination of the result lists is now the more complex step. The first and second
half of the overall result are defined as element-wise sums and differences includ-
ing again a product with the twiddle factors −→ws. The Haskell code is shown in
Figure 2.
r-Radix FFT. The r-radix FFT uses an analogous algorithm structure, but
divides into r = 2k sub-tasks. The resulting task tree is wider. The input length
has to be a power of r. Applicability of this approach might suffer from the fact
that the distance between two powers of r grows with the value of r. If we change
the value of r level-wise, we arrive at a hybrid mixed-radix algorithm.

4-Radix FFT divides the input into four parts, where the k-th part begins
at position k n

4 and k begins at zero. With decimation in time, combining the
transformed sequences of length n

4 is slightly more complicated than before. First
we need to multiply the k-th part with a list of powers of a twiddle factor ωk,
resulting in vectors −→ysk. The four parts of the output are defined as:

−̂→xs0 = (−→ys0 +−→ys2) + (−→ys1 +−→ys3) −̂→xs1 = (−→ys0 −−→ys2)− i(−→ys1 −−→ys3)
−̂→xs2 = (−→ys0 +−→ys2)− (−→ys1 +−→ys3) −̂→xs3 = (−→ys0 −−→ys2) + i(−→ys1 −−→ys3).

The final output vector is a simple concatenation of the −→xsk. Optimisation po-
tential of this (more complicated) result combination lies in the repeatedly used
sub-expressions computed only once. With decimation in frequency, the splitting
step is the more complicated one. We omit details due to space limitations.

2.1 Regular Divide & Conquer Skeletons

The essence of a divide & conquer algorithm is to decide whether the input
is trivial and, in this case, to solve it, or else to decompose non-trivial input

3

1

2

3

5 7 6

4

8

(a) Binary distributed expansion,
depth 3

1

2 3 8765 94

(b) Binary flat expansion, depth 3

1

2

5 13 69 1410

3

7 11 15

4

8 12 16

(c) 4-ary distributed expansion, depth 2

Fig. 3. Divide & conquer expansion schemes.

into a number of sub-problems, which are solved recursively, and to combine the
output. A general skeleton takes parameter functions for this functionality, as
shown here:
type DivideConquer a b = (a -> Bool) -> (a -> b) -- trivial? / solve

-> (a -> [a]) -> ([b] -> b) -- split / combine

-> a -> b -- input / result

The resulting structure is a tree of task nodes where successor nodes are the sub-
problems, the leaves representing trivial tasks. A fundamental Eden skeleton
which specifies a general divide & conquer algorithm structure can be found
in [12]. In this paper, we refine and adapt this skeleton for the FFT algorithm
particularities. The r-radix divide & conquer-based FFT algorithms expose a
regular tree structure, i.e. every non-trivial task is split into a fixed number of
sub-tasks. Therefore, we focus on divide & conquer skeletons that evaluate a
regular task tree with a fixed branching degree in parallel.

Two different basic strategies will be used to unfold a process tree. The
first option is to create the process tree in a distributed fashion: One of the tree
branches is processed locally, the others are instantiated as new processes, as long
as PEs are available. This results in a distributed expansion of the computation
(depicted in Fig. 3(a) for a binary scheme, and in Fig. 3(c) for a system with
four successors per task node). Explicit placement of processes is essential to
ensure that no two processes are placed on the same processor element while
leaving others unused. The boxes indicate which tree nodes are evaluated by
the same process. The numbers indicate a possible placement on 8 and 16 PEs,
respectively.

In a second version, the main process unfolds the binary tree up to a given
depth, usually with more branches than available PEs. The resulting subtrees
are then evaluated by parallel processes, the main process combines the results
of the sub-processes. This results in a homogeneous flat expansion scheme from a

4

dcN :: (Trans a, Trans b) =>

Int -> [Int] -> -- branch degree / tickets

DivideConquer a b

dcN k tickets trivial solve split combine x

| null tickets = seqDC x

| trivial x = solve x

| otherwise

= childRes ‘seq‘ -- demand control: first start children

rnf myRes ‘seq‘ rnf localIns ‘seq‘ -- then evaluate locally

combine (myRes:childRes ++ localRess)

where

-- sequential computation

seqDC x = if trivial x then solve x else combine (map seqDC (split x))

-- child process generation

childRes = spawnAt childTickets childProcs procIns

childProcs = map (process . rec_dcN) theirTs

rec_dcN ts = dcN k ts trivial solve split combine

-- ticket distribution

(childTickets, restTickets) = splitAt (k-1) tickets

(myTs: theirTs) = unshuffle k restTickets

-- input splitting

(myIn:theirIn) = split x

(procIns, localIns) = splitAt (length childTickets) theirIn

-- local computations

myRes = ticketF myTs myIn

localRess = map seqDC localIns

-- placed process instantiation (predefined Eden function)

spawnAt :: (Trans a, Trans b) => [Int] -> [Process a b] -> [a] -> [b]

spawnAt places f inputs = ... -- not shown

Fig. 4. Distributed expansion divide & conquer skeleton for k-ary task trees.

single source depicted in Fig. 3(b) for the binary variant. A uniform distribution
of the subtrees on PEs can be achieved using a farm of worker processes with
static or dynamic task distribution.

Distributed Expansion. Figure 4 shows a distributed expansion divide &
conquer skeleton for k-ary task trees. Besides the standard parameter functions,
the skeleton takes the branching degree, and a ticket list with PE numbers to
place newly created processes. The left-most branch of the task tree is solved
locally, other branches are instantiated using the Eden function spawnAt1, which
instantiates a collection of processes (given as a list) with respective input, on
explicitly specified PEs. Results are combined by the combine function.

Explicit Placement via Tickets. The ticket list is used to control the
placement of newly created processes. First, the PE numbers for placing the
immediate child processes are taken from the ticket list. Then, the remaining
tickets are distributed to the children in a round-robin manner using the function

1 The type class Trans provides internally used communication functions.

5

fft2radixTime :: Int -> [Complex Double] -> [Complex Double]

fft2radixTime cs xs

= chunkDC cs chunkL concat

(dcN 2 [2..noPe]) isSingleton id (unshuffle 2) combine2

isSingleton :: [a] -> Bool

isSingleton [_] = True; isSingleton xs = False

Fig. 5. Parallel 2-radix-FFT, decimation in time, with dcN skeleton.

unshuffle :: Int → [a] → [[a]] which unshuffles a given list into as many lists
as the first parameter tells (see Figure 2 for a Haskell definition of this function).
Child computations will be performed locally when no more tickets are available.
The explicit process placement via ticket lists is a simple and flexible way to
control the distribution of processes as well as the recursive unfolding of the
task tree. If too few tickets are available, computations are performed locally.
Duplicate tickets can be used to allocate several child processes on the same PE.
The numbers in Figures 3(a) and 3(c) give the PE numbers when the ticket lists
[2..8] and [2..16] are used for placement, respectively.

Demand Control. As Haskell’s lazy evaluation would suppress any parallel
evaluation, we need to add explicit demand for starting parallel child processes.
In the dcN skeleton (lines 8 and 9 in Figure 4), we force the creation of the child
processes before forcing all local computations. The strategy function rnf ::

NFData a ⇒ a → () forces the evaluation of its argument to normal form. The
Haskell library function seq :: a → b → b evaluates its first argument before
returning the second argument. The corresponding infix operator is denoted by
‘seq‘. Finally, the combination of all results is done using the standard Haskell
evaluation strategy.

Instantiation. The skeleton can be easily instantiated to compute different
FFT algorithms in parallel. We have used it for 2-radix and 4-radix FFT, deci-
mation in frequency and decimation in time. Figure 5 shows e. g. how the above
skeleton can be used to compute the 2-radix FFT, decimation in time, in parallel.
Note that list chunking has been used to reduce the communication overhead.
Instead of communicating each list element in a single message2, the lists are
divided into chunks of a size cs (given as additional integer parameter). Chunk-
ing is simply implemented using a wrapper function chunkDC (not shown), which
wraps all parameter functions with a pair of unchunk/chunk applications. We use
the standard Haskell list function concat for unchunking and chunk defined in
Figure 2 for chunking.

Flat Expansion. The flat expansion skeleton given in Figure 6 is a specialisa-
tion of the ‘divide & conquer by replicated workers’ skeleton (dcrw) in [12]. Our
skeleton exploits the knowledge that the divide & conquer scheme has a fixed
branching degree k. The task tree is unfolded up to a given depth d and each
process selects one of the resulting sub-trees (with function taskNr). Instead of

2 Eden communicates lists element-wise as streams

6

dcDM_N :: (Trans a,Trans b) =>

Int -> Int -> -- unfolding depth / branching degree

DivideConquer a b

dcDM_N depth k trivial solve split combine x

= results ‘seq‘ combineLevels k combine results

where

-- core computation

seqDC x = if trivial x then solve x else combine (map seqDC (split x))

-- child process generation

results = shuffle (farm noPe -- standard task farm skeleton

(\ i -> seqDC (tasksNr (digits i d k) split x))

[0..k^d-1])

-- select the i-th task from tree with k^d tasks

tasksNr :: [Int] -> (a -> [a]) -> a -> a

tasksNr [] split x = x

tasksNr (i:is) split x = tasksNr is split ((split x)!!i)

digits :: Int -> Int -> Int -> [Int]

digits i d k = reverse (computeDigits i d k)

where computeDigits i d k

| d == 0 = []

| otherwise = mod i k : (computeDigits (div i k) (d-1) k)

-- combine results level-wise

combineLevels :: Int -> ([b] -> b) -> [b] -> b

combineLevels _ _ [x] = x

combineLevels k combine rs

= combineLevels k combine (map combine (chunkL k rs))

Fig. 6. Flat expansion divide & conquer skeleton for k-ary task trees.

replicated workers which perform dynamic task distribution we use a simple farm
with static task distribution. This is sufficient for regular parallelism, as in the
case of FFT. The function combineLevels combines the results level-wise. It is
important that the unevaluated task information is passed to the child processes
which select their own parts of it. This direct mapping (DM) technique [10] saves
the communication to distribute the input to the processes. As all processes are
created by the same process, a simple round robin process placement is sufficient.

2.2 Experimental Results
The following run time experiments have been performed on a local network of
8 Linux workstations with Core 2 Duo processors and 2 GB RAM connected by
Fast Ethernet. The Eden runtime system is instrumented in such a way that a
runtime flag activates a tracing mechanism which protocols parallelism-related
events like process/thread creation/termination, state changes of machines (i.e.
PEs), processes and threads, and message sending and receiving. The trace files
can then be visualised by the EdenTV tool (Eden Trace Viewer). The resulting

7

Distributed Expansion Flat Expansion

D
ec

im
a
ti

o
n

in
F
re

q
u
en

cy

Runtime: 24.80 s Runtime: 6.92 s

D
ec

im
a
ti

o
n

in
T

im
e

Runtime: 17.85 s Runtime: 7.78 s

Fig. 7. Traces and runtimes of divide-and-conquer approaches, without/with messages.

graphics which are best viewed in colour are two-dimensional timeline diagrams.
The time scale is on the horizontal axis. The vertical axis shows the machine
numbers, on which the processes are placed. For each process, there is a coloured
horizontal bar, which shows the process states over time. Green parts (grey) in-
dicate that a thread is working, red parts (dark grey) indicate that all threads
of the process are blocked, usually because they are waiting for input, or be-
cause the PE is communicating. Yellow areas (light grey) indicate that there are
runnable threads but some system activity like e.g. garbage collection is taking
place. Data transfer, i.e. messages can be optionally indicated as arrows from
the sending to the receiving process.

Distributed vs. Flat Expansion. Our first experiments tested the standard
Cooley-Tukey 2-radix FFT algorithm variants decimation in frequency and dec-
imation in time with the distributed expansion and flat expansion skeletons.
Figure 7 shows typical traces and the runtimes obtained with the following pa-
rameters: input size 220 (double precision complex numbers), chunk size 1500,
recursion depth 4 and heap size 1500MB. Note that the chunk size is only used
by the distributed expansion skeleton to reduce the number of messages. Our
experiments have shown that chunking is essential for the performance of the
distributed expansion skeleton, but varying the chunk size did not have a great
impact on the runtimes. Therefore, we have fixed the chunk size to 1500 in the
runtime experiments discussed in the following. The recursion depth parameter

8

is only used by the flat expansion scheme. It is not necessary for the distributed
expansion scheme, because the latter adapts the recursion depth automatically
to the number of available PEs.

The activity profiles in Figure 7 reveal that the flat expansion skeleton leads
to a much better runtime behaviour than the distributed expansion skeleton.
This is due to the good load balance in the worker processes which start im-
mediately. Note that the skeleton even co-locates one worker process with the
master process on machine 1 (lowest bars). The communication overhead is low.
This reason is that the input lists are evaluated by the processes themselves. Only
the indices of the sub-trees that have to be evaluated by the worker processes and
their result lists are communicated, the latter without streaming. With depth 4,
there are 16 sub-trees, i. e. 2 sub-trees per worker.

Decimation in frequency was the fastest version with 6.92 s, because the post
processing in the master can be done very fast. Combining the results is a trivial
shuffle. The top level combining phase of decimation in time takes almost three
quarters of the overall runtime. The worker processes finish their evaluations
already after 2 seconds while they need 4 seconds with decimation in frequency.
Thus, in total less work is done with decimation in time.

With the flat expansion skeleton, we reduce the overhead for the initial com-
munication, i. e. for distributing tasks to the worker processes, because each
worker receives the whole task specification and selects its own part on demand.
In a realistic setting, each worker would read its input data from files (which
would either be distributed to all the nodes in advance, or be accessible via a
network file system). What remains is the communication for result collection.

Work distribution is slower with the distributed expansion skeleton. The child
processes are inhomogeneous and start working at different points in time. This
is due to the communication of inputs to the sub-processes and of results to the
parent process, as can be seen from the the activity profiles in Figure 7 which
we show without and with messages as the message arrows cover most of the
profile. The input distribution/result combination phases outweigh the benefits
of the parallel execution. Although the input and output lists with 220 = 1048576
elements are divided into sub-lists (chunks) with 1500 elements, the total number
of sent messages is 2146 in both versions. Note that intermediate lists are also
communicated between the different tree levels.

For decimation in time, input division is simple, but result combination is
more complex. As child processes can start working earlier and as Eden commu-
nicates lists as streams, partial input is already available to the child processes
at an early stage. Therefore, decimation in time shows a slightly better runtime
with the distributed expansion scheme than decimation in frequency.

2-Radix vs. 4-radix. In theory, the 4-radix algorithm should be faster than
2-radix, as it reduces the number of multiplications and enables to share some
sub-results. In Figure 8, we show the runtimes of the four possible combinations
of 4-radix in comparison to 2-radix, with the same input size 220 = 410. The
shape of the trace files is very similar. Due to space limitations, we omit them
here. The runtime measurements show that 4-radix behaves much better with

9

2-radix

Distr. Exp. Flat Exp.

Dec. in Freq. 24.80 s 6.92 s

Dec. in Time 17.85 s 7.78 s

4-radix

Distr. Exp. Flat Exp.

Dec. in Freq. 12.71 s 5.77 s

Dec. in Time 10.77 s 6.28 s

Fig. 8. Runtimes of 2-radix vs 4-radix on 8 PEs.

the distributed expansion scheme than 2-radix, but the runtimes are bad in com-
parison to the flat expansion scheme. When using 4-radix with the flat expansion
scheme, we get a modest improvement of the overall runtime. The (non-shown)
traces reveal that the worker times are almost halved when using 4-radix instead
of 2-radix, but the postprocessing in the main process still dominates the overall
runtime.

2-radix

Distr. Exp. Flat Exp.

Dec. in Freq. 23.08 s 10.68 s

Dec. in Time 18.66 s 8.01 s

4-radix

Distr. Exp. Flat Exp.

Dec. in Freq. 12.95 s 6.99 s

Dec. in Time 11,63 s 5,87 s

Fig. 9. Runtimes of 2-radix vs 4-radix on 4 PEs.

Scalability. Unfortunately, our experiments have shown that the different FFT
parallelisations we have considered up to now do not scale well with respect to
the number of PEs. Figure 9 shows the runtimes of the eight versions on 4 PEs.
Comparing them with the runtimes on 8 PEs, speedups are low, in two cases we
observe even a slowdown. Note that decimation in time is faster than decimation
in frequency on 4 PEs.

3 Advanced Approaches

The parallel divide-and-conquer FFT-implementations show an acceptable per-
formance using few PEs, but they do not scale well. Therefore we implement a
more sophisticated algorithm taken from [5] which minimizes data dependencies
and provides more fine grained parallelism. The input vector is divided into rows
of a d + 1-dimensional grid with side lengths l = 2k. In our implementation, we
only consider 2-dimensional matrizes (d = 1), such that the input vector is of
length n = l2 = 4k. The algorithm consists of three phases:

1. preprocessing: – permutation of input in bit reverse order3

– tagging input elements with their position
and a ”‘virtual global”’ length

– split into rows
2. central processing: local fft3 ◦ global transpose ◦ local fft3
3. postprocessing: shuffle (concat ◦ transpose) ◦ remove tags

The key difference between the ordinary sequential FFT and fft3 is that the
latter operates on triples comprising the data item, a position tag and the num-
ber of already performed combine steps. It works with global twiddle factors to
3 Elements at position i are moved to position ‘bits(i) reversed’.

10

parMapTranspose :: (Trans a, Trans b) =>

Int -> ([a] -> [b]) -> ([b] -> [c]) -> [[a]] -> [c]

parMapTranspose np f1 f2 matrix = shuffle res

where myProcs css = spawn [process (distr2d_f np f1 f2 rows)

| rows <- unshuffle np matrix] css

(res,chanss) = myProcs (transpose chanss)

distr2d_fs :: Int -> ([a] -> [b]) -> ([b] -> [c]) ->

[[a]] -> [ChanName[b]] -> ([[c]],[ChanName [b]])

distr2d_fs np f1 f2 rows theirChanNs

= let (myChanNs, theirFstRes) = createChans np

intermediateRes = map f1 rows

myFstRes = unshuffle np (transpose intermediateRes)

res = map f2 (shuffleMatrixFracs theirFstRes)

in (multifill theirChanNs myFstRes res, myChanNs)

Fig. 10. Parallel map-and-transpose skeleton.

simulate a contiguous, single-dimensional FFT algorithm. The divide step is
a trivial split of lists. The combine step needs to be modified using the addi-
tional information in the triples. Because of the permuted input, it is possible
to perform FFT locally on first the matrix rows and then its columns. For more
details, see [5].

We have derived a skeleton for the central phase of the above scheme which
consists of a composition of parallel maps and an intermediate global communi-
cation to implement the distributed transpose. The skeleton has been inspired
by the distributable homomorphism skeleton of Gorlatch and Bischof [6]. It can
also be used for the distributed-memory FFT algorithms proposed in [15, 8].

3.1 A Parallel Map-and-Transpose Skeleton

The skeleton implements the functionality
(parMap f1) ◦ transpose ◦ (parMap f2).

Defining it with this simple function composition is not appropriate, because
all data would be gathered in the main process in between the two parmap
phases. This again would provoke too much communication overhead. Our skele-
ton parMapTranspose includes a distributed transpose phase in between two par-
allel map calls. The skeleton’s input is a matrix which will be distributed row
cyclic. In our application the functions fi will be sequential fft3 invocations.
To save communication costs, we again use direct mapping [10] to implement
the parMaps. This means here that the matrix is not communicated but trans-
ferred unevaluated within the process abstraction’s body. The child processes
will then evaluate the needed parts locally and in a demand driven way. In our
FFT case study, the matrix generation and the preprocessing will be done in
this way. The Eden code of the parallel map-and-transpose skeleton is shown in
Figure 10. It makes use of Eden’s capability to dynamically define new input
channels for processes. The Eden function createChans :: Int → ([ChanName

a], [a]) creates a list of new (input) channel names. Data (lazily) received via

11

the channel names can be accessed in the second component of the result tuple
of createChans. Channel names can be communicated to other processes which
can write into the corresponding channels with the Eden function multifill

:: Trans a ⇒ [ChanName a] → [a] → b → b. It concurrently passes data via
given channel names and returns its third argument.

The distributed map functionality is easy to define. Let np be the number
of available PEs. We divide the matrix rows into np contiguous blocks using
the function unshuffle (defined in Fig. 2). At the end the final result is recom-
posed using the inverse function shuffle. As many processes as available PEs
are created using the Eden function spawn4. Each process applies the function
distr2d fs np f1 f2 to its portion of rows and the lazily communicated input (a
row of css). The latter consists of a list of np channel names which are used to
establish a direct link to all processes: each process can thus send data directly
to each other process5. Each process evaluates the function distr2D fs which
initially leads to the creation of np input channels myChanNs for the correspond-
ing process. The channel names are returned to the parent process in the second
component of the result tuple of distr2d fs. The parent process receives a whole
matrix chanss :: [[ChanName a]] of channel names (np channel names from np

processes), which it transposes before sending them row-wise back to the child
processes. Each process receives thus lazily np channel names theirChanNs for
communicating data to all processes. The parallel transposition can now occur
without sending data through the parent process.

After the first map f1 evaluation, a process locally unshuffles the columns of
the result (the locally transposed result rows) into np matrices. These are sent via
the received input channels of the other processes using the function multifill.
The input for the second map phase is received via the initially created own input
channels. The column fragments are composed to form rows of the transposed
intermediate result matrix. The second map f2 application produces the final
result of the child processes.

3.2 Experimental Results
The following traces and runtime measurements have been obtained on a Be-
owulf cluster at Heriot-Watt-University, Edinburgh, which consists of 32 Intel
Pentium 4 SMP processors running at 3 GHz with 512 MB RAM and a Fast Eth-
ernet interconnection. We implemented the two-dimensional instance of the FFT
algorithm developed by Gorlatch and Bischof [5] using our map-and-transpose
skeleton. Result collection and post processing (a simple shuffle) can be omitted
leaving the result matrix in a distributed column-wise manner. A runtime trace,
again for input size 410, is depicted in Figure 11. The communication provoked
by the distributed transpose phase overlaps the second computation phase, such
that stream communication and computation terminate almost at the same time.
The first computation phase is dominant because of the preprocessing, in par-
ticular the reordering (bit reversal) of the input list and the computation of the
4 spawn is the same as spawnAt with a default round-robin placement of processes.
5 To simplify the specification the channel list even contains a channel which will be

used by the process to transfer data to itself.

12

Processes per machine view . . . with messages

Fig. 11. Trace of parallel FFT using map-and-transpose skeleton .

twiddle-factors. Noticeable are also the frequent ”‘runnable”’ phases, which are
garbage collections provoked by the increased memory needs of this FFT-version.

Figure 12 shows the runtimes of the parallel map-and-transpose FFT version
with and without final result collection (Figure 12, triangle marks) in comparison
with the best divide-and-conquer versions (4-radix, Flat Expansion, Decimation
in Time and Frequency). We have measured these versions on the Beowulf clus-
ter and on our local network of dual-core machines, which are more powerful
and have more RAM than the Beowulf nodes. The parallel map-and-transpose
distributed-result version scales well when increasing the number of process-
ing elements. However, for a small number of PEs, it is less efficient than the
divide-and-conquer versions. A reason for this is its fine-grain parallelism with
210 tasks which is opposite to the coarse-grain parallelism with 16 and 64 tasks,
respectively, of the other versions. Moreover, including result collection in the
map-and-transpose version substantially decreases its performance. The run-
time differences of the various versions are less clear on the powerful dual-core
processors than on the Beowulf nodes. The huge performance penalties of the
algorithms with a small number of worker processes on the Beowulf are due to
more garbage collection rounds.

Multidimensional FFT. We used the above parallel map & transpose skele-
ton also to implement multidimensional FFT. Multidimensional FFT represents
a one-dimensional discrete FFT with input length n · m as a two-dimensional
discrete FFT of size n × m. There are many different ways to perform a mul-
tidimensional FFT. The simplest case for two dimensions is the row-column
method. In this case, a one-dimensional FFT is applied to the columns and then

13

on 27 Pentium 4 CPU’s @ 3.00 GHz, on 8 Core 2 Duo CPU’s @ 2.40 GHz,
512 MB RAM, fast Ethernet 2 GB RAM, fast Ethernet

Fig. 12. Runtime and scalability comparison of parallel FFT approaches.

to the rows of the two dimensional matrix. Our experiments with multidimen-
sional FFT have shown that our skeleton scales equally well and shows a similar
runtime behaviour as the instantiation discussed above.

4 Related Work

A range of parallel FFT implementations have been presented in the past ([4,
3], to mention only a few). The vast majority is tailored for shared-memory sys-
tems, see e.g. [7] as an example for a high-level implementation in the functional
array language SAC. Distributed implementations are mostly based on C+MPI.
The distributed MPI-based FFTW, the Fastest Fourier Transform in the West,
implementation [4] is especially tailored for transforming arrays so large that
they do not fit into the memory of a single PE. In contrast to these specialised
approaches, our work propagates a skeleton-based parallelisation. In his PhD
thesis [9], Christoph Herrmann gives a broad overview, classification, and a vast
amount of implementation variants for divide & conquer, while we have focused
on divide-and-conquer schemes with a fixed branching degree. The skeleton-
based version of parallel FFT in [6, 5] underlies our parallel map-and-transpose
implementation of one-dimensional FFT.

5 Conclusions

Developing an efficient parallel distributed-memory implementation of FFT is
a great challenge. The manual of the recent 3.2 alpha release of FFTW6 warns
that “distributed-memory parallelism can easily pose an unacceptably high com-
munications overhead for small problems”. This inherent problem of distributed-
memory parallel FFT made our investigation difficult. The goal of our work has
6 http://www.fftw.org/fftw-3.2alpha3-doc/

14

not been to develop the fastest distributed-memory FFT, but to investigate a
skeleton-based parallelisation of FFT. The skeleton approach cleanly separates
algorithmic (problem-related) and coordinational (problem-independent) issues.
The high communication overhead of FFT is clearly problem-related. The skele-
ton approach provides a high flexibility. In total, six different parallel FFT ap-
proaches have been compared, on the basis of three new skeletons: two parallel
divide-and-conquer and a parallel map-and-transpose skeleton. The skeletons are
widely applicable. They exploit useful general coordination techniques, in par-
ticular a flexible ticket mechanism to control the unfolding of a parallel process
system and the direct mapping technique to avoid input communication. We have
achieved an acceptable parallel runtime behaviour with a low parallelisation ef-
fort. The communication overhead could additionally be lowered by leaving the
results in a distributed manner to avoid the result communication.
Acknowledgements: We thank Thomas Horstmeyer for supporting our work.

References

1. M. I. Cole. Algorithmic skeletons: Structured management of parallel computation.
In Research Monographs in Parallel and Distributed Computing. Pitman, 1989.

2. J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex
fourier series. Math. Comput., 19:297–301, 1965.

3. P. Dmitruk, L. Wang, W. Matthaeus, R. Zhang, and D. Seckel. Scalable parallel
fft for spectral simulations on a beowulf cluster. Parallel Computing, 27(14), 2001.

4. M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proc. of
the IEEE, 93(2), 2005.

5. S. Gorlatch. Programming with divide-and-conquer skeletons: A case study of
FFT. J. of Supercomputing, 12(1-2):85–97, 1998.

6. S. Gorlatch and H. Bischof. A generic MPI implementation for a data-parallel
skeleton: Formal derivation and application to FFT. Par. Proc. Let., 8(4), 1998.

7. C. Grelck and S.-B. Scholz. Towards an efficient functional implementation of the
nas benchmark ft. In PaCT, LNCS 2763, pages 230–235. Springer, 2003.

8. S. K. S. Gupta, C.-H. Huang, P. Sadayappan, and R. W. Johnson. Implementing
fast Fourier transforms on distributed-memory multiprocessors using data redis-
tributions. Par. Proc. Let., 4(4):477–488, 1994.

9. C. A. Herrmann. The Skeleton-Based Parallelization of Divide-and-Conquer Re-
cursions. PhD thesis, Universität Passau, 2000. ISBN 3-89722-556-5.

10. U. Klusik, R. Loogen, and S. Priebe. Controlling Parallelism and Data Distribution
in Eden. In TFP, volume 2, pages 53–64. Intellect, 2000.

11. O. Lobachev and R. Loogen. Towards an Implementation of a Computer Algebra
System in a Functional Language. In Intelligent Computer Mathematics, AISC,
pages 141–154. Springer LNAI 5144, 2008.

12. R. Loogen, Y. Ortega-Mallén, R. Peña, S. Priebe, and F. Rubio. Parallelism Ab-
stractions in Eden. In F. A. Rabhi and S. Gorlatch, editors, Patterns and Skeletons
for Parallel and Distributed Computing, pages 71–88. Springer, 2003.

13. R. Loogen, Y. Ortega-Mallén, and R. Peña-Maŕı. Parallel Functional Programming
in Eden. J. of Functional Programming, 15(3):431–475, 2005.

14. H. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Springer,
Berlin, 1981.

15. M. C. Pease. An adaptation of the fast fourier transform for parallel processing.
JACM, 15(2):252–264, April 1962.

15

