Lösungen zum 8. Übungsblatt zur Analysis I, Nachtrag

Vorbemerkung: Betrachtet man von der Dezimalbruchentwicklung der reellen Zahlen (die in dieser Vorlesung nicht besprochen wurde) nur die Folge $y = (y_1, y_2, \cdots)$ der Nachkommaziffern $(y_n \in \{0,1,\ldots,9\})$, so erhält man, wenn man diese als eine abgekürzte Schreibweise für $\sum_{n\geq 1} \frac{y_n}{10^n}$ interpretiert, eine Darstellung für jede reelle Zahl x im Intervall [0,1). Wenn man noch die Ziffernfolgen mit $y_n = 9$ für fast alle n weglässt, so ist die Darstellung eindeutig. Dabei gilt: Die dargestellte reelle Zahl ist genau dann $\in \mathbb{Q}$, wenn die Ziffernfolge periodisch ist.

Genau die gleichen Sachverhalte werden in der Aufgabe behandelt, aber nicht mit der Bedingung $y_n \in \{0, 1, \dots, 9\}$, sondern mit $y_n \in \{0, 1\}$, d.h. es geht um die Darstellung der reellen Zahlen $\in [0,1)$ als Dualzahl. Und es ergeben sich ganz entsprechende Resultate.

Nützlich ist folgender

HILFSSATZ: Ist I eine höchstens abzählbare Menge und X_i höchstens abzählbar für jedes $i \in I$, so ist auch die Vereinigung $\bigcup X_i$ höchstens abzählbar.

Beweis: Es gibt Surjektionen $\alpha:\mathbb{N} \twoheadrightarrow I$ sowie $\varphi_i:\mathbb{N} \twoheadrightarrow X_i$ für jedes $i\in I$. Dann ist die Abbildung

$$\chi: \mathbb{N} \times \mathbb{N} \to \bigcup_{i \in I} X_i$$
$$(n, m) \mapsto \chi(n, m) := \varphi_{\alpha(n)}(m)$$

 $\chi: \mathbb{N} \times \mathbb{N} \to \bigcup_{i \in I} X_i$ $(n,m) \mapsto \chi(n,m) := \varphi_{\alpha(n)}(m)$ eine Surjektion. (Sei $x \in \bigcup_{i \in I} X_i$ beliebig. Dann gibt es wenigstens ein $i \in I$ mit $x \in X_i$. Zu i gibt es wenigstens ein $i \in I$ mit $i \in I$ mit gibt es wenigstens ein $n \in \mathbb{N}$ mit $i = \alpha(n)$. Da $\varphi_{\alpha(n)}$ also eine Surjektion von \mathbb{N} auf X_i ist, gibt es ein $m \in \mathbb{N}$ mit $\varphi_{\alpha(n)}(m) = x$.)

8.5.:

Für die Menge F aller Folgen $y: \mathbb{N}_+ \to \{0,1\}$ gilt: $F = \{0,1\}^{\mathbb{N}_+}$, F ist überabzählbar.

Zu (1): Die Menge der periodischen Folgen ist

$$P = \{ y \in F \mid \exists p \in \mathbb{N}_+ \text{ mit } y_n = y_{n+p} \text{ für fast alle } n \in \mathbb{N} \}.$$

Zu jeder Folge $y \in P$ existiert daher ein $m \in \mathbb{N}$ mit $y_n = y_{n+p}$ für alle n > m. $(y_1, \ldots, y_m \text{ bilden})$ den nicht-periodischen Anfang der Folge, p gibt die Periodenlänge an.) Die Folge y ist durch die Werte von y_1, \ldots, y_{m+p} vollständig determiniert.

Setzt man für festes $m P_{m,p} := \{ y \in P | y_n = y_{n+p} \text{ für alle } n > m \}$, so folgt daher $\# P_{m,p} = 2^{m+p}$, also endlich. Es gilt $P = \bigcup P_{m,p}$, wobei m und p unabhängig voneinander $\mathbb N$ durchlaufen.

Da $\mathbb{N} \times \mathbb{N}$ abzählbar ist und jedes $P_{m,p}$ höchstens abzählbar, ist P nach obigem Hilfssatz als Vereinigung von höchstens abzählbar vielen höchstens abzählbaren Mengen selbst höchstens abzählbar.

Zu (2): Sei D die Menge der dyadischen und $N := \mathcal{C}_F D$ die Menge der nicht-dyadischen Folgen. Wegen F überabzählbar genügt es zum Beweis der Überabzählbarkeit von D zu zeigen, dass Nhöchstens abzählbar ist.

Zu jeder nicht-dyadischen Folge $y \in N$ gibt es ein $m \in \mathbb{N}$ mit $y_n = 1$ für alle n > m. Die Folge ist also durch die Werte von $y_1, \dots y_m$ vollständig determiniert.

Setzt man für festes m $N_m := \{y \in \mathbb{N} \mid y_n = 1 \text{ für alle } n > m\}$, so folgt $\#N_m = 2^m$, und wegen $N = \bigcup_{m \in \mathbb{N}} N_m$ ist N nach dem obigen Hilfssatz höchstens abzählbar.

Zu (3): Für $y \in D$ sei $\hat{y} := \sum_{n \geq 1} \frac{y_n}{2^n}$. Wegen $y_n = 0$ oder 1 für alle n folgt $\hat{y} \geq 0$. Da y dyadisch ist, gilt $y_n = 0$ für unendlich viele n, also $\hat{y} < \sum_{n \geq 1} \frac{1}{2^n} = 1$, d.h. bild $\hat{\ } \subset [0, 1)$.

Die Abbildung^: $D \to [0,1)$ ist injektiv: Seien $y = (y_n)$ und $y' = (y'_n)$ aus D gegeben mit $\hat{y} = \hat{y'}$. Annahme: $y \neq y'$. Dann gibt es ein minimales $m \in \mathbb{N}$ mit $y_m \neq y'_m$, \mathbb{E} sei $y_m = 0$, $y'_m = 1$. Es folgt $0 = \hat{y'} - \hat{y} = \frac{1}{2^m} + \sum_{n \geq m} \frac{y'_n - y_n}{2^n}$ und daraus $\frac{1}{2^m} = \sum_{n \geq m} \frac{y_n - y'_n}{2^n}$.

Da y nicht-dyadisch, gibt es aber unendlich viele n>m mit $y_n=0$, d.h. auch mit $y_n-y_n'<1$. Daraus folgt $\sum\limits_{n>m}\frac{y_n-y_n'}{2^n}<\sum\limits_{n>m}\frac{1}{2^n}=\frac{1}{2^m}$, ein Widerspruch.

Betrachte nun die Abbildung : $[0,1) \to F$, $x \mapsto \check{x} = (\check{x}_n)$, wobei \check{x}_n wie folgt definiert sei: Für $x \in [0,1)$ sei $x_1 := x$, $x_{n+1} := 2x_n - [2x_n] < 1$. Dann setze $\check{x}_n = [2x_n]$ für alle $n \ge 1$. Zu zeigen: ist die Umkehrabbildung von $\hat{}$.

Nach Konstruktion ist $\check{x}_n \in \{0,1\}$ für alle n, also $\check{x} \in F$. Angenommen $\check{x} \notin D$. Dann existiert ein $m \geq 1$ mit $\check{x}_n = 1$ für alle $n \geq m$. Es ist aber $x_{n+1} = 2x_n - \check{x}_n$ für alle n. Daraus folgt zunächst $x_{m+1} = 2x_m - 1$, also $x_{m+1} - 1 = 2(x_m - 1)$ und induktiv $x_{m+k} - 1 = 2^k(x_m - 1)$ für alle $k \geq 1$, also

$$|x_m-1|=rac{|x_{m+k}-1|}{2^k}\leq rac{2}{2^k}$$
 für alle $k\geq 1$

und damit $x_m = 1$, ein Widerspruch zu $x_n < 1$ für alle n. Damit ist bild $\subset D$.

Behauptung: $\circ = id_{[0,1)}$.

Beweis: Sei $x \in [0,1)$ beliebig, also $\check{x}=(\check{x}_n) \in D$. Setze $y:=\check{x}$. Dann ist $\hat{y}:=\sum_{n\geq 1}\frac{\check{x}_n}{2^n} \in [0,1)$.

Zu zeigen: $\hat{y} = x$. Dazu zeigen wir zunächst:

$$\frac{x_{n+1}}{2^n} = x - \sum_{k=1}^n \frac{\check{x}_k}{2^n} \quad \text{für alle } n \ge 1. \tag{1}$$

Beweis: Sei $T := \{ n \in \mathbb{N}_+ | \text{Beh. (1) gilt für } n \}.$

n = 1: $x = x_1$, also $x_2 = 2x_1 - [2x_1] = 2x - [2x_1]$. Daraus folgt $\frac{x_2}{2} = x - \frac{[2x_1]}{2}$, d.h. $1 \in T$. Sei $n \in T$, dann folgt

$$\frac{x_{n+2}}{2^{n+1}} = \frac{2x_{n+1} - [2x_{n+1}]}{2^{n+1}} = \frac{x_{n+1}}{2^n} - \frac{\check{x}_{n+1}}{2^{n+1}} = x - \sum_{k=1}^{n+1} \frac{\check{x}_k}{2^k},$$

also $n+1 \in T$. Per Induktion gilt die Beh. für alle $n \ge 1$. Daraus folgt $0 \le x - \sum_{k=1}^n \frac{\tilde{x}_k}{2^k} = \frac{x_{n+1}}{2^n} < \frac{1}{2^n} \longrightarrow 0$ und mit STAB $x = \lim_{n \to \infty} \sum_{k=1}^n \frac{\tilde{x}_k}{2^k}$, d.h. $x = \hat{y}$.

Damit ist $^{\circ}$ = $id_{[0,1)}$, insbesondere ist $^{\circ}$ eine Surjektion und damit eine Bijektion. Ausserdem folgt $^{\circ}$ ($^{\circ}$ $^{\circ}$) = $id_{[0,1)}$ $^{\circ}$ = $^{\circ}$ id_D , und weil $^{\circ}$ injektiv auf D ist, folgt hieraus $^{\circ}$ $^{\circ}$ = id_D . Damit ist $^{\circ}$ die Umkehrabbildung von $^{\circ}$.

D überabzählbar nach Teil (2), [0,1) das Bild von D unter einer Bijektion $\Longrightarrow [0,1)$ überabzählbar.

Zu (4): Sei $y \in P$, also periodisch. Es existieren $m, p \in N_+$ mit $y_n = y_{n+p}$ für alle $n \ge m$. Zu zeigen: $\hat{y} \in \mathbb{Q}$.

$$(1-2^p)\hat{y} = (1-2^p)\sum_{k=1}^{m+p-1} \frac{y_k}{2^k} + (1-2^p)\sum_{k \ge m+p} \frac{y_k}{2^k} =: A+B$$

Wegen $y_k \in \mathbb{N}$ ist $A \in \mathbb{Q}$. Bleibt zu zeigen, dass $B \in \mathbb{Q}$.

$$B = (1 - 2^p) \sum_{k > m+p} \frac{y_k}{2^k} = \sum_{k > m+p} \frac{y_k}{2^k} - \sum_{k > m+p} \frac{y_k}{2^{k-p}} = \sum_{k > m+p} \frac{y_k - y_{k+p}}{2^k} - \sum_{k=m}^{m+p-1} \frac{y_k}{2^k}$$

Wegen $y_n = y_{n+p}$ für alle $n \ge m$ folgt $B = -\sum_{k=m}^{m+p-1} \frac{y_k}{2^k} \in \mathbb{Q}$.

Sei umgekehrt $\hat{y} \in \mathbb{Q} \cap [0,1)$. Zu zeigen: $y \in P$.

Wegen Teil (3) genügt es zu zeigen: Für jedes $x \in \mathbb{Q} \cap [0,1)$ ist $\check{x} \in P$.

Beweis: $x \in \mathbb{Q} \cap [0,1)$ besitzt eine Darstellung

$$x = \frac{r_1}{q} \text{ mit } q \in \mathbb{N}_+ \text{ und } r_1 \in \{0, \dots, q-1\}$$

Beh: Zu jedem x_n existiert eindeutig $r_n \in \{0, \ldots, q-1\}$ mit $x_n = \frac{r_n}{q}$.

Beweis induktiv: Wegen $x_1 = x$ ist die Beh. richtig für n = 1.

Ind.vor: Beh. richtig für ein $n \ge 1$. Dann gilt $0 \le 2x_n = \frac{2r_n}{q} < 2$.

Division von $2r_n \in \{0, \ldots, 2p-2\}$ durch q mit Rest liefert: Es gibt eindeutig $p_n \in \{0, 1\}$ und $r_{n+1} \in \{0, \ldots, q-1\}$ mit $2r_n = p_n \cdot q + r_{n+1}$. Nach Induktionsvoraussetzung folgt hieraus $2x_n = \frac{2r_n}{q} = p_n + \frac{r_{n+1}}{q}, \ 0 \le \frac{r_{n+1}}{q} < 1$, folglich $p_n = [2x_n] = \check{x}_n$ und $x_{n+1} = 2x_n - [2x_n] = \frac{r_{n+1}}{q}$. Also gilt die Beh. für n+1 und damit für alle n.

Wegen $r_n \in \{0, \ldots, q-1\}$ für alle n können die r_n nicht alle paarweise verschieden sein. Daher gibt es $m, p \in \mathbb{N}_+$ mit $r_m = r_{m+p}$, folglich $r_{m+p+1} = 2r_{m+p} - [2r_{m+p}] = 2r_m - [2r_m] = r_{m+1}$, induktiv: $r_{n+p} = r_n$ für alle $n \geq m$. Wegen $x_n = \frac{r_n}{q}$ folgt $x_{n+p} = x_n$ für alle $n \geq m$ und wegen $\check{x}_n = [2x_n]$ auch $\check{x}_{n+p} = \check{x}_n$ für alle $n \geq m$, also $\check{x} \in P$.

Zu (5): Setze $x := \frac{\sqrt{2}}{2}$. Nach Teil (3) gilt

$$\left| x - \sum_{k=1}^{n} \frac{\check{x}_k}{2^k} \right| < \frac{1}{2^n}$$

Weiterhin ist $\frac{1}{2^n}<10^{-3}$ für $n\ge 10\Longrightarrow$ Zu berechnen bleibt $\check x_k$ für $k=1,\ldots,10$. Mit $x_{n+1}=2x_n-[2x_n]=2x_n-\check x_n$ folgt

$$\begin{array}{lllll} x_1 = x = \frac{\sqrt{2}}{2} & \Rightarrow & \check{x}_1 = [2x_1] = [\sqrt{2}] = [1,41\dots] & \Rightarrow & \check{x}_1 = 1 \\ x_2 = 2x_1 - [\check{x}_1] = \sqrt{2} - 1 & \Rightarrow & \check{x}_2 = [2x_2] = [2\sqrt{2} - 2] = [0,82\dots] & \Rightarrow & \check{x}_2 = 0 \\ x_3 = 2x_2 - [\check{x}_2] = 2\sqrt{2} - 2 & \Rightarrow & \check{x}_3 = [2x_3] = [4\sqrt{2} - 4] = [1,65\dots] & \Rightarrow & \check{x}_3 = 1 \\ x_4 = 2x_3 - \check{x}_3 = 4\sqrt{2} - 5 & \Rightarrow & \check{x}_4 = [2x_4] = [8\sqrt{2} - 10] = [1,31\dots] & \Rightarrow & \check{x}_4 = 1 \end{array}$$

Weiterführen dieser Rechnung liefert eine beliebig lange Dualzahlentwicklung von $x := \frac{\sqrt{2}}{2}$. Die Werte von \check{x}_5 bis \check{x}_{10} ergeben sich zu 0, 1, 0, 1, 0, 0. Die gesuchte abbrechende Folge mit 10 Elementen lautet also 1011010100, d.h. für $y := (1, 0, 1, 1, 0, 1, 0, 1, 0, 0, \dots$ (lauter Nullen)) gilt

$$\hat{y} = \frac{1}{2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^6} + \frac{1}{2^8}$$

und
$$\left| \hat{y} - \frac{\sqrt{2}}{2} \right| < 10^{-3}$$
.