2.2 Elementare Funktionen: cos/sin

HS $a_n \neq 0$ für alle $n \geq 0, |a_{n+1}/a_n| \to \Delta$. Dann konvergiert $\sum_{n \geq 0} a_n$ absolut für $\Delta < 1$ und divergiert für $\Delta > 1$.

Beweis : Sei $\triangle < \eta < 1$. Dann ist für fast alle n der Quotient $\left|\frac{a_{n+1}}{a_n}\right| \leq \eta$. Ist $\triangle > 1$ so ist für fast alle n der Quotient ≥ 1 .

Mit Hilfe dieses HS beweist man leicht:

Satz 2.2.0 Für alle $x \in \mathbb{R}$ konvergieren die Reihen

$$\cos(x) := \sum_{n>0} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$\sin(x) := \sum_{n>0} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

absolut.

Folgerung 2.2.1 $x \mapsto \cos(x), x \mapsto \sin(x)$ stetig. \cos gerade, d.h. $\cos(x) = \cos(-x)$ \sin ungerade, d.h. $\sin(x) = -\sin(-x)$, $\cos(0) = 1$, $\sin(0) = 0$.

Theorem 2.2.2

$$\cos(x+y) = \cos(x) \cdot \cos(y) - \sin(x) \cdot \sin(y).$$

Beweis: Vgl. Additions theorem von exp.

Lemma 2.2.3 In dem offenen Intervall $(0, \sqrt{6})$ ist cos streng monoton fallend und sin positiv. Außerdem gibt es genau ein $\alpha \in (0, \sqrt{6})$ so dass $cos(\alpha) = 0$, genauer: $\alpha \in [\sqrt{2}, \sqrt{3})$.

Definition 2.2.4 $\pi := 2\alpha$

Beweis:
$$0 < x < y < \sqrt{6}$$
, $cos(x) - cos(y) = \sum_{n \ge 0} (-1)^n \frac{y^{2n+2} - x^{2n+2}}{(2n+2)!}$. 11/01/00 Die Koeffizienten $a_n := \frac{y^{2n+2} - x^{2n+2}}{(2n+2)!}$ haben folgende Eigenschaften:

- (1) $0 < a_n$
- (2) $\frac{a_{n+1}}{a_n} < 1$.

Nach Leibniz gilt für die Reihe $s = \sum_{n \ge 0} (-1)^n a_n$

$$s_0 > s_2 > \dots > s_{2n} > \dots > s > \dots > s_{2n+1} > \dots > s_3 > s_1 = a_0 - a_1 > 0$$

d.h. cos ist in $(0, \sqrt{6})$ streng monoton fallend.

$$\begin{array}{l} \frac{a_{n+1}}{a_n} < 1 \text{ sieht man folgendermaßen ein:} \\ d_n := y^n - x^n, \ d_{n+1} = y(y^n - x^n) + x^n(y-x) \\ y^{n+1} - x^{n+1} = (y-x)(y^n + y^{n-1}x + \ldots + x^n) > (n+1)(y-x)x^n \end{array}$$

und damit

$$d_{n+1} < y \cdot d_n + \frac{1}{n+1} d_{n+1}$$

$$d_{n+2} < \frac{y^2}{(1 - \frac{1}{n+1})(1 - \frac{1}{n+2})} d_n$$

 $\frac{a_{n+1}}{a_n} = \frac{d_{2n+4}}{d_{2n+2}} \cdot (2n+3)(2n+4) < \frac{y^2}{(2n+2)(2n+3)} \le \frac{y^2}{6}, \ n \ge 0. \text{ Mit}$ $\sin(x) = \sum_{n \ge 0} (-1)^n b_n, \ b_n := \frac{x^{2n+1}}{(2n+1)!} \text{ folgt } \frac{b_{n+1}}{b_n} = \frac{x^2}{(2n+2)(2n+3)} \le \frac{x^2}{6}, \text{ d.h. für}$ $0 < x < \sqrt{6}$ ist $x = s_0 > s_2 > \dots > \sin(x) > \dots > s_3 > s_1 = x - \frac{x^3}{6}$ insbesondere

$$1 - \frac{x^2}{6} < \frac{\sin(x)}{x} < 1, \quad 0 < x < \sqrt{6}.$$

Für $0 < x < \sqrt{2}$, $\cos(x) = \sum_{n>0} (-1)^n c_n := \frac{x^{2n}}{(2n)!}$ folgt

$$\frac{c_{n+1}}{c_n} = \frac{x^2}{(2n+2)(2n+1)} \le \frac{x^2}{2}$$
, also

 $1 = s_0 > s_2 > \dots > \cos(x) > \dots > s_3 > s_1 = 1 - \frac{x^2}{2} > 0$, insbesondere $\cos(\sqrt{2}) \geq 0$ und

$$0 < \frac{1 - \cos(x)}{x} < \frac{x}{2}, \ 0 < x < \sqrt{2}.$$

Für $y = \sqrt{3}$ ist $\cos\sqrt{3} = 1 - \sum_{n \ge 1} (-1)^n \frac{y^{2n+2}}{(2n+2)!} < 1 - \frac{3}{2} < 0$. Daher gibt es nach dem ZWS ein $\alpha \in [\sqrt{2}\sqrt{3}]$ so dass $\cos(\alpha) = 0$.

Folgerung 2.2.5

$$\lim \frac{\sin x_n}{x_n} = 1$$

$$\lim \frac{1 - \cos x_n}{x_n} = 0$$

 $f\ddot{u}r \ alle \ x_n \to 0, x_n \neq 0.$

Folgerung 2.2.6

(1)
$$\cos^2 x + \sin^2 x = 1$$

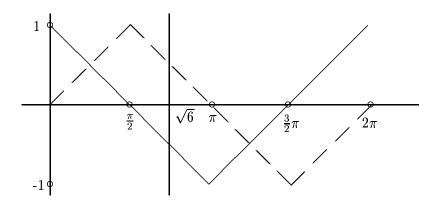
(2)
$$\cos(x + \frac{\pi}{2}) = -\sin x$$
, $\sin(x + \frac{\pi}{2}) = \cos x$
 $\cos(x + \pi) = -\cos x$, $\sin(x + \pi) = -\sin x$
 $\cos(x + 2\pi) = \cos x$, $\sin(x + 2\pi) = \sin x$
 $d.h. \cos und \sin sind periodische Funktionen mit der Periode 2π .$

(3)
$$\cos 0 = 1$$
, $\sin 0 = 0$
 $\cos \frac{\pi}{2} = 0$, $\sin \frac{\pi}{2} = 1$
 $\cos \pi = -1$, $\sin \pi = 0$
 $\cos 2\pi = 1$, $\sin 2\pi = 0$

(4)
$$\sin(x+y) = \sin x \cdot \cos y + \cos x \cdot \sin y$$

(5)
$$\cos \mathbb{R} = \sin \mathbb{R} = [-1, 1].$$

Bemerkung 2.2.7 (Approximativer Graph)



Folgerung 2.2.8

(1)
$$NST(\cos) = \mathbb{Z} \cdot \pi + \frac{\pi}{2}$$

(2)
$$NST(\sin) = \mathbb{Z} \cdot \pi$$
.

Beweis: Für $k \in \mathbb{Z}$ gilt $\cos(k\pi + \frac{\pi}{2}) = \pm \cos \frac{\pi}{2}$. Sei umgekehrt $\cos \overline{x} = 0$. Wähle $k \in \mathbb{Z}$, so dass $-\frac{\pi}{2} < \overline{x} - k\pi \le \frac{\pi}{2}$. Dann ist $\cos(\overline{x} - k\pi) = \cos(-(\overline{x} - k\pi)) = \pm \cos \overline{x} = 0$, d.h. Œ $0 \le \overline{x} - k\pi \le \frac{\pi}{2}$, also $\overline{x} = k\pi + \frac{\pi}{2}$.

Definition 2.2.9

- (1) $\tan x := \frac{\sin x}{\cos x}, \ x \notin \mathbb{Z}\pi + \frac{\pi}{2}$
- (2) $\cot x := \frac{\cos x}{\sin x}, \ x \notin \mathbb{Z}\pi.$

Bemerkung 2.2.10 (Ausblick) $z=x+iy\in\mathbb{C}=\mathbb{R}^2,\ x,y\in\mathbb{R}.\ Der$ Betrag $|z|:=\sqrt{x^2+y^2}$ der komplexen Zahl z hat die drei charakteristischen Eigenschaften einer Norm

N1:
$$|z| \ge 0$$
, $|z| = 0 \Leftrightarrow z = 0$

N2:
$$|z \cdot z'| = |z| \cdot |z'|$$

$$N3: |z + z'| \le |z| + |z'|.$$

Aufgrund der \triangle -Ungleichung (N3) kann man auch in $\mathbb C$ sinnvoll von konvergenten Folgen und Reihen reden, insbesondere konvergiert die Exponentialreihe

$$exp(z) = \sum_{n>0} \frac{z^n}{n!}$$

für alle $z \in \mathbb{C}$ absolut, und nach dem allgemeinen Kommutativgesetz für absolut konvergente Reihen gilt auch in \mathbb{C} das Additionstheorem

$$exp(z+w) = exp(z) \cdot exp(w).$$

 $F\ddot{u}r\ z = it,\ t \in \mathbb{R},\ schlie\betalich\ ist$

$$\exp(it) = \cos t + i\sin t,$$

woraus

$$(\cos t + i\sin t)^n = \cos nt + i\sin nt$$

folgt.

 $Das\ Additions theorem\ des\ cos\ und\ sin\ entspricht\ der\ Multiplikation\ komplexer\ Zahlen:$

$$\cos(t+t') + \sin(t+t') = \exp i(t+t')$$

$$= \exp it \cdot \exp it'$$

$$= (\cos t \cdot \cos t' - \sin t \cdot \sin t)$$

$$+i(\cos t \cdot \sin t' + \cos t' \cdot \sin t).$$

 $S^1:=\{z\in\mathbb{C}\Big|\ |z|=1\}=\{(x,y)\in\mathbb{R}^2\Big|\ x^2+y^2=1\}$ ist die sogenannte 1-Sphäre - der Rand eines Kreises vom Radius 1.

S Zu jedem $(x,y) \in S^1$ gibt es genau ein $t \in [0,2\pi)$, so dass

$$x = \cos t$$
$$y = \sin t.$$

Beweis: $x^2 + y^2 = 1 \Rightarrow |x| \le 1$. Da $\cos [0, 2\pi) = [-1, 1]$, gibt es ein $t \in [0, 2\pi)$ mit $\cos(t) = \cos(-t) = x$. Aus $y^2 = 1 - x^2 = 1 - \cos^2 t = \sin^2 t$ folgt

 $y = \pm \sin t$. Ist $y = -\sin t$, so ist $\tau := -t + 2\pi \in [0, 2\pi)$ und $y = \sin \tau$, $x = \cos \tau$.

Sei $0 \le t < t' \le 2\pi$ und $\cos t = \cos t'$, $\sin t = \sin t'$. Dann ist entweder $0 \le t < t' \le \pi$ oder $\pi < t < t' < 2\pi$. Da in den Intervallen $[0, \pi]$ bzw. $[\pi, 2\pi]$ der cos streng monoton ist, ist $\cos t \ne \cos t'$

Definition 2.2.11 Seien $p, p' \subset [a, b]$ endliche Teilmengen. p Teilung (oder Partition) von $[a, b] :\Leftrightarrow a, b \in p$. p' Verfeinerung von $p :\Leftrightarrow p \subset p'$

Die Punkte $t \in p$ einer Teilung p lassen sich anordnen:

12/01/00

$$p: a = t_0 < t_1 < \ldots < t_n = b.$$

Sei $(x, y) = (\cos t, \sin t) \in S^1, t \in [0, 2\pi), p$ Teilung von [0, t]

$$p: 0 < t_0 < \dots t_n = t$$

und s_p der Streckenzug von (1,0) nach (x,y) mit den Ecken $z_j := \exp it_j$, $j = 0, \ldots n$; die Strecke zwischen den Punkten z_j , z_{j+1} ist gegeben durch

$$(1-\tau)z_j + \tau z_{j+1}, \ \tau \in [0,1].$$

$$b(s_p) := \sum_{j=0}^{n-1} |z_{j+1} - z_j|$$

ist dann per definitionem die Länge des Streckenzuges s_p . Ist $p \subset p'$ eine Verfeinerung, so ist $b(s_p) \leq b(s_{p'})$.

Lemma 2.2.12 p Teilung von [0, t], $0 < \varepsilon$. Dann gibt es eine Verfeinerung $p \subset p'$, so dass

(1)
$$(1-\varepsilon)t \le b(s_{n'}) \le (1+\varepsilon)t$$

(2)
$$b(s_p) \le b(s_{p'})$$
.

Beweis: Wähle $\delta > 0$, so dass

$$1 - \varepsilon < \frac{\sin \tau}{\tau} < \sqrt{1 + \varepsilon}, \ 0 < \frac{1 - \cos \tau}{\tau} < \sqrt{\varepsilon}, \ 0 < \tau < \delta.$$

Wähle Verfeinerung $p': 0 = t_0 < t_1 < \ldots < t_n = t \text{ von } p$, so dass $\tau_j := t_{j+1} - t_j < \delta$. Dann ist $b(s_p) \leq b(s_{p'})$ und

$$egin{array}{lcl} b(s_{p'}) & = & \displaystyle\sum_{j=0}^{n-1} |\exp(it_{j+1}) - \exp(it_{j})| \ \\ & = & \displaystyle\sum_{j=0}^{n-1} |\exp(i au_{j}) - 1| \ \\ & = & \displaystyle\sum_{j=0}^{n-1} \sqrt{(\cos au_{j} - 1)^{2} + \sin^{2} au_{j}}. \end{array}$$

Für jedes j ist

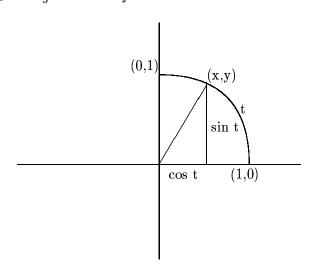
$$\tau_j(1-\varepsilon) < \sqrt{(\cos \tau_j - 1)^2 + \sin^2 \tau_j} < \tau_j(1+\varepsilon),$$

also nach Teleskop-Summation

$$t(1-\varepsilon) < b(s_{p'}) < t(1+\varepsilon).$$

Folgerung 2.2.13: $\sup\{b(s_p)|\ p\ Teilung\ von\ [0,t]\}=t.$

Dieses Supremum ist per Definition die Länge des Kreisbogens von (1,0) noch (x,y). Insbesondere ist die Gesamtlänge von S^1 gerade 2π . Sie liefert die von der Schule gewohnte Definition von sin und cos.



Ergänzung (nicht Teil der Vorlesung)

 $(a_n)_{n>0}$ beschränkte Folge reeller Zahlen.

$$\overline{a_n} := \sup\{a_k | k \ge n\} = \sup_{k \ge n} \ a_k$$

$$\underline{a_n} := \inf\{a_k | k \ge n\} = \inf_{k \ge n} a_k$$

Offenbar gilt

- (1) $a_n \leq a_n \leq \overline{a_n}$
- (2) $\underline{a_n} \nearrow$, $\overline{a_n} \searrow$.

Da (a_n) beschränkt ist, existieren die Limiten lim $\underline{a_n}$ bzw. lim $\overline{a_n}$ und es gilt

$$\begin{array}{ll} \overline{\lim} \ a_n := \lim \ \overline{a_n} = \inf_n \sup_{k \geq n} \ a_k \ (\text{"Limes superior"}) \\ \underline{\lim} \ a_n := \lim \ \underline{a_n} = \sup_n \inf_{k \geq n} \ a_k \ (\text{"Limes inferior"}) \end{array}$$

 $\$ Sei $(a_n)_{n>0}$ eine beschränkte Folge reeller Zahlen

äq

- (i) (a_n) ist konvergent
- $(ii) \quad \overline{\lim} \ a_n = \underline{\lim} \ a_n.$

Folgerung 2.2.14 : Konvergiert (a_n) , so ist

$$\lim a_n = \overline{\lim} a_n = \underline{\lim} a_n.$$

Beweis:

 $(ii) \Rightarrow (i) : \underline{a_n} \le a_n \le \overline{a_n}$

 $(i) \Rightarrow (ii) : \underline{\lim} \ a_n \le \lim \ a_n \le \overline{\lim} \ a_n.$

 $a:=\lim \ a_n, \ \varepsilon>0$. Dann existiert ein $N\geq 0$, so dass $a-\varepsilon< a_n< a+\varepsilon$ für alle $n\geq N$, also $a-\varepsilon\leq a_n\leq a+\varepsilon$ für alle $n\geq N$. Dann ist $a-\varepsilon\leq \varliminf a_n\leq a+\varepsilon$, d.h. $\varliminf a_n=\varlimsup a_n= \varlimsup a_n$.

Theorem 2.2.15 (Hadamard)

Sei
$$A(x) = \sum_{n \geq 0} a_n x^n$$
, so dass $(\sqrt[n]{|a_n|})$ beschränkt.

Dann ist

$$R_A = \left\{ egin{array}{ll} \infty & falls \ \overline{\lim} \sqrt[n]{|a_n|} = 0 \ \overline{\lim} \sqrt[n]{|a_n|}
eq 0 \end{array}
ight.$$

 $\mathbf{EX}:$

Für
$$A(x) = \sum_{n\geq 0} (1 + (-1)^n) n \cdot x^n$$
gilt
$$\sqrt[n]{|a_n|} = \begin{cases} 0 & n \equiv 1(2) \\ \sqrt[n]{2n} & n \equiv 0(2) \end{cases}$$
also $\overline{\lim} \sqrt[n]{|a_n|} = 1$, d.h. $R_A = 1$

Beweis: Da $(\sqrt[n]{|a_n|})$ beschränkt, ist $R_A > 0$. Zu $0 < t < R_A$ gibt es dann ein c > 0 so dass $|a_n t^n| \le c$, d.h. $\sqrt[n]{|a_n|} \le \frac{\sqrt[n]{c}}{t}$ und damit $\overline{\lim} \sqrt[n]{|a_n|} \le \frac{1}{t}$. Ist $\overline{\lim} \sqrt[n]{|a_n|} \ne 0$, so ist $\frac{1}{\overline{\lim} \sqrt[n]{|a_n|}} \ge t$, d.h. $\frac{1}{\overline{\lim} \sqrt[n]{|a_n|}} \ge R_A$, insbesondere $R_A \ne \infty$.

$$R_A \neq \infty$$
.
Ist $0 < t < \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}$, so ist

$$\sqrt[n]{|a_n|} \le \sup_{k \ge n} \sqrt[k]{|a_k|} \le \frac{1}{t}$$

für alle $n \geq N$, N geeignet, also $(a_n t^n)$ beschränkt, d.h. $R_A \geq \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}$. Ist $\overline{\lim} \sqrt[n]{|a_n|} = 0$ und $1 > \varepsilon > 0$, so ist $\sqrt[n]{|a_n|} \leq \varepsilon$ für alle $n \geq N$, N geeignet, d.h. $(a_n \varepsilon^{-n})$ beschränkt und damit $R_A = \infty$.