Kapitel 2

Stetige Funktionen

2.0 Stetige Funktionen auf Intervallen

 $\emptyset \neq X$ Menge, $\mathbb{R}^X = \{f : X \to \mathbb{R}\}$

Bemerkung 2.0.0 (vgl. 1.0.8) Die Menge \mathbb{R}^X der auf X reellwertigen Funktionen ist auf natürliche Weise eine \mathbb{R} -Algebra mit $\mathbb{1}$:

$$(f \stackrel{\star}{\cdot} g)(x) := f(x) \stackrel{\star}{\cdot} g(x)$$
$$(\lambda \cdot f)(x) := \lambda \cdot f(x)$$
$$1 \cdot f(x) := 1$$

für alle $x \in X$, $\lambda \in \mathbb{R}$. Außerdem ist \mathbb{R}^X partiell geordnet:

$$f \le g : \Leftrightarrow f(x) \le g(x), \ x \in X.$$

Mit f, g liegt auch $f \lozenge g$, |f| in \mathbb{R}^X :

$$f \bigotimes g(x) := f(x) \bigotimes g(x), \ x \in X.$$

 $Durch \ \mathbb{R} \hookrightarrow \mathbb{R}^X, \ \lambda \mapsto \lambda \cdot 1\!\!1, \ wird \ \mathbb{R} \ mit \ den \ konstanten, \ reellwertigen \ Funktionen \ auf \ X \ identifiziert.$

EX:

$$\begin{split} f_+ &:= f \vee 0, \ f_- := -(f \wedge 0), \ f_\pm \geq 0, \\ f &= f_+ - f_-, \ |f| = f_+ + f_-. \end{split}$$

Definition 2.0.1 $\overline{x} \in X \subset \mathbb{R}$, $f \in \mathbb{R}^X$, d.h. $f : X \to \mathbb{R}$

- (1) f stetig in $\overline{x} : \Leftrightarrow Zu$ jedem $\varepsilon > 0$ gibt es ein $\delta > 0$, so dass $|f(x) - f(\overline{x})| < \varepsilon$ für alle $x \in X$ mit $|x - \overline{x}| < \delta$.
- (2) f stetiq (auf X): \Leftrightarrow f stetiq in allen Punkten $x \in X$.

EX:

$$\begin{aligned} [1] \ f: \overline{\mathbb{R}}_+ \to \mathbb{R}, \ f(x) := \left\{ \begin{array}{ll} 0 & x = 0 \\ \frac{1}{x} & x > 0 \end{array} \right. \\ f \ \text{unstetig in} \ \overline{x} = 0, \ \text{stetig in allen} \ x > 0. \end{aligned}$$

Beweis: $\overline{x} = 0$: wäre f stetig in \overline{x} , so gäbe es zu $\varepsilon = 1$ ein $\delta > 0$ so dass $f(x) = |f(x) - f(\overline{x})| < 1$ für alle $|x - \overline{x}| < \delta, x \ge 0$. Nach Archimdedes gibt es ein $n \in \mathbb{N}$, so dass $\frac{1}{n} < \delta$, insbesondere $n \ge 1$. $f\left(\frac{1}{n}\right) = n \ge 1$, ein Widerspruch.

$$\overline{x} > 0 : \text{Für } |x - \overline{x}| < \frac{1}{2}\overline{x} \text{ ist } x \cdot \overline{x} \ge \overline{x} \Big| |x - \overline{x}| - |\overline{x}| \Big| \ge \frac{1}{2}\overline{x}^2, \text{ also}$$

$$\left| \frac{1}{x} - \frac{1}{\overline{x}} \right| = \frac{|\overline{x} - x|}{x\overline{x}} \le \frac{2}{\overline{x}^2} |x - \overline{x}|. \text{ W\"{a}hle zu } \varepsilon > 0 \text{ deshalb } 0 < \delta \le \min\{\frac{1}{2}\overline{x}, \frac{\overline{x}^2}{2} \cdot \varepsilon\}.$$

[2] $\exp : \mathbb{R} \to \mathbb{R}$ stetig in all $\overline{x} \in \mathbb{R}$.

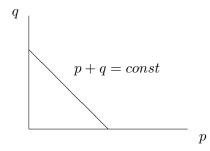
Beweis: $|\exp x - \exp \overline{x}| = (\exp \overline{x}) \cdot |\exp(x - \overline{x}) - 1|$. Für $-\frac{1}{2} < (x - \overline{x}) < \frac{1}{2}$ ist $x - \overline{x} < \exp(x - \overline{x}) - 1 < \frac{x - \overline{x}}{1 - (x - \overline{x})} < 2|x - \overline{x}|$ d.h.

 $|\exp x - \exp |\overline{x}| < 2|x - \overline{x}| \cdot \exp |\overline{x}|$. Wähle zu $\varepsilon > 0$ deshalb $0 < \delta \le \min\{\frac{1}{2}, \frac{\varepsilon}{2\exp \overline{x}}\}.$

$$[3] \ \psi : [0,1] \to \mathbb{R}, \psi(x) := \begin{cases} 0 & x \ irrational \\ \frac{1}{p+q} & x = \frac{p}{q} \ rational, \ p,q \in \mathbb{N} \\ q \neq 0, \ ggT(p,q) = 1 \end{cases}$$

z.B. $\psi(0) = 1$, $\psi(\frac{1}{2}) = \frac{1}{3}$, $\psi(1) = \frac{1}{2}$ ψ ist stetig in allen irrationalen Punkten und unstetig in allen rationalen

 $Beweis: \overline{x} = \frac{p}{q}$ rational: Wäre ψ stetig in $\overline{x},$ so gäbe es zu $0 < \varepsilon < \frac{1}{2}\psi(\overline{x}) = \frac{1}{2(p+q)}$ ein $\delta > 0,$ so dass $|\frac{1}{p+q} - \psi(x)| < \varepsilon$ für alle $|x - \frac{p}{q}| < \delta, \ x \in [0,1].$ Für ein derartiges irrationales x ist dann $\frac{1}{p+q} < \frac{1}{2(p+q)}$, ein Widerspruch. \overline{x} irrational: Zu $\varepsilon > 0$ gibt es nur endlich viele Paare natürlicher Zahlen $(p,q) \neq 0$ so dass $p+q \leq \frac{1}{\varepsilon}$



 x_1, \ldots, x_s seien die diesen Paaren entsprechenden rationalen Zahlen. Wähle $\delta := \frac{1}{2} \min\{|x_1 - \overline{x}|, \ldots, |x_s - \overline{x}|\}$. Ist dann $x = \frac{p}{q} \in [0, 1]$ rational und $|x - \overline{x}| < \delta$ so ist $x \neq x_1, \ldots, x_s$, also $|\psi(x) - \psi(\overline{x})| = \frac{1}{p+q} < \varepsilon$.

Satz 2.0.2 $\overline{x} \in X$, $f: X \to \mathbb{R}$

 $\ddot{a}q$

- (i) f stetig in \overline{x}
- (ii) $f(x_n) \to f(\overline{x})$ für alle Folgen $x_n \to \overline{x}, x_n \in X$.

Beweis : $(i) \to (ii)$: $x_n \to \overline{x}$, $x_n \in X$. Zu $\varepsilon > 0$ gibt es ein $\delta > 0$, so dass $|f(x) - f(\overline{x})| < \varepsilon$ für alle $|x - \overline{x}| < \delta$, $x \in X$. Wähle N so dass $|x_n - \overline{x}| < \delta$, $n \ge N$.

 $(ii) \to (i)$: Sonst gibt es ein $\varepsilon_0 > 0$ so dass es zu jedem $\delta > 0$ ein $x_\delta \in X$ gibt mit $|x_\delta - \overline{x}| < \delta$, aber $|f(x_\delta) - f(\overline{x})| \ge \varepsilon_0$. Wähle zu $\delta_n = \frac{1}{n}$ jeweils $x_n \in X$ mit $|x_n - \overline{x}| < \frac{1}{n}$, aber $|f(x_n) - f(\overline{x})| \ge \varepsilon_0$. Widerspruch. \square

EX:

$$X:=[0,1)\cup\{2\},\ f:X\to\mathbb{R},\ f(x):=\left\{\begin{array}{ll} 1 & x=2\\ x & x\neq 2 \end{array}\right.$$
 $f \text{ ist stetig. } X\ni x_n\to 2\Rightarrow x_n=2 \text{ für fast alle } n.$

Folgerung 2.0.3 $f, g \in \mathbb{R}^X, \lambda \in \mathbb{R}, \overline{x} \in X, Y \subset X$. Ist f, g stetig in \overline{x} , so ist auch $f \stackrel{t}{\leftarrow} g, \lambda \cdot f, \frac{f}{g}$ sofern definiert $f \lozenge g, |f|, f|Y$ sofern $\overline{x} \in Y$, stetig in \overline{x} .

Folgerung 2.0.4 Die Menge $C(X) := \{f : X \to \mathbb{R} \text{ stetig}\}$ der auf X stetigen Funktionen ist auf natürliche Art und Weise eine \mathbb{R} -Algebra.

EX:

 $a_0, \ldots, a_n \in \mathbb{R}, \ a_n \neq 0$

$$x \mapsto p(x) := \sum_{k=0}^{n} a_k x^k$$
 Polynome vom Grade n

mit Koeffizienten $a_0, \ldots a_n$. p ist stetig auf ganz \mathbb{R} .

Folgerung 2.0.5 $X \xrightarrow{f} Y \xrightarrow{g} \mathbb{R}, \ \overline{x} \in X$.

Ist f stetig in \overline{x} und g stetig in $\overline{y} = f(\overline{x})$, so ist $g \circ f$ stetig in \overline{x} .

EX: a > 0, $x \mapsto a^x = \exp(x \log a)$ stetig.

Theorem 2.0.6 (lokale Beschränktheit) $f: X \to \mathbb{R}$ stetig in $\overline{x} \in X$, $a, b \in \mathbb{R}$ so dass $a < f(\overline{x}) < b$. Dann gibt es ein $\delta > 0$ so dass a < f(x) < b für alle $|x - \overline{x}| < \delta$, $x \in X$.

Beweis: Wähle
$$\delta > 0$$
 zu $\varepsilon := \min\{f(\overline{x}) - a, b - f(\overline{x})\} > 0.$

Bezeichnung Mit B(X) wird die \mathbb{R} -Algebra der auf X beschränkten Funktionen bezeichnet, d.h. derjenigen $f \in \mathbb{R}^X$ für die es ein $c \geq 0$ gibt mit

$$|f(x)| \le c$$
 für alle $x \in X$.

EX: $x \mapsto \exp(-x^2)$ ist durch 1 beschränkt, $x \mapsto \frac{1}{x}$ ist stetig, aber unbeschränkt.

Theorem 2.0.7 $a \leq b \Rightarrow C[a,b] \subset B[a,b]$.

WARNUNG: Für offene Intervalle ist das Theorem falsch: $(0,1) \to \mathbb{R}_+$, $x \mapsto \frac{1}{x}$ ist unbeschränkt.

Beweis: $A:=\{\tau\in[a,b]\,\Big|\,f|[a,\tau]\text{ beschränkt}\}.$ Wegen der lokalen Beschränktheit gibt es ein $a<\overline{\tau}\leq b$ so dass $f|[a,\overline{\tau}]\text{ beschränkt},$ d.h. $[a,\overline{\tau}]\subset A$, insbesondere existiert $\tau_*:=\sup A,\ a<\tau_*\leq b.$ Wegen der lokalen Beschränktheit in τ_* gibt es $a<\alpha<\tau_*<\beta$ so dass $f|[\alpha,\beta]\cap[a,b]$ beschränkt, d.h. $f|[a,\beta]\cap[a,b]$ ist beschränkt. Ist $\beta\leq b$, so ist $\beta\in[a,b]$, also $\beta\leq\tau_*$, ein Widerspruch, also $\beta>b$ und damit $[a,\beta]\cap[a,b]=[a,b]$, f also insgesamt beschränkt.

Folgerung 2.0.8 (Satz vom Maximum) $f : [a,b] \to \mathbb{R}$ stetig. Dann gibt es x_* , $x^* \in [a,b]$, so dass

$$f(x_*) \le f(x) \le f(x^*)$$

für alle $x \in [a, b]$, d.h. jede stetige Funktion nimmt in [a, b] Maximum und Minimum an.

Beweis: $M:=\sup f[a,b]$ existiert. Angenommen $M\neq f(x)$ für alle x. Dann ist M-f(x)>0 und $x\mapsto g(x):=\frac{1}{M-f(x)}$ stetig auf [a,b]. Nach Theorem 2.07 ist g beschränkt, daher gibt es ein C so dass $0<\frac{1}{M-f(x)}\leq C$ für alle $x\in [a,b]$, also $0<\frac{1}{c}\leq M-f(x)$. Daher gibt es ein C, so dass $0<\frac{1}{M}-f(x)\leq C$ für alle $x\in [a,b]$, also $0<\frac{1}{C}\leq M-f(x)$ und damit $f(x)\leq M-\frac{1}{C}$, also $M\leq M-\frac{1}{C}$, ein Widerspruch.

Theorem 2.0.9 (Zwischenwertsatz) $a, b \in I \subset \mathbb{R}$ Intervall, a < b, $\xi \in \mathbb{R}$, $f: I \to \mathbb{R}$ stetig, so dass $f(a) \leq \xi \leq f(b)$ bzw. $f(a) \geq \xi \geq f(b)$. Dann gibt es ein $a \leq \overline{x} \leq b$, so dass $f(\overline{x}) = \xi$.

Beweis Œ: $f(a) < \xi < f(b)$. Definiere $g:[a,b] \to \mathbb{R}, \ g(x):=f(x)-\xi$. 15/12/99 Dann ist g stetig, $g(a) < 0, \ g(b) > 0, \ A:=\{\tau \in [a,b] \Big| \ g|[a,\tau] < 0\}$. Nach der lokalen Beschränktheit gibt es ein $a < \overline{\tau} \le b$, so dass $g|[a,\overline{\tau}] < 0$. Insbesondere gibt es $\tau_*:=\sup A, \ a < \tau_* \le b, \ g(\tau_*) \le 0$, also $\tau_* \ne b$. Wäre $g(\tau_*) < 0$, so gäbe es wieder wegen der lokalen Beschränktheit $a < \alpha < \tau_* < \beta < b$, so dass $g|[\alpha,\beta] < 0$ und damit $g|[a,\beta] < 0$, folglich $\beta \le \tau_*$, ein Widerspruch.

Folgerung 2.0.10 $\emptyset \neq I \subset \mathbb{R}$ Intervall, $f: I \to \mathbb{R}$ stetig. Dann ist auch bild f = f(I) ein Intervall.

Folgerung 2.0.11 $a \le b$, $f:[a,b] \to \mathbb{R}$ stetig. $\underline{M}:=\min f[a,b] \le \overline{M}:=\max f[a,b]$. Dann ist $f[a,b]=[\underline{M},\overline{M}]$.

EX:

[1] $\overline{\mathbb{R}}_+ \xrightarrow{f} \overline{\mathbb{R}}_+$, $x \mapsto x^n$, n > 0, surjektiv. Beweis: $\xi \in \overline{\mathbb{R}}_+$: $f(0) = 0 \le \xi < 1 + n\xi \le f(1 + \xi)$ nach Bernoulli, also $\xi \in [f(0), f(1 + \xi] \subset \text{bild } f$ nach Folgerung 2.0.10.

[2] $\exp : \mathbb{R} \to \mathbb{R}_+$ surjektiv.

Beweis: Für $\xi \ge 1$ ist $\exp(0) = 1 \le \xi < 1 + \xi \le \exp(1 + \xi)$, also $\xi \in [\exp(0), \exp(1 + \xi)] \subset \text{bild exp.}$ Für $0 < \xi < 1$ ist $\frac{1}{\xi} > 1$, also $\frac{1}{\xi} = \exp(x)$, $x \in \mathbb{R}, \xi = \exp(-x)$, d.h. $\xi \in \text{bild exp.}$

[3] Jedes Polynom p ungeraden Grades

 $x \mapsto p(x) := a_0 + a_1 x + \ldots + a_n x^n$, $a_n \neq 0$, n = 2m + 1, hat eine reelle Nullstelle.

Definition 2.0.12 *I Intervall,* $f: I \to \mathbb{R}$.

f streng monoton steigend : $\Leftrightarrow f(x) < f(y)$ für alle $x < y, x, y \in I$. f streng monoton fallend : $\Leftrightarrow f(x) > f(y)$ für alle $x < y, x, y \in I$. Satz 2.0.13 $f: I \to \mathbb{R}$ stetig

 $\ddot{a}q$

- (i) f injektiv
- (ii) f streng monoton.

Beweis: Nur $(i) \Rightarrow (ii)$ ist relevant. $\mathbb{C} \emptyset \neq I \neq pt.$ $a,b \in I, \ a < b$. $\mathbb{C} f(a) < f(b)$. Dann ist aufgrund der Injektivität und des ZWS f(a) < f(x) < f(b) für alle a < x < b. Das selbe Argument auf [x,b] angewendet liefert f(x) < f(y) < f(b) für alle x < y < b, d.h. f|[a,b] streng monoton steigend. Daher ist f|[A,B] streng monoton steigend für alle $[a,b] \subset [A,B] \subset I$ und damit f.

Satz 2.0.14 I Intervall, $f := I \to \mathbb{R}$ stetig, injektiv, $J := bild\ f$. Dann gibt es genau ein $g : J \to I$, so dass

- (1) $f \circ g = id_J$, $g \circ f = id_I$
- (2) g stetig.

EX:

$$f:[0,1)\cup\{2\}\longrightarrow[0,1],\ f(x):=\left\{\begin{array}{ll} x & x\neq 2\\ 1 & x=2 \end{array}\right.$$

ist stetig, bijektiv. Die Umkehrabbildung ist unstetig.

Beweis: J:= bild f ist ein Intervall, $f:I\to J$ bijektiv. Deshalb gibt es genau ein $g:J\to I$, so dass $g\circ f=id_I$, $f\circ g=id_J$. Es genügt zu zeigen, dass g|[A,B] stetig ist, für alle $[A,B]\subset I$, A< B. E f streng monoton steigend, $[A,B]=f[a,b],\ [a,b]\subset I,\ a< b.\ \overline{x}:=g(\overline{y})\in (a,b),\ \overline{y}\in (A,B),\ \varepsilon>0$ vorgegeben. Dann gibt es ein $0<\mu<\varepsilon$, so dass $[\overline{x}-\mu,\overline{x}+\mu]\subset (a,b)$, also $f[\overline{x}-\mu,\overline{x}+\mu]=[f(\overline{x}-\mu),\ f(\overline{x}+\mu)]\subset (A,B)$. Dann gibt es ein $0<\delta$, so dass $[\overline{y}-\delta,\ \overline{y}+\delta]\subset [f(\overline{x}-\mu),\ f(\overline{x}+\mu)]$, also $g(\overline{y}-\delta,\ \overline{y}+\delta)\subset [\overline{x}-\mu,\ \overline{x}+\mu]\subset (\overline{x}-\varepsilon,\ \overline{x}+\varepsilon)$. Die Stetigkeit von g|[A,B] in den Randpunkten verläuft im wesentlichen genauso.