SS 2000 Prof. Dr. F.W. Knöller

7. Übungsblatt zur Analysis II

Abgabe: 02.06.2000, 11.00 Uhr, vor dem HG 4

Aufgaben 7.1. und 7.2. sind mündlich zu bearbeiten.

7.1.: (Hinreichendes Kriterium für Stetigkeit der Umkehrfunktion) Seien X, Y metrische Räume und $f: X \longrightarrow Y$ stetig und bijektiv. Zeige: X kompakt $\Longrightarrow f^{-1}$ stetig.

7.2.: (Übertragung des Approximationssatzes von Weierstrass ins Komplexe mit Anwendung)

- a) Sei X ein kompakter metrischer Raum und $A \subset C(X,\mathbb{C})$ eine punktetrennende \mathbb{C} -Unteralgebra mit Eins derart, dass mit $f \in A$ stets auch \bar{f} in A liegt. Zeige, dass A dicht in $C(X,\mathbb{C})$ liegt.
- b) Folgere, dass sich jede stetige 1-periodische Funktion $f:\mathbb{R} \longrightarrow \mathbb{C}$ gleichmäßig durch sogenannte "trigonometrische Polynome"

$$\sum_{-n \le k \le n} c_k \chi_k, \quad c_k \in \mathbb{C}$$

approximieren lässt.

Worin unterscheidet sich diese Aussage von Folgerung 5.2.16 zum Satz von Dirichlet-Jordan? (Internet-Skript S.158)

7.3.: (Illustration für $C(X) \otimes C(Y) \subsetneq C(X \times Y)$)

Man kann zeigen, dass für N paarweise verschiedene Punkte $a_1, \ldots, a_n \in [0, 1]$ die Funktionen

$$f_k: t \mapsto |t - a_k|, \quad k = 1, \dots, N,$$

linear unabhängig in $C([0,1],\mathbb{R})$ sind. (Beweis: freiwillige Zusatzaufgabe) (5) Folgere, dass die Funktion

$$f: [0,1] \times [0,1] \longrightarrow \mathbb{R}, \quad (x,y) \longmapsto |x-y|,$$

sich nicht als endliche Summe der Form

$$\sum_{j=1}^{N} u_j(x) \cdot v_j(y)$$

(5)

(5)

mit $u_j, v_j \in C([0, 1], \mathbb{R})$ darstellen lässt.

7.4: (Algorithmus von Newton zur numerischen Nullstellenberechnung) Sei $f:[a,b] \longrightarrow \mathbb{R}$ 2-mal stetig differenzierbar, f(a) < 0 < f(b) sowie f'(x) > 0, f''(x) > 0 für alle $x \in [a,b]$. Definiere

$$F: [a, b] \longrightarrow \mathbb{R}, \quad F(x) := x - \frac{f(x)}{f'(x)}, \quad x_0 := b, \quad x_{n+1} := F(x_n).$$

Zeige, dass f genau eine Nullstelle $\overline{x} \in (a, b)$ besitzt und dass die Folge (x_n) streng monoton fallend gegen \overline{x} konvergiert.

Tipp: Zeige zunächst, dass F in \overline{x} ein lokales und absolutes Minimum und einen Fixpunkt besitzt und streng monoton wachsend ist auf $(\overline{x}, b]$, folgere sodann $x_n > x_{n+1} > \overline{x}$ durch Induktion.