Komplexitätstheorie

Klassifikation algorithmischer Probleme
 (→ formalisiert als Sprachen)
 nach ihrem Bedarf an Berechnungsressourcen:

- Rechenzeit
- Speicherplatz

jeweils als Funktion der Eingabelänge n

Ziele:

- Entwicklung effizienter Verfahren
- Nachweis oberer und unterer Schranken für die Komplexität von Problemen

Die O-**Notation**

Für Funktionen $g: \mathbb{N} \to \mathbb{N}$ definiert man die folgenden drei Mengen:

$$\mathcal{O}(g) := \{ f \mid \exists \ c > 0 \ \exists \ n_0 \in \mathbb{N} \ \forall \ n \geqslant n_0 : f(n) \leqslant c \cdot g(n) \}$$

$$\Omega(g) := \{ f \mid \exists c > 0 \exists n_0 \in \mathbb{N} \ \forall n \geqslant n_0 : f(n) \geqslant c \cdot g(n) \}$$

$$\Theta(g) := \{ f \mid \exists c > 0 \exists n_0 \in \mathbb{N} \ \forall n \geqslant n_0 : \frac{1}{c} \cdot g(n) \leqslant f(n) \leqslant c \cdot g(n) \}$$

Im Falle $h \in \mathcal{O}(g)$ sagt man ,,h ist von der Ordnung g " oder auch einfach ,,h ist $\mathcal{O}(g)$ ".

Vereinfachende Schreibweisen:

$$\mathcal{O}(f(n))$$
 statt $\mathcal{O}(f)$
 $\mathcal{O}(f) = \mathcal{O}(g)$ statt $\mathcal{O}(f) \subseteq \mathcal{O}(g)$ und $\mathcal{O}(f) < \mathcal{O}(g)$ statt $\mathcal{O}(f) \subsetneq \mathcal{O}(g)$.

Rechenregeln der \mathcal{O} -Notation

Sind $f_1 \in \mathcal{O}(g_1)$ und $f_2 \in \mathcal{O}(g_2)$, so gilt:

1.
$$f_1 + f_2 \in \mathcal{O}(\max\{g_1, g_2\})$$
 argumentweise

2.
$$f_1 \cdot f_2 \in \mathcal{O}(g_1 \cdot g_2)$$

Satz: Ein Polynom $p(n) = \sum_{i=0}^k a_i n^i$ vom Grade k ist in $\mathcal{O}(n^k)$.

Wichtigste O-Klassen

$$\mathcal{O}(1) \subseteq \mathcal{O}(\log n) \subseteq \mathcal{O}(n) \subseteq \mathcal{O}(n \log n) \subseteq$$

$$\mathcal{O}(n^2) \subseteq \ldots \subseteq \mathcal{O}(n^k) \subseteq \ldots \subseteq \mathcal{O}(2^n)$$

konstant — logarithmisch — linear — $n \log n$ —

— polynomiell — exponentiell

Komplexität von Algorithmen

Algorithmen als Turingprogramme für *Mehrband*-Turingmaschinen

--- realistischere Komplexität

Zeit \(\hat{\Rightarrow}\) Anzahl Schritte der Turingmaschine Platz \(\hat{\Rightarrow}\) Anzahl besuchter Felder der Turingmaschine

Im folgenden nur Zeitkomplexität:

Zeitkomplexität

Definition:

Sei $\mathcal{Q} \in TM_k(\Sigma)$ eine Mehrband-Turingmaschine.

Definiere $\underline{\mathtt{time}}_{0}:\Sigma^{*}\to\mathbb{N}\cup\{\infty\}$ durch

$$\underline{\operatorname{time}}_{\mathcal{Q}}(w) := \begin{cases} \min\{l \mid \kappa_0(w) \vdash (q, \ldots) \text{ mit } \\ \text{Schlusskonfiguration } (q, \ldots)\} \\ \text{falls } \alpha \text{ bei Eingabe von } w \text{ stoppt } \\ \infty \text{ sonst} \end{cases}$$

 $\kappa_0(w)$ bezeichne die Anfangskonfiguration von α bei Eingabe von w.

Bemerkungen:

Eine Mehrband-Turingmaschine mit Rechenzeitbeschränkung $f: \mathbb{N} \to \mathbb{N}$, d.h.

$$\forall w \in \Sigma^* : \underline{\mathtt{time}}(w) \leqslant f(|w|),$$

kann durch eine Einband-Turingmaschine mit Rechenzeitbeschränkung $n \mapsto f(n)^2$ simuliert werden.

Alternative Berechenbarkeitsmodelle als Basis möglich: WHILE / GOTO / LOOP

Kostenmaße

Uniformes Kostenmaß:

Der Zugriff und die Operation auf einer Zahl $n \in \mathbb{N}$ kostet eine Einheit.

— nur realistisch bei beschränkten Speicherplatzanforderungen pro Datum

Logarithmisches Kostenmaß:

Beim logarithmischen Kostenmaß wird die Größe der Operanden berücksichtigt. Die Kosten sind hier proportional zur Länge der Zahl in der Binärdarstellung. Der Zugriff und die Operation auf einer Zahl $n \in \mathbb{N}$ kosten

$$\begin{cases} 1 & \text{falls n=0} \\ \log_2(n+1) & sonst \end{cases}$$

Beispiel Betrachte folgendes Loop-Programm:

$$P = \underline{\text{in}}(X_1); \ \underline{\text{var}}(X_2); \\ X_2 := 2; \\ \underline{\text{loop}} \ X_1(X_2 := X_2 \cdot X_2); \\ \overline{X_1} := X_2; \\ \underline{\text{out}}(X_1)$$

P berechnet die Funktion $n\mapsto 2^{(2^n)}$. Nach dem uniformen Kostenmaß ist $[\![P]\!]\in\mathcal{O}(n)$. Nach dem logarithm. Kostenmaß ist $[\![P]\!]\in\mathcal{O}(2^n)$.

Die Komplexitätsklasse P

Definition: Sei $f: \mathbb{N} \to \mathbb{N}$.

$$\begin{split} \operatorname{TIME}(f(n)) := \\ \{ \ L \subseteq \Sigma^* \mid \exists \ \mathcal{Q} \in \mathbf{D} \mathsf{TM}_k(\Sigma) : L = L(\mathcal{Q}) \text{ und} \\ \forall \ w \in \Sigma^* : \underline{\operatorname{time}}_{\mathcal{Q}}(w) \leqslant f(|w|) \ \} \end{split}$$

$$P := \bigcup_{p \text{ Polynom}} \mathtt{TIME}(p(n))$$

enthält die

von deterministischen Turingmaschinen in **P**olynomialzeit

erkennbaren Sprachen.

Für P kann man 1-Band-Turingmaschinen betrachten, da Polynome unter Quadrieren abgeschlossen sind.

 ${\cal P}$ umfasst Probleme, für die "effiziente" Algorithmen existieren.

 $P \subseteq Klasse der LOOP-berechenbaren Sprachen$ $(<math>\Rightarrow$ charakteristische Fkt ist LOOP-ber.)

Beispiel: Kruskal-Algorithmus

Bestimmung eines minimal aufspannenden Baums (MST: minimal spanning tree) zu einem Graphen

Gegeben: gewichteter Graph G = (V, E, w) mit

- Knotenmenge V (vertices)
- Kantenmenge $E \subseteq V \times V$ (edges)
- Gewichtsfunktion $w: E \to \mathbb{N}$

Gesucht: minimal aufspannender Baum von G, d.h. $T \subseteq E$, so dass

- T ist ein Baum, der alle Knoten von G enthält $(\rightarrow T$ ist aufspannender Baum von G)
- $\bigcup_{e \in T} w(e)$ ist minimal unter allen aufspannenden Bäumen von G

Kruskal-Algorithmus

Verwalte eine Menge S von disjunkten Teilbäumen von G, die zusammen alle Knoten umfassen

- Zu Beginn sei S = V.
- Solange S mehr als einen Baum enthält, wiederhole:
 - Wähle eine Kante e minimalen Gewichts, die zwei Bäume t_1 und t_2 aus S verbindet
 - Lösche t_1 und t_2 aus S und füge den Baum, der aus t_1 , t_2 und der Kante e besteht, zu S hinzu

Aufwand: $\mathcal{O}(n^4)$, falls n = |V|

 \Longrightarrow MST $\in P$

 $\mathsf{MST} = \{code(G)code(n) \mid G \text{ besitzt MST mit } \mathsf{Gewicht} \leqslant n \}$

Die Komplexitätsklasse NP

Definition: Sei $f: \mathbb{N} \to \mathbb{N}$

$$\begin{split} \operatorname{NTIME}(f(n)) := \\ \{ \ L \subseteq \Sigma^* \mid \exists \ \mathcal{O} \in \ \mathsf{TM}_k(\Sigma) : L = L(\mathcal{O}) \text{ und} \\ \forall \ w \in \Sigma^* : \underline{\mathsf{time}}_{\mathcal{O}}(w) \leqslant f(|w|) \ \} \end{split}$$

$$NP := \bigcup_{p \text{ Polynom}} NTIME(p(n))$$

enthält die

von <u>N</u>ichtdeterministischen Turingmaschinen in **P**olynomialzeit

erkennbaren Sprachen.

Offensichtlich gilt:

$$P \subseteq NP \subseteq \mathsf{LOOP}\text{-ber. Sprachen}$$

Berühmtes offenes P-NP-Problem:

$$P \stackrel{?}{=} NP$$

Beispiel: TSP

Traveling Salesman Problem (Problem des Handlungsreisenden)

Gegeben: gewichteter Graph G = (V, E, w) mit

- Knotenmenge V (vertices)
- Kantenmenge $E \subseteq V \times V$ (edges)
- Gewichtsfunktion $w:E \to \mathbb{N}$

Gesucht: Kreis in G, der alle Knoten umfasst und dessen Kantengewicht minimal ist

Jeder Knoten soll exakt einmal enthalten sein.

- → Hamiltonscher Kreis
- → Optimierungsproblem

Variante Entscheidungsproblem:

Gesucht ist ein Kreis mit Kantengewicht $\leq k$ für ein gegebenes k.

Für das TSP ist kein deterministischer Algorithmus bekannt, der wesentlich besser ist als der Folgende:

- Zähle systematisch alle Folgen v_1, \ldots, v_n von Knoten von G auf, die jeden Knoten genau einmal enthalten.
 - \rightarrow Aufwand $\mathcal{O}(n!)$
- Teste, ob es sich um einen Kreis handelt, und wähle den Kreis mit minimalem Kantengewicht aus
 - \rightarrow Aufwand $\mathcal{O}(n)$

Es gilt
$$n! \sim (\frac{n}{e})^n \sqrt{2\pi n}$$
.

Dies übersteigt für jede Konstante c schließlich 2^{c*n} .

Eine nichtdeterministische Turingmaschine kann Folgen v_1, \ldots, v_n erraten und dann in Polynomialzeit feststellen, ob es sich um eine Lösung handelt.

Eine Lösung kann also **nichtdeterministisch in Polynomialzeit** bestimmt werden, d.h.

$$TSP \in NP$$

Das P-NP-Problem

wichtige Frage der Theoretischen Informatik

Viele für die Praxis wichtige Probleme liegen in NP, z.B.

- Erfüllbarkeitsproblem der Aussagenlogik SAT
- Traveling Salesman Problem TSP
- viele weitere Graphenprobleme
 Andererseits ist bisher kein polynomialer Algorithmus bekannt.

Charakteristisch für NP-Probleme:

- exponentiell großer Suchraum für Lösungen
 → nichtdeterministische Auswahl
- polynomialer Aufwand für Feststellung,
 ob eine Lösung gefunden wird

Strukturtheorie für P-NP-Problem

(Cook 1971, Karp 1972)

Bis auf wenige Ausnahmen sind NP-Probleme, für die kein polynomialer Algorithmus bekannt ist $(\rightarrow \text{Kandidaten für } NP \setminus P)$,

so miteinander verknüpft, dass

- entweder alle diese Probleme polynomiale Algorithmen besitzen (\rightarrow Fall P=NP)
- oder keines (→ Fall $P \neq NP$)

NP-Vollständigkeit

Definition: Seien $A, B \subseteq \Sigma^*$.

A heißt auf B polynomial reduzierbar,

Bez.: $A \leqslant_p B$, falls es eine totale, **in Polynomzeit** berechenbare Funktion $f: \Sigma^* \to \Sigma^*$ gibt, so dass für alle $w \in \Sigma^*$ gilt:

$$w \in A$$
 $f(w) \in B$

Lemma:

- $-A \leqslant_p B \land B \in P \curvearrowright A \in P$
- $-A \leqslant_p B \land B \in NP \curvearrowright A \in NP$
- $-\leqslant_p$ ist transitiv.

Definition: Sei $A \subseteq \Sigma^*$.

- (i) A heißt NP-hart, falls $\forall L \in NP : L \leq_p A$.
- (ii) A heißt NP-vollständig, falls A NP-hart und $A \in NP$.

Satz:

Sei A NP-vollständig. Dann gilt:

$$A \in P \curvearrowright P = NP$$

.

Der Satz von Cook

Das Erfüllbarkeitsproblem der Aussagenlogik $\mathsf{SAT} = \{code(F) \mid F \text{ ist erfüllbare Formel der Aussagenlogik } \}$ ist NP-vollständig.

Beweis: $SAT \in NP$ ist einfach zu zeigen (guess and check): Rate Belegung der AL-Variablen und teste, ob die Belegung F erfüllt

Hauptteil des Beweises (Nachweis der NP-Härte): Zeige für beliebiges $L \in NP$: $L \leqslant_p SAT$. Konstruiere Formel der AL F, so dass

 $w \in L \curvearrowright F$ ist erfüllbar.

Nachweis der Existenz weiterer solcher Probleme durch Reduktion

Beispiele für NP-harte Probleme:

- Wortproblem für Typ-1-Sprachen
- Äquivalenzproblem für Typ-3-Sprachen