PHILIPPS-UNIVERSITÄT MARBURG

Fachbereich Mathematik und Informatik Prof. Dr. R. Loogen D-35032 Marburg Hans Meerwein Straße Lahnberge 16. April 2002

Übungen zu "Parallele und verteilte Algorithmen", Sommer 2002 Nr. 1, Abgabe: 22. April in der Übung

Die Abgabe ist in Gruppen bis zu zwei Personen erlaubt.

1. Maximumbestimmung

6 Punkte

Auf einem Parallelrechner mit 2^q Prozessoren soll das Maximum von n Zahlen bestimmt und allen Prozessoren mitgeteilt werden. Geben Sie möglichst effiziente Prozeduren zur Lösung dieses Problems für folgende Rechnermodelle an:

- (a) EREW PRAM
- (b) CREW PRAM
- (c) CRCW PRAM

2. Listenkompression

6 Punkte

In einer CREW PRAM mit n Prozessoren P_1, \ldots, P_n sei eine lineare Liste aus n natürlichen Zahlen so abgespeichert, dass jedem P_i ein Element a_i und für i < n ein Zeiger $p_i = i+1$ auf P_{i+1} zugeordnet ist. Aus dieser Liste sollen nun alle Elemente mit der Eigenschaft $a_i = 0$ entfernt werden, d.h. für alle i mit $a_i \neq 0$ soll p_i den Wert $\min\{k > i \mid a_k > 0\}$ erhalten. Dabei sei o.B.d.A. $a_1 > 0$.

Geben Sie einen Algorithmus an, der dieses Problem in $O(\log n)$ Schritten löst.

3. Folgenberechnung

8 Punkte

Eine Folge $\langle s_i \mid 0 \leq i \leq n \rangle$ sei mit Hilfe zweier Folgen $\langle a_i \mid 1 \leq i \leq n \rangle$ und $\langle b_i \mid 0 \leq i \leq n \rangle$ wie folgt rekursiv definiert:

$$s_0 := b_0; s_i := b_i + a_i s_{i-1} \ (1 \le i \le n)$$

Geben Sie einen parallelen Algorithmus zur Berechnung aller s_i in $O(\log n)$ Schritten auf einer CREW-PRAM mit n+1 Prozessoren an.

Hinweis: Zeigen Sie, dass für $0 \le i \le n$ mit

$$s_{i,1} := b_0 \text{ und } s_{i,k} := b_i + \sum_{j=1}^{k-1} b_{i-j} \prod_{l=i-j+1}^{i} a_l \text{ für } 1 < k \le i+1$$

gilt, dass

$$s_i = s_{i,i+1}$$
 und $s_{i,2^{l+1}} = s_{i,2^l} + s_{i-2^l,2^l} \prod_{j=i-2^l+1}^i a_j$ falls $2^{l+1} \le i+1$

und gehen Sie ähnlich wie bei der Berechnung der Präfixsummen vor.