
Skeletons
• A number of patterns recur frequently in the body of parallel 

algorithms. 
These patterns are composed of

– computations and 
– the interactions between them.

The patterns can be conceptually abstracted from the details of 
the activities they control.

• This leads to (algorithmic) skeletons which are 
- higher-order functions 
- with an associated parallel evaluation strategy and 
- a cost (performance) model to estimate the execution time 

• Campbell’s classification:
– divide and conquer (recursively partitioned)
– task queue (work pool, master worker)
– systolic (pipeline)



Divide and Conquer
• higher order function:

d&c :: (a-> Bool) -> (a->b) -> (a -> [a]) -> ([b] -> b) -> a -> b
d&c trivial solve divide conquer p

= if (trivial p) then solve p
else conquer (map (d&c trivial solve divide conquer) (divide p))

• parallel implementations: 
– idealised implementation on tree of processors
– H-tree implementation of binary d&c on a grid:



Task Queue - Farm - Master/Worker
• higher order function:

farm :: (a -> b -> c) -> a -> [b] -> [c] 
farm f env = map (f env)

• implementation:
– static task distribution: – dynamic task distribution:

• cost model (static distr.): tfarm = tsetup + n/p (tsolve + 2tcomm)
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Systolic Scheme - Pipelining 
• higher order function:

pipe :: [ [a] -> [a] ]  -> [a] -> [a]
pipe = foldr (.)  id

• implementation:

linear pipeline of processes

• cost model: tpipe = tsetup + (tstage + tcomm)(p + n-1)
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Skeletal Programming
• fixed number of higher-order skeletons 

(algorithmic skeletons)
• different highly optimized implementations for different 

target architectures (architectural skeletons)

• Programming Methodology:
– choose suitable skeletons
– compose them in a program
– estimate its expected performance => cost model
– make changes in design, if necessary => transformation rules



History

• origin:  
PhD thesis of M. Cole (Univ. of Edinburgh, 1988)
few complex skeletons:
• FDDC (fixed degree divide & conquer)
• IC (iterative combination)
• TQ (task queue)

• first systems:
– P3L Pisa Parallel Programming Language [Pelagatti et al. 1995]

based on imperative computation language
– SCL Structured Coordination Language [Darlington et al. 1995]

based on functional computation language



SCL - Structured Coordination Language
layered skeletal approach:

• provides lower level of detailed control through explicitly distributed 
arrays ParArray with skeletons:
partition :: Partition_pattern -> SeqArray index a 

-> ParArray index (SeqArray index a)
gather :: Partition_pattern -> ParArray index (SeqArray index a) 

-> SeqArray index a 
align :: ParArray index a -> ParArray index b -> ParArray index (a,b)

• higher level skeletons:
– elementary skeletons (data parallel operations over distributed arrays)
– computational skeletons (parallel control flow)
– communication skeletons

sequential code

SCL program’s parallel behavior, 
including data partitioning,

placement, movement

skeletons cannot be called 
from sequential code



SCL Skeletons
• elementary

– map :: (a -> b) -> ParArray index a -> ParArray index b
– imap :: (index -> a -> b) -> ParArray index a -> ParArray index b
– fold :: (a -> a -> a) -> ParArray index a -> a
– scan :: (a -> a -> a) -> ParArray index a -> ParArray index a

• computational
– farm :: (a -> b -> c) -> a -> ParArray index b -> ParArray index c

farm f e = map (f e)

– spmd :: [ (ParArray index a -> ParArray index a, index -> a -> a) ] ->
ParArray index a -> ParArray index a

spmd [ ] = id
spmd ((gf, lf) : fs) = (spmd fs) . gf . (imap lf)

– ...

• communication
– rotate :: Int -> ParArray index a -> ParArray index a
– ...



Standardisierung 
– Skelettbibliotheken für MPI –

• H. Kuchen (Univ. Münster, 2002)
– Skelette als C++ Bibliothek auf der Basis von MPI

• Polymorphie über Templates simulieren
• Funktionen höherer Ordnung mittels überladener 

Operatoren
– Unterscheidung 

• datenparallele Skelette
– Manipulation verteilter Datenstrukturen
– Berechnungsskelette: map, fold, zip, scan ...
– Kommunikationsskelette: rotate, broadcast, permute, 

gather ...
• kontrollparallele Skelette

– pipe, farm, d&c, search
1. Erzeuge Prozesstopologie
2. starte Tasks (parallele Prozesse)  

TASK
Datenstrom



• M. Cole, A. Benoit (Univ. of Edinburgh, 2004)
– eSkel – Edinburgh Skeleton Library

Ziel: Erweiterung von kollektiven Operationen (einfache Skelette)
in MPI um algorithmische Skelette

Zur Zeit: 5 Skelette
1. pipeline
2. farm
3. deal (wie farm, ohne farmer mit zyklischer Taskverteilung)
4. haloswap -> iterative Approximation

• Schleife mit 
– local update
– check for termination

5. butterfly -> divide & conquer in hypercube

Standardisierung 
– Skelettbibliotheken für MPI  II –



Deal in Pipeline



Butterfly 



Pipeline Skelett

void Pipeline (int ns, Amode_t amode[], 
eSkel_molecule_t * (*stages[])(eSkel_molecule_t ), int col, 
Dmode t dmode, spread t spr[], MPI_Datatype ty[], 
void *in, int inlen, int inmul, void *out, int outlen, 
int *outmul, int outbuffsz, MPI_Comm comm)

=> 15 Parameter:
– 3 Parameter für Pipeline Eingaben
– 4 Parameter für Pipeline Ausgaben
– 3 Parameter für Pipeline-Stufen-Spezifikation
– 4 Parameter für Schnittstellen & Modi
– 1 Parameter für Kommunikator



Transformation of Skeletal Programs
• Problem: composition of skeletons

– try to predict impact on performance -> cost model required
– develop transformation rules 

• [Gorlatch, Lengauer 1997]: 
(De)Composition Rules for Parallel Scan and Reduction, 
Workshop on Massively Parallel Programming Models
– Expressiveness: 

How much ground does the class of (almost-)homomorphisms cover?
– Implementation:

How can the homomorphism skeleton be implemented efficiently on 
parallel computers?

– Composition:
Are certain compositions of standard homomorphisms good candidates 
for new homomorphic skeletons? How can these be optimized further?

– Decomposition:
Can a more complex homomorphism be decomposed into simpler 
homomorphisms, with the result of improved performance?

– Performance:
How portable are skeleton implementations?



Homomorphisms
• Functions are defined on non-empty finite lists, with list 

concatenation ++ as constructor.

• Definition: Function h on lists is a homomorphism iff there 
exists a binary operator ⊗ such that, for all lists xs and ys:

h (xs ++ ys)  =  h xs ⊗ h ys

• ⊗ is necessarily associative, because ++ is associative.

• Examples:

– Mapping: map  f  [x1, x2, ... , xn]  = [ f x1,  f x2,  ... ,  f  xn]

– Reduction: red   (⊕) [x1, x2, ... , xn]  = x1 ⊕ x2...⊕ xn

– Scanning:
scan (⊕)[x1, x2, ... , xn]  = [x1, x1⊕ x2, ... , x1 ⊕ x2...⊕ xn] 
with associative operator ⊕



Properties of Homomorphisms

• Normal form: Function h is a homomorphism iff it can be factored 
into the composition

h = red (⊗) ° map f with f a = h [a]
for every element a and ⊗ is from the definition of 
homomorphisms.

• Promotion property:    h ° red (++)  =  red (⊗) ° map h 

• Transformations: Functional programs consisting of 
homomorphisms can be transformed using semantics-preserving 
equational rules, e.g.

prog =  hn ° hn-1 ° .... ° h1

function composition
--> synchronisation

(avoidable?)



Scan-Reduce Composition
Let scanred (⊗,⊕)   :=  red (⊕) ° scan (⊗).
We assume that ⊗ distributes over ⊕:  a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c).

An almost-homomorphism is a function that becomes a 
homomorphism when tupled with one or more auxiliary functions.
When tupled with function red scanred becomes the homomorphism 
scanred’:

scanred’ (⊗,⊕) x  :=  (scanred (⊗,⊕) x ,  red (⊗) x)

For arbitrary binary, associative operators ⊗ and ⊕, such that ⊗
distributes over ⊕:

red (⊕) ° scan (⊗)  =  π1 ° red (<⊕,⊗>) ° map pair
where pair   x := (x,x) 
and (s1,r1) <⊕,⊗> (s2,r2) := (s1 ⊕ (r1 ⊗ s2), r1 ⊗ r2).



Scan - Scan - Composition

For arbitrary binary, associative operators ⊗ and ⊕, where ⊗
distributes over ⊕,

scan (⊕) ° scan (⊗)  = map π1 ° scan (<⊕,⊗>) ° map pair

This result can be derived using the auxiliary function 

inits [x1, x2, ... , xn]  = [ [x1], [x1, x2] , ... , [x1, x2, ... , xn] ]

and the following identities

map (f  ° g) = map f ° map g
scan (⊗) = map (red (⊗)) ° inits
inits ° map f = map (map f) ° inits
inits ° scan (⊗) = map (scan (⊗)) ° inits



Hypercube Implementation
• Properties:

– An elementary operation takes one unit of computation time.
– Communication links are bidirectional: 

Two neighboring processors can send messages of size m to 
each other simultaneously in time 

ts + m tw,
where ts is the start-up time and tw is the per-word transfer time.

– A processor is allowed to send/receive messages on only one of 
its links at a time.

– The computation time it takes to split or concatenate lists within 
a processor is ignored.

• Time for scan on hypercube using powerlist implementation:
log p  (ts + m (tw + 2))

where p is the number of processor elements and 
m is the number of list elements per processor element.

• Time for red: log p  (ts + m (tw + 1))



Performance Evaluation

• Scan-Scan Performance:

scan (⊕) ° scan (⊗)  = map π1° scan (<⊕,⊗>) ° map pair

2 log p  (ts + m (tw + 2)) log p  (ts + 2 m (tw + 3))

• Scan-Red Performance:

red (⊕) ° scan (⊗)  =  π1 ° red (<⊕,⊗>) ° map pair

log p  (2 ts + m (2 tw + 3)) > log p  (ts + m (2 tw + 3))
!

>

if   ts > 2m

time ignored


