PHILIPPS-UNIVERSITÄT MARBURG

Fachbereich Mathematik und Informatik Prof. Dr. R. Loogen D-35032 Marburg Hans Meerwein Straße Lahnberge 10. Mai 2005

Übungen zur "Theoretischen Informatik", Sommersemester 2005

Nr. 5, Abgabe: Dienstag, 17. Mai 2005 vor der Vorlesung

A. Hausaufgaben

21. Reguläre Ausdrücke

4 Punkte

Geben Sie zu den folgenden Sprachen über dem Alphabet $\Sigma = \{a, b, c\}$ jeweils einen regulären Ausdruck an, der die Sprache beschreibt.

- (a) L_1 sei die Menge aller Wörter, die mit a beginnen und deren vorletzter Buchstabe ungleich b ist.
- (b) L_2 sei die Menge aller Wörter, die eine durch 3 teilbare Anzahl von a's enthalten.
- (c) L_3 sei die Menge aller Wörter über $\{a, b\}$, die eine gerade Anzahl von a's und eine gerade Anzahl von b's enthalten.

22. Äquivalenzen

4 Punkte

Beweisen oder widerlegen Sie die folgenden Äquivalenzen zwischen regulären Ausdrücken:

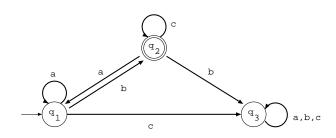
(a)
$$(\alpha + \beta)^* \sim \alpha^* + \beta^*$$

(b)
$$\alpha(\beta\alpha)^* \sim (\alpha\beta)^*\alpha$$

Geben Sie an, ob eine allgemein nicht geltende Äquivalenz für spezielle α oder β gilt.

Sie können für das Komplexprodukt die Assoziativität und die Distributivität über die Vereinigung voraussetzen.

23. Komplementbildung


4 Punkte

Sei $\Sigma = \{a, b\}$. Konstruieren Sie einen regulären Ausdruck β für die Komplementsprache des regulären Ausdrucks $\alpha = a(ab)^*a$: $[\![\beta]\!] = \Sigma^* \setminus [\![\alpha]\!]$

Hinweis: Führen Sie die folgenden Konstruktionen der Reihe nach durch: reg. Ausdruck \rightarrow NFA \rightarrow DFA \rightarrow komplementärer DFA \rightarrow reg. Ausdruck

B. Mündliche Aufgabe

24. Gegeben sei der folgende DFA über dem Alphabet $\Sigma = \{a, b, c\}$:

Konstruieren Sie den regulären Ausdruck, der die vom DFA erkannte Sprache repräsentiert

- (a) mit der Methode des Satzes von Kleene
- (b) durch Auflösen des durch den DFA induzierten Äquivalenzensystems.