PHILIPPS-UNIVERSITÄT MARBURG

Fachbereich Mathematik Informatik und Prof. Dr. R. Loogen

D-35032 Marburg Hans Meerwein Straße Lahnberge 7. Juni 2005

Übungen zur "Theoretischen Informatik", Sommersemester 2005

Nr. 9, Abgabe: Dienstag, 14. Juni 2005 vor der Vorlesung

A. Hausaufgaben

38. Beweisen oder widerlegen Sie, dass die Sprache $\Sigma^* \setminus \{a^n b^n a^n \mid n \geq 0\}$ kontextfrei ist.

3 Punkte

39. Gegeben sei die Sprache $L = \{0^n 1^m \mid n \le m \le 2n\}.$

3 Punkte

- (a) Geben Sie eine kontextfreie Grammatik G für L an.
- (b) Bestimmen Sie den Top-Down-Analyseautomaten zu G.
- (c) Geben Sie alle möglichen Konfigurationsfolgen des Automaten bei Eingabe von 00111 an.
- 40. Gegeben sei der Kellerautomat $\mathcal{A} = (\{q_0, q_1, q_2\}, \{a, b\}, \{Z_0, X\}, \delta, q_0, Z_0, \emptyset)$ mit

6 Punkte

- (a) Konstruieren Sie mit dem im Beweis von Satz 5.5 beschriebenen Verfahren eine kontextfreie Grammatik G mit L(G) = L(A). Vereinfachen Sie die erhaltene Grammatik.
- (b) Bestimmen Sie $L(\mathcal{A})$. Begründen Sie Ihre Antwort.
- (c) Geben Sie eine möglichst einfache Grammatik für L(A) an.
- (d) Vergleichen Sie die beiden Grammatiken.

B. Mündliche Aufgaben

41. Geben Sie zu den folgenden kontextfreien Sprachen jeweils einen deterministischen Kellerautomaten an, der die Sprache akzeptiert, und erläutern Sie kurz die Arbeitsweise der Automaten:

(a)
$$L_1 = \{a^i b^j c^k \mid j = i + k, j \ge 1\}$$

(a)
$$L_1 = \{a^i b^j c^k \mid j = i + k, j > 1\}$$
 (b) $L_2 = \{wc \mid w \in \{a, b\}^*, |w|_a = 2|w|_b\}$

- 42. Sei $G = (N, \Sigma, P, S)$ eine kontextfreie Grammatik. Der Bottom-Up-Analyseautomat zu G sei definiert durch $\mathcal{A} = (Q, \Sigma, \Gamma, \delta, q, Z_0, \emptyset)$ mit $Q := \{q\}, \Gamma := N \cup \Sigma \cup \{Z_0\}$ und $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma^* \to \wp_f(Q \times \Gamma^*)$, wobei folgende Transitionen unterschieden werden:
 - ",reduce": $\delta(q, \varepsilon, \alpha) = \{(q, A) \mid A \to \overleftarrow{\alpha} \in P\}$
 - "shift": $\delta(q, a, \varepsilon) = \{(q, a)\}$
 - "accept": $\delta(q, \varepsilon, SZ_0) = \{(q, \varepsilon)\}$

Es gilt $L(A) = \{ w \in \Sigma^* \mid (q, w, Z_0) \vdash_A^* (q, \varepsilon, \varepsilon) \}$, d.h. der Automat akzeptiert durch leeren Keller.

Geben Sie den Bottom-Up-Analyseautomaten zu der folgenden Grammatik an:

$$G = (\{S\}, \{0, 1\}, \{S \to 0S1 \mid 0S11 \mid 01 \mid 011\}, S)$$

und bestimmen Sie alle möglichen Konfigurationsfolgen bei Eingabe von 00111.