PHILIPPS-UNIVERSITÄT MARBURG

Fachbereich Mathematik und Informatik Prof. Dr. R. Loogen D-35032 Marburg Hans Meerwein Straße Lahnberge

Übungen zur "Theoretischen Informatik", Sommersemester 2007

Nr. 2, Abgabe: Mittwoch, 2. Mai 2007 vor der Vorlesung

4. Grammatiken zu Sprachen

4 Punkte

Entwickeln Sie Grammatiken vom angegebenen Typ zur Erzeugung der folgenden Sprachen:

(a) Typ 3: $\{ww \mid w \in \{a\}^*\}$

/ 1

(b) Typ 2: $\{w \overleftarrow{w} \mid w \in \{a, b, c\}^*\}$

/ 1

(c) Typ 1: $\{a^{2^k} \mid k \geq 1\}$. Hinweis: siehe Aufgabe 3 (b).

/ 2

5. Rechts- und linkslineare Grammatiken

5 Punkte

Zeigen Sie:

(a) Zu jeder rechtslinearen Grammatik existiert eine äquivalente Grammatik, in der neben Regeln der Form $A \to wB$ und neben der Regel $S \to \varepsilon$, falls $\varepsilon \in L(G)$ ist, genau eine Regel der Art $T \to \varepsilon$ auftritt. Die rechten Regelseiten sind dann Elemente aus $\Sigma^* N \cup \{\varepsilon\}$.

/ 1

(b) Zu jeder rechtslinearen Grammatik existiert eine äquivalente linkslineare Grammatik.

/ 3

Wenden Sie die von Ihnen beschriebenen Transformationen auf die folgende rechtslineare Grammatik an:

$$\begin{array}{ccc} S & \rightarrow & aA \mid bS \mid a \mid b \\ A & \rightarrow & bS \mid b \end{array}$$

Welche Sprache wird durch diese Grammatik erzeugt?

/ 1

6. ε -freie Grammatiken

3 Punkte

Sei $\Sigma = \{a, b\}$. Für $k \ge 1$ sei $G_k = (N_k, \Sigma, P_k, S)$, wobei $N_k = \{S, A, B_1, \dots, B_k, B_{k+1}\}$ und P_k aus den Regeln

$$S \to AaB_1 \qquad A \to aA \mid bA \mid \varepsilon \qquad B_{k+1} \to \varepsilon \qquad B_i \to aB_{i+1} \mid bB_{i+1}$$

für $1 \le i \le k$ besteht.

(a) Zeigen Sie: $L(G_k) = \{uav \in \Sigma^* \mid u \in \Sigma^*, v \in \Sigma^k\}.$

/ 1

/ 1

- (b) Transformieren Sie G_k in eine äquivalente ε -freie kontextfreie Grammatik G'_k .
- (c) Gibt es eine Grammatik G''_k vom Typ 3 mit $L(G''_k) = L(G_k)$? Begründen Sie Ihre Antwort.

/ 1