{---------------------------------- AUSZUG aus prelude.hs Standardfunktionen und Standardlistenfunktionen -----------------------------------} -- Some standard functions --------- fst :: (a,b) -> a fst (x,_) = x snd :: (a,b) -> b snd (_,y) = y curry :: ((a,b) -> c) -> (a -> b -> c) curry f x y = f (x,y) uncurry :: (a -> b -> c) -> ((a,b) -> c) uncurry f p = f (fst p) (snd p) id :: a -> a id x = x const :: a -> b -> a const k _ = k (.) :: (b -> c) -> (a -> b) -> (a -> c) (f . g) x = f (g x) flip :: (a -> b -> c) -> b -> a -> c flip f x y = f y x ($) :: (a -> b) -> a -> b f $ x = f x until :: (a -> Bool) -> (a -> a) -> a -> a until p f x = if p x then x else until p f (f x) -- Standard list functions {PreludeList} ------ head :: [a] -> a head (x:_) = x last :: [a] -> a last [x] = x last (_:xs) = last xs tail :: [a] -> [a] tail (_:xs) = xs init :: [a] -> [a] init [x] = [] init (x:xs) = x : init xs null :: [a] -> Bool null [] = True null (_:_) = False (++) :: [a] -> [a] -> [a] [] ++ ys = ys (x:xs) ++ ys = x : (xs ++ ys) map :: (a -> b) -> [a] -> [b] map f xs = [ f x | x <- xs ] filter :: (a -> Bool) -> [a] -> [a] filter p xs = [ x | x <- xs, p x ] concat :: [[a]] -> [a] concat = foldr (++) [] length :: [a] -> Int length = foldl' (\n _ -> n + 1) 0 (!!) :: [b] -> Int -> b (x:_) !! 0 = x (_:xs) !! n | n>0 = xs !! (n-1) (_:_) !! _ = error "Prelude.!!: negative index" [] !! _ = error "Prelude.!!: index too large" foldl :: (a -> b -> a) -> a -> [b] -> a foldl f z [] = z foldl f z (x:xs) = foldl f (f z x) xs foldl' :: (a -> b -> a) -> a -> [b] -> a foldl' f a [] = a foldl' f a (x:xs) = (foldl' f $! f a x) xs foldl1 :: (a -> a -> a) -> [a] -> a foldl1 f (x:xs) = foldl f x xs scanl :: (a -> b -> a) -> a -> [b] -> [a] scanl f q xs = q : (case xs of [] -> [] x:xs -> scanl f (f q x) xs) scanl1 :: (a -> a -> a) -> [a] -> [a] scanl1 f (x:xs) = scanl f x xs foldr :: (a -> b -> b) -> b -> [a] -> b foldr f z [] = z foldr f z (x:xs) = f x (foldr f z xs) foldr1 :: (a -> a -> a) -> [a] -> a foldr1 f [x] = x foldr1 f (x:xs) = f x (foldr1 f xs) scanr :: (a -> b -> b) -> b -> [a] -> [b] scanr f q0 [] = [q0] scanr f q0 (x:xs) = f x q : qs where qs@(q:_) = scanr f q0 xs scanr1 :: (a -> a -> a) -> [a] -> [a] scanr1 f [x] = [x] scanr1 f (x:xs) = f x q : qs where qs@(q:_) = scanr1 f xs iterate :: (a -> a) -> a -> [a] iterate f x = x : iterate f (f x) repeat :: a -> [a] repeat x = xs where xs = x:xs replicate :: Int -> a -> [a] replicate n x = take n (repeat x) cycle :: [a] -> [a] cycle [] = error "Prelude.cycle: empty list" cycle xs = xs' where xs'=xs++xs' take :: Int -> [a] -> [a] take 0 _ = [] take _ [] = [] take n (x:xs) | n>0 = x : take (n-1) xs take _ _ = error Prelude.take: negative argument" drop :: Int -> [a] -> [a] drop 0 xs = xs drop _ [] = [] drop n (_:xs) | n>0 = drop (n-1) xs drop _ _ = error "Prelude.drop: negative argument" splitAt :: Int -> [a] -> ([a], [a]) splitAt 0 xs = ([],xs) splitAt _ [] = ([],[]) splitAt n (x:xs) | n>0 = (x:xs',xs'') where (xs',xs'') = splitAt (n-1) xs splitAt _ _ = error "Prelude.splitAt: negative argument" takeWhile :: (a -> Bool) -> [a] -> [a] takeWhile p [] = [] takeWhile p (x:xs) | p x = x : takeWhile p xs | otherwise = [] dropWhile :: (a -> Bool) -> [a] -> [a] dropWhile p [] = [] dropWhile p xs@(x:xs') | p x = dropWhile p xs' | otherwise = xs span, break :: (a -> Bool) -> [a] -> ([a],[a]) span p [] = ([],[]) span p xs@(x:xs') | p x = (x:ys, zs) | otherwise = ([],xs) where (ys,zs) = span p xs' break p = span (not . p) lines :: String -> [String] lines "" = [] lines s = let (l,s') = break ('\n'==) s in l : case s' of [] -> [] (_:s'') -> lines s'' words :: String -> [String] words s = case dropWhile isSpace s of "" -> [] s' -> w : words s'' where (w,s'') = break isSpace s' unlines :: [String] -> String unlines = concatMap (\l -> l ++ "\n") unwords :: [String] -> String unwords [] = [] unwords ws = foldr1 (\w s -> w ++ ' ':s) ws reverse :: [a] -> [a] reverse = foldl (flip (:)) [] and, or :: [Bool] -> Bool and = foldr (&&) True or = foldr (||) False any, all :: (a -> Bool) -> [a] -> Bool any p = or . map p all p = and . map p elem, notElem :: Eq a => a -> [a] -> Bool elem = any . (==) notElem = all . (/=) lookup :: Eq a => a -> [(a,b)] -> Maybe b lookup k [] = Nothing lookup k ((x,y):xys) | k==x = Just y | otherwise = lookup k xys sum, product :: Num a => [a] -> a sum = foldl' (+) 0 product = foldl' (*) 1 maximum, minimum :: Ord a => [a] -> a maximum = foldl1 max minimum = foldl1 min concatMap :: (a -> [b]) -> [a] -> [b] concatMap f = concat . map f zip :: [a] -> [b] -> [(a,b)] zip = zipWith (\a b -> (a,b)) zip3 :: [a] -> [b] -> [c] -> [(a,b,c)] zip3 = zipWith3 (\a b c -> (a,b,c)) zipWith :: (a->b->c) -> [a]->[b]->[c] zipWith z (a:as) (b:bs) = z a b : zipWith z as bs zipWith _ _ _ = [] zipWith3 :: (a->b->c->d) -> [a]->[b]->[c]->[d] zipWith3 z (a:as) (b:bs) (c:cs) = z a b c : zipWith3 z as bs cs zipWith3 _ _ _ _ = [] unzip :: [(a,b)] -> ([a],[b]) unzip = foldr (\(a,b) ~(as,bs) -> (a:as, b:bs)) ([], []) unzip3 :: [(a,b,c)] -> ([a],[b],[c]) unzip3 = foldr (\(a,b,c) ~(as,bs,cs) -> (a:as,b:bs,c:cs)) ([],[],[])