
University of Amsterdam
Human-Computer Studies (HCS, formerly

SWI)
Kruislaan 419, 1098 VA Amsterdam

The Netherlands
Tel. (+31) 20 8884671

SWI-Prolog 5.5
Reference Manual

Updated for version 5.5.21, July 2005

Jan Wielemaker
wielemak@science.uva.nl

http://www.swi-prolog.org

SWI-Prolog is a Prolog implementation based on a subset of the WAM (Warren Ab-
stract Machine). SWI-Prolog was developed as anopenProlog environment, providing
a powerful and bi-directional interface to C in an era this was unknown to other Prolog
implementations. This environment is required to deal with XPCE, an object-oriented
GUI system developed at SWI. XPCE is used at SWI for the development of knowledge-
intensive graphical applications.

As SWI-Prolog became more popular, a large user-community provided requirements
that guided its development. Compatibility, portability, scalability, stability and provid-
ing a powerful development environment have been the most important requirements.
Edinburgh, Quintus, SICStus and the ISO-standard guide the development of the SWI-
Prolog primitives.

This document gives an overview of the features, system limits and built-in predicates.

Copyright c© 1990–2005, University of Amsterdam



Contents

1 Introduction 9
1.1 SWI-Prolog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Books about Prolog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Compliance to the ISO standard. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Should you be using SWI-Prolog?. . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 The XPCE GUI system for Prolog. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6.1 Version 1.8 Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6.2 Version 1.9 Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.3 Version 2.0 Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.4 Version 2.5 Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.5 Version 2.6 Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6.6 Version 2.7 Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6.7 Version 2.8 Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6.8 Version 2.9 Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6.9 Version 3.0 Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6.10 Version 3.1 Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6.11 Version 3.3 Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6.12 Version 3.4 Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6.13 Version 4.0 Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6.14 Version 5.0 Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6.15 Version 5.1 Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6.16 Version 5.2 Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6.17 Version 5.3 Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6.18 Version 5.4 Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6.19 Version 5.5 Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.7 Donate to the SWI-Prolog project. . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.8 Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Overview 19
2.1 Getting started quickly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Starting SWI-Prolog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Executing a query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 The user’s initialisation file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Initialisation files and goals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Command line options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 GNU Emacs Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Online Help. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Query Substitutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

SWI-Prolog 5.5 Reference Manual



Contents 3

2.7.1 Limitations of the History System. . . . . . . . . . . . . . . . . . . . . . . 26
2.8 Reuse of toplevel bindings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.9 Overview of the Debugger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.10 Compilation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.10.1 During program development. . . . . . . . . . . . . . . . . . . . . . . . . 30
2.10.2 For running the result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.11 Environment Control (Prolog flags). . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.12 An overview of hook predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.13 Automatic loading of libraries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.14 Garbage Collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.15 Syntax Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.15.1 ISO Syntax Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.16 Infinite trees (cyclic terms). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.17 Wide character support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.17.1 Wide character encodings on streams. . . . . . . . . . . . . . . . . . . . . 45
2.18 System limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.18.1 Limits on memory areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.18.2 Other Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.18.3 Reserved Names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Initialising and Managing a Prolog Project 50
3.1 The project source-files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 File Names and Locations. . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.2 Project Special Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.3 International Sourcefiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Using modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3 The test-edit-reload cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Locating things to edit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2 Editing and incremental compilation. . . . . . . . . . . . . . . . . . . . . . 54

3.4 Using the PceEmacs built-in editor. . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.1 Activating PceEmacs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.2 Bluffing through PceEmacs. . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.3 Prolog Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 The Graphical Debugger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.1 Invoking the window-based debugger. . . . . . . . . . . . . . . . . . . . . 59

3.6 The Prolog Navigator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7 Accessing the IDE from your program. . . . . . . . . . . . . . . . . . . . . . . . . 59
3.8 Summary of the iDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Built-in predicates 61
4.1 Notation of Predicate Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Character representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Loading Prolog source files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Quick load files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Listing and Editor Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5 Verify Type of a Term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6 Comparison and Unification or Terms. . . . . . . . . . . . . . . . . . . . . . . . . 72

SWI-Prolog 5.5 Reference Manual



4

4.6.1 Standard Order of Terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.7 Control Predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.8 Meta-Call Predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.9 ISO compliant Exception handling. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9.1 Debugging and exceptions. . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.9.2 The exception term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.9.3 Printing messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.10 Handling signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.10.1 Notes on signal handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.11 The ‘block’ control-structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.12 DCG Grammar rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.13 Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.13.1 Update view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.13.2 Indexing databases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.14 Declaring predicates properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.15 Examining the program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.16 Input and output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.16.1 ISO Input and Output Streams. . . . . . . . . . . . . . . . . . . . . . . . . 92
4.16.2 Edinburgh-style I/O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.16.3 Switching Between Edinburgh and ISO I/O. . . . . . . . . . . . . . . . . . 99

4.17 Status of streams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.18 Primitive character I/O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
4.19 Term reading and writing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104
4.20 Analysing and Constructing Terms. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.20.1 Non-logical operations on terms. . . . . . . . . . . . . . . . . . . . . . . . 110
4.21 Analysing and Constructing Atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.22 Classifying characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

4.22.1 Case conversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
4.23 Representing text in strings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
4.24 Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
4.25 Character Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
4.26 Arithmetic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
4.27 Arithmetic Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
4.28 Adding Arithmetic Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
4.29 Built-in list operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
4.30 Finding all Solutions to a Goal. . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
4.31 Invoking Predicates on all Members of a List. . . . . . . . . . . . . . . . . . . . . 126
4.32 Forall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
4.33 Formatted Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126

4.33.1 Writef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
4.33.2 Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
4.33.3 Programming Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

4.34 Terminal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
4.35 Operating System Interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132

4.35.1 Dealing with time and date. . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.35.2 Controlling thePLWIN.EXE console window. . . . . . . . . . . . . . . . . 134

4.36 File System Interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

SWI-Prolog 5.5 Reference Manual



Contents 5

4.37 User Toplevel Manipulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
4.38 Creating a Protocol of the User Interaction. . . . . . . . . . . . . . . . . . . . . . . 140
4.39 Debugging and Tracing Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.40 Obtaining Runtime Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142
4.41 Execution profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144

4.41.1 Profiling predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144
4.41.2 Visualizing profiling data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.41.3 Information gathering. . . . . . . . . . . . . . . . . . . . . . . . . . . . .146

4.42 Memory Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147
4.43 Windows DDE interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148

4.43.1 DDE client interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148
4.43.2 DDE server mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149

4.44 Miscellaneous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150

5 Using Modules 152
5.1 Why Using Modules?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152
5.2 Name-based versus Predicate-based Modules. . . . . . . . . . . . . . . . . . . . . 152
5.3 Defining a Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
5.4 Importing Predicates into a Module. . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.4.1 Reserved Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154
5.5 Using the Module System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154

5.5.1 Object Oriented Programming. . . . . . . . . . . . . . . . . . . . . . . . . 155
5.6 Meta-Predicates in Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156

5.6.1 Definition and Context Module. . . . . . . . . . . . . . . . . . . . . . . . 156
5.6.2 Overruling Module Boundaries. . . . . . . . . . . . . . . . . . . . . . . . 157

5.7 Dynamic Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157
5.8 Module Handling Predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
5.9 Compatibility of the Module System. . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.9.1 Emulatingmeta predicate/1 . . . . . . . . . . . . . . . . . . . . . . . 160

6 Special Variables and Coroutining 162
6.1 Attributed variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162

6.1.1 Special purpose predicates for attributes. . . . . . . . . . . . . . . . . . . . 164
6.2 Coroutining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164
6.3 Global variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165

6.3.1 Compatibility of SWI-Prolog Global Variables. . . . . . . . . . . . . . . . 166

7 CHR: Constraint Handling Rules 167
7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
7.2 Syntax and Semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167

7.2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
7.2.2 Semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

7.3 CHR in SWI-Prolog Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . .171
7.3.1 Embedding in Prolog Programs. . . . . . . . . . . . . . . . . . . . . . . . 171
7.3.2 Constraint declaration. . . . . . . . . . . . . . . . . . . . . . . . . . . . .171
7.3.3 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172

7.4 Debugging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172

SWI-Prolog 5.5 Reference Manual



6

7.4.1 Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172
7.4.2 Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173
7.4.3 CHR Debugging Predicates. . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174
7.6 Compatibility with SICStus CHR. . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.7 Guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175

8 Multi-threaded applications 177
8.1 Creating and destroying Prolog threads. . . . . . . . . . . . . . . . . . . . . . . . . 177
8.2 Monitoring threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179

8.2.1 Linux: linuxthreads vs. NPTL. . . . . . . . . . . . . . . . . . . . . . . . . 180
8.3 Thread communication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181

8.3.1 Message queues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181
8.3.2 Signalling threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183
8.3.3 Threads and dynamic predicates. . . . . . . . . . . . . . . . . . . . . . . . 183

8.4 Thread synchronisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184
8.5 Thread-support library(threadutil). . . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.6 Multi-threaded mixed C and Prolog applications. . . . . . . . . . . . . . . . . . . . 186

8.6.1 A Prolog thread for each native thread (one-to-one). . . . . . . . . . . . . . 186
8.6.2 Pooling Prolog engines (many-to-many). . . . . . . . . . . . . . . . . . . . 187

8.7 Multithreading and the XPCE graphics system. . . . . . . . . . . . . . . . . . . . . 188

9 Foreign Language Interface 190
9.1 Overview of the Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190
9.2 Linking Foreign Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190

9.2.1 What linking is provided?. . . . . . . . . . . . . . . . . . . . . . . . . . . 191
9.2.2 What kind of loading should I be using?. . . . . . . . . . . . . . . . . . . . 191

9.3 Dynamic Linking of shared libraries. . . . . . . . . . . . . . . . . . . . . . . . . . 191
9.4 Using the library shlib for.DLL and.so files . . . . . . . . . . . . . . . . . . . . . 192

9.4.1 Static Linking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
9.5 Interface Data types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194

9.5.1 Typeterm t : a reference to a Prolog term. . . . . . . . . . . . . . . . . . 194
9.5.2 Other foreign interface types. . . . . . . . . . . . . . . . . . . . . . . . . . 196

9.6 The Foreign Include File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197
9.6.1 Argument Passing and Control. . . . . . . . . . . . . . . . . . . . . . . . . 197
9.6.2 Atoms and functors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198
9.6.3 Analysing Terms via the Foreign Interface. . . . . . . . . . . . . . . . . . . 200
9.6.4 Constructing Terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207
9.6.5 Unifying data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210
9.6.6 BLOBS: Using atoms to store arbitrary binary data. . . . . . . . . . . . . . 215
9.6.7 Calling Prolog from C. . . . . . . . . . . . . . . . . . . . . . . . . . . . .217
9.6.8 Discarding Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219
9.6.9 Foreign Code and Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . 220
9.6.10 Prolog exceptions in foreign code. . . . . . . . . . . . . . . . . . . . . . . 221
9.6.11 Catching Signals (Software Interrupts). . . . . . . . . . . . . . . . . . . . . 223
9.6.12 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224
9.6.13 Errors and warnings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226

SWI-Prolog 5.5 Reference Manual



Contents 7

9.6.14 Environment Control from Foreign Code. . . . . . . . . . . . . . . . . . . 226
9.6.15 Querying Prolog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226
9.6.16 Registering Foreign Predicates. . . . . . . . . . . . . . . . . . . . . . . . . 228
9.6.17 Foreign Code Hooks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230
9.6.18 Storing foreign data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231
9.6.19 Embedding SWI-Prolog in other applications. . . . . . . . . . . . . . . . . 235

9.7 Linking embedded applications using plld. . . . . . . . . . . . . . . . . . . . . . . 237
9.7.1 A simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239

9.8 The Prolog ‘home’ directory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240
9.9 Example of Using the Foreign Interface. . . . . . . . . . . . . . . . . . . . . . . . 240
9.10 Notes on Using Foreign Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244

9.10.1 Memory Allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244
9.10.2 Compatibility between Prolog versions. . . . . . . . . . . . . . . . . . . . 244
9.10.3 Debugging Foreign Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
9.10.4 Name Conflicts in C modules. . . . . . . . . . . . . . . . . . . . . . . . . 245
9.10.5 Compatibility of the Foreign Interface. . . . . . . . . . . . . . . . . . . . . 245

10 Generating Runtime Applications 246
10.1 Limitations of qsaveprogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248
10.2 Runtimes and Foreign Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248
10.3 Using program resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249

10.3.1 Predicates Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .250
10.3.2 Theplrc program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251

10.4 Finding Application files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251
10.4.1 Passing a path to the application. . . . . . . . . . . . . . . . . . . . . . . . 252

10.5 The Runtime Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252
10.5.1 The Runtime Emulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . .252

A The SWI-Prolog library 254
A.1 lists : List Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254

A.1.1 Set Manipulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255
A.2 gensym : Generate unique identifiers. . . . . . . . . . . . . . . . . . . . . . . . . 256
A.3 check : Elementary completeness checks. . . . . . . . . . . . . . . . . . . . . . . 256
A.4 debug : Some reusable code to help debugging applications. . . . . . . . . . . . . 257
A.5 readutil : Reading lines, streams and files. . . . . . . . . . . . . . . . . . . . . 258
A.6 netscape : Activating your Web-browser . . . . . . . . . . . . . . . . . . . . . . 259
A.7 registry : Manipulating the Windows registry. . . . . . . . . . . . . . . . . . . 260
A.8 url : Analysing and constructing URL. . . . . . . . . . . . . . . . . . . . . . . . . 261
A.9 clp/bounds : Integer Bounds Constraint Solver. . . . . . . . . . . . . . . . . . . 262

A.9.1 Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263
A.9.2 Constraint Implication and Reified Constraints. . . . . . . . . . . . . . . . 264
A.9.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265
A.9.4 SICStus clp(FD) compatibility. . . . . . . . . . . . . . . . . . . . . . . . . 265

A.10 clpr : Constraint Logic Programming over Reals. . . . . . . . . . . . . . . . . . . 265
A.10.1 Solver predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266
A.10.2 Syntax of the predicate arguments. . . . . . . . . . . . . . . . . . . . . . . 267
A.10.3 Use of unification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268

SWI-Prolog 5.5 Reference Manual



8

A.10.4 Non-linear constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . .268

B Hackers corner 269
B.1 Examining the Environment Stack. . . . . . . . . . . . . . . . . . . . . . . . . . . 269
B.2 Intercepting the Tracer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271
B.3 Hooks using theexception/3 predicate . . . . . . . . . . . . . . . . . . . . . . 272
B.4 Hooks for integrating libraries. . . . . . . . . . . . . . . . . . . . . . . . . . . . .272
B.5 Hooks for loading files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273
B.6 Readline Interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274

C Glossary of Terms 275

D SWI-Prolog License Conditions and Tools 280
D.1 The SWI-Prolog kernel and foreign libraries. . . . . . . . . . . . . . . . . . . . . . 280

D.1.1 The SWI-Prolog Prolog libraries. . . . . . . . . . . . . . . . . . . . . . . . 280
D.2 Contributing to the SWI-Prolog project. . . . . . . . . . . . . . . . . . . . . . . . 281
D.3 Software support to keep track of license conditions. . . . . . . . . . . . . . . . . . 281

E Summary 283
E.1 Predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283
E.2 Library predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295

E.2.1 lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295
E.2.2 check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295
E.2.3 readutil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295
E.2.4 netscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295
E.2.5 registry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295
E.2.6 url . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296

E.3 Arithmetic Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297
E.4 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299

SWI-Prolog 5.5 Reference Manual



Introduction 1
1.1 SWI-Prolog

SWI-Prolog started back in 1986 with the requirement for a Prolog that could handle recursive inter-
action with the C-language: Prolog calling C and C calling Prolog recursively. Those days Prolog
systems were very aware of its environment and we needed such a system to support interactive
applications. Since then, SWI-Prolog’s development has been guided by requests from the user com-
munity, especially focussing on (in arbitrary order) interaction with the environment, scalability, (I/O)
performance, standard compliance, teaching and the program development environment.

SWI-Prolog is based on a very restricted form of the WAM (Warren Abstract Machine) described
in [Bowen & Byrd, 1983] which defines only 7 instructions. Prolog can easily be compiled into this
language and the abstract machine code is easily decompiled back into Prolog. As it is also possible
to wire a standard 4-port debugger in the WAM interpreter there is no need for a distinction between
compiled and interpreted code. Besides simplifying the design of the Prolog system itself this ap-
proach has advantages for program development: the compiler is simple and fast, the user does not
have to decide in advance whether debugging is required and the system only runs slightly slower
when in debug mode. The price we have to pay is some performance degradation (taking out the
debugger from the WAM interpreter improves performance by about 20%) and somewhat additional
memory usage to help the decompiler and debugger.

SWI-Prolog extends the minimal set of instructions described in [Bowen & Byrd, 1983] to im-
prove performance. While extending this set care has been taken to maintain the advantages of de-
compilation and tracing of compiled code. The extensions include specialised instructions for unifi-
cation, predicate invocation, some frequently used built-in predicates, arithmetic, and control (;/2 ,
|/2 ), if-then (->/2 ) and negation-by-failure (\+/1 ).

1.1.1 Books about Prolog

This manual does not describe the full syntax and semantics of Prolog, nor how one should write a pro-
gram in Prolog. These subjects have been described extensively in the literature. See [Bratko, 1986],
[Sterling & Shapiro, 1986], and [Clocksin & Melish, 1987]. For more advanced Prolog material see
[O’Keefe, 1990]. Syntax and standard operator declarations confirm to the ‘Edinburgh standard’.
Most built in predicates are compatible with those described in [Clocksin & Melish, 1987]. SWI-
Prolog also offers a number of primitive predicates compatible with Quintus Prolog1 [Qui, 1997] and
BIM Prolog2 [BIM, 1989].

ISO compliant predicates are based on “Prolog: The Standard”, [Deransartet al., 1996], validated
using [Hodgson, 1998].

1Quintus is a trademark of Quintus Computer Systems Inc., USA
2BIM is a trademark of BIM sa/nv., Belgium

SWI-Prolog 5.5 Reference Manual



10 CHAPTER 1. INTRODUCTION

1.2 Status

This manual describes version 5.5 of SWI-Prolog. SWI-Prolog has been used now for many years.
The application range includes Prolog course material, meta-interpreters, simulation of parallel Pro-
log, learning systems, natural language processing, complex interactive systems, web-server and web-
server components. Although we experienced rather obvious and critical bugs can remain unnoticed
for a remarkable long period, we assume the basic Prolog system is fairly stable. Bugs can be expected
in infrequently used built-in predicates.

Some bugs are known to the author. They are described as footnotes in this manual.

1.3 Compliance to the ISO standard

SWI-Prolog 3.3.0 implements all predicates described in “Prolog: The Standard”
[Deransartet al., 1996].

Exceptions and warning are still weak. Some SWI-Prolog predicates silently fail on conditions
where the ISO specification requires an exception (functor/3 for example). Some predicates print
warnings rather than raising an exception. All predicates where exceptions may be caused due to a
correct program operating in an imperfect world (I/O, arithmetic, resource overflows) should behave
according to the ISO standard. In other words: SWI-Prolog should be able to execute any program
conforming to [Deransartet al., 1996] that does not rely on exceptions generated by errors in the
program.

1.4 Should you be using SWI-Prolog?

There are a number of reasons why you better choose a commercial Prolog system, or another aca-
demic product:

• SWI-Prolog is not supported
Although I usually fix bugs shortly after a bug report arrives, I cannot promise anything. Now
that the sources are provided, you can always dig into them yourself.

• Memory requirements and performance are your first concerns
A number of commercial compilers are more keen on memory and performance than SWI-
Prolog. I do not wish to sacrifice some of the nice features of the system, nor its portability to
compete on raw performance.

• You need features not offered by SWI-Prolog
In this case you may wish to give me suggestions for extensions. If you have great plans, please
contact me (you might have to implement them yourself however).

On the other hand, SWI-Prolog offers some nice facilities:

• Nice environment
This includes ‘Do What I Mean’, automatic completion of atom names, history mechanism and
a tracer that operates on single key-strokes. Interfaces to some standard editors are provided
(and can be extended), as well as a facility to maintain programs (seemake/0 ).

SWI-Prolog 5.5 Reference Manual



1.5. THE XPCE GUI SYSTEM FOR PROLOG 11

• Very fast compiler
Even very large applications can be loaded in seconds on most machines. If this is not enough,
there is a Quick Load Format that is slightly more compact and loading is almost always I/O
bound.

• Transparent compiled code
SWI-Prolog compiled code can be treated just as interpreted code: you can list it, trace it, etc.
This implies you do not have to decide beforehand whether a module should be loaded for
debugging or not. Also, performance is much better than the performance of most interpreters.

• Profiling
SWI-Prolog offers tools for performance analysis, which can be very useful to optimise pro-
grams. Unless you are very familiar with Prolog and Prolog performance considerations this
might be more helpful than a better compiler without these facilities.

• Flexibility
SWI-Prolog can easily be integrated with C, supporting non-determinism in Prolog calling C as
well as C calling Prolog (see section9. It can also beembeddedembedded in external programs
(see section9.7). System predicates can be redefined locally to provide compatibility with other
Prolog systems.

• Integration with XPCE
SWI-Prolog offers a tight integration to the Object Oriented Package for User Interface De-
velopment, called XPCE [Anjewierden & Wielemaker, 1989]. XPCE allows you to implement
graphical user interfaces that are source-code compatible over Unix/X11, Win32 (Windows
95/98/ME and NT/2000/XP) and MacOS X (darwin).

1.5 The XPCE GUI system for Prolog

The XPCE GUI system for dynamically typed languages has been with SWI-Prolog for a long time.
It is developed by Anjo Anjewierden and Jan Wielemaker from the department of SWI, University of
Amsterdam. It aims at a high-productive development environment for graphical applications based
on Prolog.

Object oriented technology has proven to be a suitable model for implementing GUIs, which
typically deal with things Prolog is not very good at: event-driven control and global state. With
XPCE, we designed a system that has similar characteristics that make Prolog such a powerful tool:
dynamic typing, meta-programming and dynamic modification of the running system.

XPCE is an object-system written in the C-language. It provides for the implementation of meth-
ods in multiple languages. New XPCE classes may be defined from Prolog using a simple, natural
syntax. The body of the method is executed by Prolog itself, providing a natural interface between the
two systems. Below is a very simple class definition.

:- pce_begin_class(prolog_lister, frame,
"List Prolog predicates").

initialise(Self) :->
"As the C++ constructor"::
send_super(Self, initialise, ’Prolog Lister’),

SWI-Prolog 5.5 Reference Manual



12 CHAPTER 1. INTRODUCTION

send(Self, append, new(D, dialog)),
send(D, append,

text_item(predicate, message(Self, list, @arg1))),
send(new(view), below, D).

list(Self, From:name) :->
"List predicates from specification"::
( catch(term_to_atom(Term, From), _, fail)
-> get(Self, member, view, V),

current_output(Old),
pce_open(V, write, Fd),
set_output(Fd),
listing(Term),
close(Fd),
set_output(Old)

; send(Self, report, error, ’Syntax error’)
).

:- pce_end_class.

test :- send(new(prolog_lister), open).

Its 165 built-in classes deal with the meta-environment, data-representation and—of course—
graphics. The graphics classes concentrate on direct-manipulation of diagrammatic representations.

Availability. XPCE runs on most Unixtm platforms, Windows 95/98/ME, Windows NT/2000/XP
and MacOS X (using X11). In the past, versions for Quintus- and SICStus Prolog as well as some
Lisp dialects have existed. After discontinuing active Lisp development at SWI the Lisp versions
have died. Active development on the Quintus and SICStus versions has been stopped due to lack of
standardisation in the the Prolog community. If adequate standards emerge we are happy to actively
support other Prolog implementations.

Info. further information is available fromhttp://www.swi-prolog.org/packages/xpce/
or by E-mail toinfo@www.swi-prolog.org .

1.6 Release Notes

Collected release-notes. This section only contains some highlights. Smaller changes to especially
older releases have been removed. For a complete log, see the fileChangeLog from the distribution.

1.6.1 Version 1.8 Release Notes

Version 1.8 offers a stack-shifter to provide dynamically expanding stacks on machines that do not
offer operating-system support for implementing dynamic stacks.

SWI-Prolog 5.5 Reference Manual



1.6. RELEASE NOTES 13

1.6.2 Version 1.9 Release Notes

Version 1.9 offers better portability including an MS-Windows 3.1 version. Changes to the Prolog
system include:

• Redefinition of system predicates
Redefinition of system predicates was allowed silently in older versions. Version 1.9 only allows
it if the new definition is headed by a :-redefine system predicate/1 directive.

• ‘Answer’ reuse
The toplevel maintains a table of bindings returned by toplevel goals and allows for reuse of
these bindings by prefixing the variables with the $ sign. See section2.8.

• Better source code administration
Allows for proper updating of multifile predicates and finding the sources of individual clauses.

1.6.3 Version 2.0 Release Notes

New features offered:

• 32-bit Virtual Machine
Removes various limits and improves performance.

• Inline foreign functions
‘Simple’ foreign predicates no longer build a Prolog stack-frame, but are directly called from
the VM. Notably provides a speedup for the test predicates such asvar/1 , etc.

• Various compatibility improvements

• Stream based I/O library
All SWI-Prolog’s I/O is now handled by the stream-package defined in the foreign include
file SWI-Stream.h . Physical I/O of Prolog streams may be redefined through the foreign
language interface, facilitating much simpler integration in window environments.

1.6.4 Version 2.5 Release Notes

Version 2.5 is an intermediate release on the path from 2.1 to 3.0. All changes are to the foreign-
language interface, both to user- and system-predicates implemented in the C-language. The aim
is twofold. First of all to make garbage-collection and stack-expansion (stack-shifts) possible while
foreign code is active without the C-programmer having to worry about locking and unlocking C-
variables pointing to Prolog terms. The new approach is closely compatible to the Quintus and SIC-
Stus Prolog foreign interface using the+term argument specification (see their respective manuals).
This allows for writing foreign interfaces that are easily portable over these three Prolog platforms.

Apart from various bug fixes listed in the Changelog file, these are the main changes since 2.1.0:

• ISO compatibility
Many ISO compatibility features have been added:open/4 , arithmetic functions, syntax, etc.

• Win32
Many fixes for the Win32 (NT, ’95 and win32s) platforms. Notably many problems related to
pathnames and a problem in the garbage collector.

SWI-Prolog 5.5 Reference Manual



14 CHAPTER 1. INTRODUCTION

• Performance
Many changes to the clause indexing system: added hash-tables, lazy computation of the index
information, etc.

• Portable saved-states
The predicateqsave program/[1,2] allows for the creating of machine independent
saved-states that load very quickly.

1.6.5 Version 2.6 Release Notes

Version 2.6 provides a stable implementation of the features added in the 2.5.x releases, but at the
same time implements a number of new features that may have impact on the system stability.

• 32-bit integer and double float arithmetic
The biggest change is the support for full 32-bit signed integers and raw machine-format double
precision floats. The internal data representation as well as the arithmetic instruction set and
interface to the arithmetic functions has been changed for this.

• Embedding for Win32 applications
The Win32 version has been reorganised. The Prolog kernel is now implemented as Win32 DLL
that may be embedded in C-applications. Two front ends are provided, one for window-based
operation and one to run as a Win32 console application.

• Creating stand-alone executables
Version 2.6.0 can create stand-alone executables by attaching the saved-state to the emulator.
Seeqsave program/2 .

1.6.6 Version 2.7 Release Notes

Version 2.7 reorganises the entire data-representation of the Prolog data itself. The aim is to remove
most of the assumption on the machine’s memory layout to improve portability in general and enable
embedding on systems where the memory layout may depend on invocation or on how the executable
is linked. The latter is notably a problem on the Win32 platforms. Porting to 64-bit architectures is
feasible now.

Furthermore, 2.7 lifts the limits on arity of predicates and number of variables in a clause consid-
erably and allow for further expansion at minimal cost.

1.6.7 Version 2.8 Release Notes

With version 2.8, we declare the data-representation changes of 2.7.x stable. Version 2.8 exploits the
changes of 2.7 to support 64-bit processors like the DEC Alpha. As of version 2.8.5, the representation
of recorded terms has changed, and terms on the heap are now represented in a compiled format. SWI-
Prolog no longer limits the use ofmalloc() or uses assumptions on the addresses returned by this
function.

1.6.8 Version 2.9 Release Notes

Version 2.9 is the next step towards version 3.0, improving ISO compliance and introducing ISO com-
pliant exception handling. New arecatch/3 , throw/1 , abolish/1 , write term/[2,3] ,

SWI-Prolog 5.5 Reference Manual



1.6. RELEASE NOTES 15

write canonical/[1,2] and the C-functionsPL exception() and PL throw() . The
predicatesdisplay/[1,2] anddisplayq/[1,2] have been moved tobackcomp , so old code
referring to them will autoload them.

The interface toPL open query() has changed. Thedebugargument is replaced by a bitwise
or’ed flagsargument. The valuesFALSE andTRUEhave their familiar meaning, making old code
using these constants compatible. Non-zero values other thanTRUE(1) will be interpreted different.

1.6.9 Version 3.0 Release Notes

Complete redesign of the saved-state mechanism, providing the possibility of ‘program resources’.
Seeresource/3 , open resource/3 , andqsave program/[1,2] .

1.6.10 Version 3.1 Release Notes

Improvements on exception-handling. Allows relating software interrupts (signals) to exceptions,
handling signals in Prolog and C (seeon signal/3 andPL signal() ). Prolog stack overflows
now raise theresource error exception and thus can be handled in Prolog usingcatch/3 .

1.6.11 Version 3.3 Release Notes

Version 3.3 is a major release, changing many things internally and externally. The highlights are a
complete redesign of the high-level I/O system, which is now based on explicit streams rather then
current input/output. The old Edinburgh predicates (see/1 , tell/1 , etc.) are now defined on top
of this layer instead of the other way around. This fixes various internal problems and removes Prolog
limits on the number of streams.

Much progress has been made to improve ISO compliance: handling strings as lists of one-
character atoms is now supported (next to character codes as integers). Many more exceptions have
been added and printing of exceptions and messages is rationalised using Quintus and SICStus Pro-
log compatibleprint message/2 , message hook/3 andprint message lines/3 . All
predicates descriped in [Deransartet al., 1996] are now implemented.

As of version 3.3, SWI-Prolog adheres the ISOlogical update viewfor dynamic predicates. See
section4.13.1for details.

SWI-Prolog 3.3 includes garbage collection on atoms, removing the last serious memory leak
especially in text-manipulation applications. See section9.6.2. In addition, both the user-level and
foreign interface supports atoms holding0-bytes.

Finally, an alpha version of a multi-threaded SWI-Prolog for Linux is added. This version is still
much slower than the single-threaded version due to frequent access to ‘thread-local-data’ as well as
some too detailed mutex locks. The basic thread API is ready for serious use and testing however. See
section8.

Incompatible changes

A number of incompatible changes result from this upgrade. They are all easily fixed however.

• !/0 , call/1
The cut now behaves according to the ISO standard. This implies it works in compound goals
passed tocall/1 and is local to theconditionpart of if-then-else as well as the argument of
\+/1 .

SWI-Prolog 5.5 Reference Manual



16 CHAPTER 1. INTRODUCTION

• atom chars/2
This predicate is now ISO compliant and thus generates a list of one-character atoms. The
behaviour of the old predicate is available in the —also ISO compliant—atom codes/2
predicate. Safest repair is a replacement of allatom chars into atom codes . If you do not
want to change any souce-code, you might want to use

user:goal_expansion(atom_chars(A,B), atom_codes(A,B)).

• number chars/2
Same applies fornumber chars/2 andnumber codes/2 .

• feature/2 , set feature/2
These are replaced by the ISO compliantcurrent prolog flag/2 and
set prolog flag/2 . The library backcomp provides definitions forfeature/2
andset feature/2 , so no sourcehasto be updated.

• Accessing command-line arguments
This used to be provided by the undocumented ’$argv’/1 and Quintus compatible library
unix/1 . Now there is also documentedcurrent prolog flag (argv, Argv).

• dup stream/2
Has been deleted. New stream-aliases can deal with most of the problems for which
dup stream/2 was designed anddup/2 from theclib package can with most others.

• op/3
Operators are nowlocal to modules. This implies any modification of the operator-table does
not influence other modules. This is consistent with the proposed ISO behaviour and a necessity
to have any usable handling of operators in a multi-threaded environment.

• setprolog flag(characterescapes, Bool)
This prolog flag is now an interface to changing attributes on the current source-module, effec-
tively making this flag module-local as well. This is required for consistent handling of sources
written with ISO (obligatory) character-escape sequences together with old Edinburgh code.

• current stream/3 and streamposition
These predicates have been moved toquintus .

1.6.12 Version 3.4 Release Notes

The 3.4 release is a consolidation release. It consolidates the improvements and standard conformance
of the 3.3 releases. This version is closely compatible with the 3.3 version except for one important
change:

• Argument order inselect/3
The list-processing predicateselect/3 somehow got into a very early version of SWI-Prolog
with the wrong argument order. This has been fixed in 3.4.0. The correct order is select(?Elem,
?List, ?Rest).

As select/3 has no error conditions, runtime checking cannot be done. To simplify debug-
ging, the library modulecheckselect will print references toselect/3 in your source

SWI-Prolog 5.5 Reference Manual



1.6. RELEASE NOTES 17

code and install a version of select that enters the debugger if select is called and the second
argument is not a list.

This library can be loaded explicitely or by callingcheck old select/0 .

1.6.13 Version 4.0 Release Notes

As of version 4.0 the standard distribution of SWI-Prolog is bundled with a number of its popular
extension packages, among which the now open source XPCE GUI toolkit (see section1.5). No
significant changes have been made to the basic SWI-Prolog engine.

Some useful tricks in the integrated environment:

• Register the GUI tracer
Using a call toguitracer/0 , hooks are installed that replace the normal command-line
driven tracer with a graphical forntend.

• Register PceEmacs for editing files
From your initialisation file. you can loademacs/swi prolog that causeedit/1 to use
the built-in PceEmacs editor.

1.6.14 Version 5.0 Release Notes

Version 5.0 marks a breakpoint in the phylosophy, where SWI-Prolog moves from a dual
GPL/proprietary to a uniform LGPL (Lesser GNU Public Licence) schema, providing a widely usable
Free Source Prolog implementation.

On the technical site the development environment, consisting of source-level debugger, integrated
editor and various analysis and navigation tools progress steadily towards a mature set of tools.

Many portability issues have been improved, including a port to MacOS X (Darwin).
For details, please visit the new website athttp://www.swi-prolog.org

1.6.15 Version 5.1 Release Notes

Version 5.1 is a beta-serie introducing portable multi-threading. See chapter8. In addition it intro-
duces many new facilities to support server applications, such as the newrlimit library to limit
system resources and the possibility to set timeouts on input streams.

1.6.16 Version 5.2 Release Notes

Version 5.2 consolidates the 5.1.x beta series that introduced threading and many related modifications
to the kernel.

1.6.17 Version 5.3 Release Notes

Version 5.3.x is a development series for adding coroutining, constraints, global variables, cyclic terms
(infinite trees) and other goodies to the kernel. The package JPL, providing a bidirectional Java/Prolog
interface is added to the common sourcetree and common binary packages.

1.6.18 Version 5.4 Release Notes

Version 5.4 consolidates the 5.3.x beta series.

SWI-Prolog 5.5 Reference Manual



18 CHAPTER 1. INTRODUCTION

1.6.19 Version 5.5 Release Notes

Version 5.5.x provides support forwide characterswith UTF-8 and UNICODE I/O (section2.17.1).
On both 32 and 64-bit hardware Prolog integers are now represented as 64-bit integers, improving
portability and allow integer representations of most things we can count in the real world. This
version also incorporates clp(r) by Christian Holzbaur, brought to SWI-Prolog by Tom Schrijver and
Leslie De Koninck (sectionA.10).

1.7 Donate to the SWI-Prolog project

If you are happy with SWI-Prolog, you care it to be around for much longer while it becomes faster,
more stable and with more features you should consider to donate to the SWI-Prolog foundation.
Please visit the page below.

http://www.swi-prolog.org/donate.html

1.8 Acknowledgements

Some small parts of the Prolog code of SWI-Prolog are modified versions of the corresponding Ed-
inburgh C-Prolog code: grammar rule compilation andwritef/2 . Also some of the C-code orig-
inates from C-Prolog: finding the path of the currently running executable and the code underlying
absolute file name/2 . Ideas on programming style and techniques originate from C-Prolog
and Richard O’Keefe’sthief editor. An important source of inspiration are the programming tech-
niques introduced by Anjo Anjewierden in PCE version 1 and 2.

I also would like to thank those who had the fade of using the early versions of this system, sug-
gested extensions or reported bugs. Among them are Anjo Anjewierden, Huub Knops, Bob Wielinga,
Wouter Jansweijer, Luc Peerdeman, Eric Nombden, Frank van Harmelen, Bert Rengel.

Martin Jansche (jansche@novell1.gs.uni-heidelberg.de ) has been so kind to reor-
ganise the sources for version 2.1.3 of this manual.

Horst von Brand has been so kind to fix many typos in the 2.7.14 manual. Thanks!
Bart Demoen and Tom Schrijvers have helped me adding coroutining, constraints, global variables

and support for cyclic terms to the kernel. Tom has provided the integer interval constraint solver, the
CHR compiler and some of the coroutining predicates.

Paul Singleton has integrated Fred Dushin’s Java-calls-Prolog side with his Prolog-calls-Java side
into the current bidirectional JPL interface package.

Richard O’Keefe is gratefully acknowledged for his efforts to educate beginners as well as valu-
able comments on proposed new developments.

SWI-Prolog 5.5 Reference Manual



Overview 2
2.1 Getting started quickly

2.1.1 Starting SWI-Prolog

Starting SWI-Prolog on Unix

By default, SWI-Prolog is installed as ‘pl’, though some administrators call it ‘swipl’ or ‘swi-prolog’.
The command-line arguments of SWI-Prolog itself and its utility programs are documented using
standard Unixman pages. SWI-Prolog is normally operated as an interactive application simply by
starting the program:

machine% pl
Welcome to SWI-Prolog (Version 5.2.0)
Copyright (c) 1990-2003 University of Amsterdam.
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

1 ?-

After starting Prolog, one normally loads a program into it usingconsult/1 , which—for historical
reasons—may be abbreviated by putting the name of the program file between square brackets. The
following goal loads the filelikes.pl containing clauses for the predicateslikes/2 :

?- [likes].
% likes compiled, 0.00 sec, 596 bytes.

Yes
?-

After this point, Unix and Windows users unite, so if you are using Unix please continue at sec-
tion 2.1.2.

Starting SWI-Prolog on Windows

After SWI-Prolog has been installed on a Windows system, the following important new things are
available to the user:

SWI-Prolog 5.5 Reference Manual



20 CHAPTER 2. OVERVIEW

• A folder (calleddirectory in the remainder of this document) calledpl containing the executa-
bles, libraries, etc. of the system. No files are installed outside this directory.

• A program plwin.exe , providing a window for interaction with Prolog. The program
plcon.exe is a version of SWI-Prolog that runs in a DOS-box.

• The file-extension.pl is associated with the programplwin.exe . Opening a.pl file will
causeplwin.exe to start, change directory to the directory in which the file-to-open resides
and load this file.

The normal way to start with thelikes.pl file mentioned in section2.1.1is by simply double-
clicking this file in the Windows explorer.

2.1.2 Executing a query

After loading a program, one can ask Prolog queries about the program. The query below asks Prolog
what food ‘sam’ likes. The system responds withX = 〈value〉 if it can prove the goal for a certainX.
The user can type the semi-colon (;)1 if (s)he wants another solution, orRETURN if (s)he is satisfied,
after which Prolog will sayYes. If Prolog answersNo, it indicates it cannot find any (more) answers
to the query. Finally, Prolog can answer using an error message to indicate the query or program
contains an error.

?- likes(sam, X).

X = dahl ;

X = tandoori ;

...

X = chips ;

No
?-

2.2 The user’s initialisation file

After the necessary system initialisation the system consults (seeconsult/1 ) the user’s startup file.
The base-name of this file follows conventions of the operating system. On MS-Windows, it is the
file pl.ini and on Unix systems.plrc . The file is searched using thefile search path/2
clauses foruser profile . The table below shows the default value for this search-path.

Unix Windows
local . .
home ˜ %HOME%or %HOMEDRIVE%\%HOMEPATH%
global SWI-Home directory or%WINDIR%or %SYSTEMROOT%

1On most installations, single-character commands are executed without waiting for theRETURN key.

SWI-Prolog 5.5 Reference Manual



2.3. INITIALISATION FILES AND GOALS 21

After the first startup file is found it is loaded and Prolog stops looking for further startup files. The
name of the startup file can be changed with the ‘-f file ’ option. If File denotes an absolute path,
this file is loaded, otherwise the file is searched for using the same conventions as for the default
startup file. Finally, iffile is none , no file is loaded.

2.3 Initialisation files and goals

Using commandline arguments (see section2.4), SWI-Prolog can be forced to load files and execute
queries for initialisation purposes or non-interactive operation. The most commonly used options are
-f file or -s file to make Prolog load a file,-g goal to define an initialisation goal and
-t goal to define thetoplevel goal. The following is a typical example for starting an application
directly from the commandline.

machine% pl -s load.pl -g go -t halt

It tells SWI-Prolog to loadload.pl , start the application using theentry-pointgo/0 and —instead
of entering the interactive toplevel— exit after completinggo/0 . The-q may be used to supress all
informational messages.

In MS-Windows, the same can be achieved using a short-cut with appropriately defined comman-
dline arguments. A typically seen alternative is to write a filerun.pl with content as illustrated
below. Double-clickingrun.pl will start the application.

:- [load]. % load program
:- go. % run it
:- halt. % and exit

Section2.10.2discusses further scripting options and chapter10 discusses the generation of runtime
executables. Runtime executables are a mean to deliver executables that do not require the Prolog
system.

2.4 Command line options

The full set of command line options is given below:

-help
When given as the only option, it summarises the most important options.

-v
When given as the only option, it summarises the version and the architecture identifier.

-arch
When given as the only option, it prints the architecture identifier (see currentprolog flag(arch,
Arch)) and exits. See also-dump-runtime-variables .

-dump-runtime-variables
When given as the only option, it prints a sequence of variable settings that can be used in shell-
scripts to deal with Prolog parameters. This feature is also used byplld (see section9.7).
Below is a typical example of using this feature.

SWI-Prolog 5.5 Reference Manual



22 CHAPTER 2. OVERVIEW

eval ‘pl -dump-runtime-variables‘
cc -I$PLBASE/include -L$PLBASE/runtime/$PLARCH ...

-q
Set the prolog-flagverbose to silent , supressing informational and banner messages.

-Lsize[km]
Give local stack limit (2 Mbytes default). Note that there is no space between the size option
and its argument. By default, the argument is interpreted in Kbytes. Postfixing the argument
with mcauses the argument to be interpreted in Mbytes. The following example specifies 32
Mbytes local stack.

% pl -L32m

A maximum is useful to stop buggy programs from claiming all memory resources.-L0 sets
the limit to the highest possible value. See section2.18.

-Gsize[km]
Give global stack limit (4 Mbytes default). See-L for more details.

-Tsize[km]
Give trail stack limit (4 Mbytes default). This limit is relatively high because trail-stack over-
flows are not often caused by program bugs. See-L for more details.

-Asize[km]
Give argument stack limit (1 Mbytes default). The argument stack limits the maximum nesting
of terms that can be compiled and executed. SWI-Prolog does ‘last-argument optimisation’ to
avoid many deeply nested structure using this stack. Enlarging this limit is only necessary in
extreme cases. See-L for more details.

-c file . . .
Compile files into an ‘intermediate code file’. See section2.10.

-o output
Used in combination with-c or -b to determine output file for compilation.

-O
Optimised compilation. Seecurrent prolog flag/2 flagoptimise for details.

-nodebug
Disable debugging. See thecurrent prolog flag/2 flag generate debug info for
details.

-s file
Usefile as a script-file. The script file is loaded after the initialisation file specified with the
-f file option. Unlike-f file , using-s does not stop Prolog from loading the personal
initialisation file.

SWI-Prolog 5.5 Reference Manual



2.4. COMMAND LINE OPTIONS 23

-f file
Use file as initialisation file instead of the default.plrc (Unix) or pl.ini (Windows).
‘ -f none ’ stops SWI-Prolog from searching for a startup file. This option can be used as
an alternative to-s file that stops Prolog from loading the personal initialisation file. See
also section2.2.

-F script
Selects a startup-script from the SWI-Prolog home directory. The script-file is named
〈script〉.rc . The defaultscript name is deduced from the executable, taking the leading al-
phanumerical characters (letters, digits and underscore) from the program-name.-F none
stops looking for a script. Intended for simple management of slightly different versions.
One could for example write a scriptiso.rc and then select ISO compatibility mode using
pl -F iso or make a link fromiso-pl to pl .

-g goal
Goal is executed just before entering the top level. Default is a predicate which prints the wel-
come message. The welcome message can thus be suppressed by giving-g true . goal can
be a complex term. In this case quotes are normally needed to protect it from being expanded
by the Unix shell.

-t goal
Usegoal as interactive toplevel instead of the default goalprolog/0 . goal can be a complex
term. If the toplevel goal succeeds SWI-Prolog exits with status 0. If it fails the exit status is
1. This flag also determines the goal started bybreak/0 andabort/0 . If you want to stop
the user from entering interactive mode start the application with ‘-g goal ’ and give ‘halt’ as
toplevel.

-tty
Unix only. Switches controlling the terminal for allowing single-character commands to the
tracer andget single char/1 . By default manipulating the terminal is enabled unless the
system detects it is not connected to a terminal or it is running as a GNU-Emacs inferior process.
This flag is sometimes required for smooth interaction with other applications.

-nosignals
Inhibit any signal handling by Prolog, a property that is sometimes desirable for embedded
applications. This option sets the flagsignals to false . See section9.6.19for defails.

-x bootfile
Boot from bootfile instead of the system’s default boot file. A bootfile is a file result-
ing from a Prolog compilation using the-b or -c option or a program saved using
qsave program/[1,2] .

-p alias=path1[:path2 . . . ]
Define a path alias for filesearchpath. alias is the name of the alias,path1 ... is a list of
values for the alias. On Windows the list-seperator is; . On other systems it is: . A value
is either a term of the form alias(value) or pathname. The computed aliases are added to
file search path/2 usingasserta/1 , so they precede predefined values for the alias.
Seefile search path/2 for details on using this file-location mechanism.

SWI-Prolog 5.5 Reference Manual



24 CHAPTER 2. OVERVIEW

--
Stops scanning for more arguments, so you can pass arguments for your application after this
one. Seecurrent prolog flag/2 using the flagargv for obtaining the commandline
arguments.

The following options are for system maintenance. They are given for reference only.

-b initfile . . .-c file . . .
Boot compilation.initfile . . . are compiled by the C-written bootstrap compiler,file . . . by the
normal Prolog compiler. System maintenance only.

-d level
Set debug level tolevel. Only has effect if the system is compiled with the-DO DEBUGflag.
System maintenance only.

2.5 GNU Emacs Interface

The default Prolog mode for GNU-Emacs can be activated by adding the following rules to your
Emacs initialisation file:

(setq auto-mode-alist
(append

’(("\\.pl" . prolog-mode))
auto-mode-alist))

(setq prolog-program-name "pl")
(setq prolog-consult-string "[user].\n")
;If you want this. Indentation is either poor or I don’t use
;it as intended.
;(setq prolog-indent-width 8)

Unfortunately the default Prolog mode of GNU-Emacs is not very good.
An alternative prolog.el file for GNU-Emacs 20 is available from
http://www.freesoft.cz/ pdm/software/emacs/prolog-mode/ and for GNU-
Emacs 19 fromhttp://w1.858.telia.com/ u85810764/Prolog-mode/index.html

2.6 Online Help

Online help provides a fast lookup and browsing facility to this manual. The online manual can show
predicate definitions as well as entire sections of the manual.

The online help is displayed from the file’MANUAL’ . The file helpidx provides an index
into this file. ’MANUAL’ is created from the LATEX sources with a modified version ofdvitty ,
using overstrike for printing bold text and underlining for rendering italic text. XPCE is shipped
with swi help , presenting the information from the online help in a hypertext window. The prolog-
flag write help with overstrike controls whether or nothelp/1 writes its output using
overstrike to realise bold and underlined output or not. If this prolog-flag is not set it is initialised by
the help library totrue if the TERMvariable equalsxterm and false otherwise. If this default
does not satisfy you, add the following line to your personal startup file (see section2.2):

SWI-Prolog 5.5 Reference Manual



2.7. QUERY SUBSTITUTIONS 25

:- set_prolog_flag(write_help_with_overstrike, true).

help
Equivalent tohelp(help/1) .

help(+What)
Show specified part of the manual.Whatis one of:

〈Name〉/〈Arity〉 Give help on specified predicate
〈Name〉 Give help on named predicate with any arity or C interface

function with that name
〈Section〉 Display specified section. Section numbers are dash-

separated numbers:2-3 refers to section 2.3 of the man-
ual. Section numbers are obtained usingapropos/1 .

Examples:

?- help(assert). Give help on predicate assert
?- help(3-4). Display section 3.4 of the manual
?- help(’PL retry’). Give help on interface functionPL retry()

See also apropos/1 , and the SWI-Prolog home page at
http://www.swi-prolog.org , which provides a FAQ, an HTML version of man-
ual for online browsing and HTML and PDF versions for downloading.

apropos(+Pattern)
Display all predicates, functions and sections that havePattern in their name or summary de-
scription. Lowercase letters inPatternalso match a corresponding uppercase letter. Example:

?- apropos(file). Display predicates, functions and sections that have ‘file’
(or ‘File’, etc.) in their summary description.

explain(+ToExplain)
Give an explanation on the given ‘object’. The argument may be any Prolog data object. If the
argument is an atom, a term of the formName/Arityor a term of the formModule:Name/Arity,
explain will try to explain the predicate as well as possible references to it.

explain(+ToExplain, -Explanation)
Unify Explanationwith an explanation forToExplain. Backtracking yields further explanations.

2.7 Query Substitutions

SWI-Prolog offers a query substitution mechanism similar to that of Unix csh (csh(1)), called ‘his-
tory’. The availability of this feature is controlled byset prolog flag/2 , using thehistory
prolog-flag. By default, history is available if the prolog-flagreadline is false . To enable this
feature, remembering the last 50 commands, put the following into your startup file (see section2.2:

:- set_prolog_flag(history, 50).

SWI-Prolog 5.5 Reference Manual



26 CHAPTER 2. OVERVIEW

!!. Repeat last query
!nr. Repeat query numbered〈nr〉
!str. Repeat last query starting with〈str〉
!?str. Repeat last query holding〈str〉
ˆoldˆnew. Substitute〈old〉 into 〈new〉 in last query
!nrˆoldˆnew. Substitute in query numbered〈nr〉
!strˆoldˆnew. Substitute in query starting with〈str〉
!?strˆoldˆnew. Substitute in query holding〈str〉
h. Show history list
!h. Show this list

Table 2.1: History commands

The history system allows the user to compose new queries from those typed before and remembered
by the system. It also allows to correct queries and syntax errors. SWI-Prolog does not offer the
Unix csh capabilities to include arguments. This is omitted as it is unclear how the first, second, etc.
argument should be defined.2

The available history commands are shown in table2.1.

2.7.1 Limitations of the History System

History expansion is executed afterraw-reading. This is the first stage ofread term/2 and friends,
reading the term into a string while deleting comment and canonising blank. This makes it hard to use
it for correcting syntax errors. Command-line editing as provided using the GNU-readline library is
more suitable for this. History expansion is first of all useful for executing or combining commands
from long ago.

2.8 Reuse of toplevel bindings

Bindings resulting from the successful execution of a toplevel goal are asserted in a database. These
values may be reused in further toplevel queries as $Var. Only the latest binding is available. Example:

Note that variables may be set by executing=/2 :

6 ?- X = statistics.

X = statistics

Yes
7 ?- $X.
28.00 seconds cpu time for 183,128 inferences
4,016 atoms, 1,904 functors, 2,042 predicates, 52 modules
55,915 byte codes; 11,239 external references

2One could choose words, defining words as a sequence of alpha-numeric characters and the word separators as anything
else, but one could also choose Prolog arguments

SWI-Prolog 5.5 Reference Manual



2.9. OVERVIEW OF THE DEBUGGER 27

1 ?- maplist(plus(1), "hello", X).

X = [105,102,109,109,112]

Yes
2 ?- format(’˜s˜n’, [$X]).
ifmmp

Yes
3 ?-

Figure 2.1: Reusing toplevel bindings

Limit Allocated In use
Heap : 624,820 Bytes
Local stack : 2,048,000 8,192 404 Bytes
Global stack : 4,096,000 16,384 968 Bytes
Trail stack : 4,096,000 8,192 432 Bytes

Yes
8 ?-

2.9 Overview of the Debugger

SWI-Prolog has a 6-port tracer, extending the standard 4-port tracer [Clocksin & Melish, 1987] with
two additional ports. The optionalunify port allows the user to inspect the result after unification of
the head. Theexceptionport shows exceptions raised bythrow/1 or one of the built-in predicates.
See section4.9.

The standard ports are calledcall , exit , redo , fail andunify . The tracer is started by the
trace/0 command, when a spy point is reached and the system is in debugging mode (seespy/1
anddebug/0 ) or when an exception is raised.

The interactive toplevel goaltrace/0 means “trace the next query”. The tracer shows
the port, displaying the port name, the current depth of the recursion and the goal. The goal
is printed using the Prolog predicatewrite term/2 . The style is defined by the prolog-flag
debugger print options and can be modified using this flag or using thew, p and d com-
mands of the tracer.

On leashed ports(set with the predicateleash/1 , default arecall , exit , redo andfail )
the user is prompted for an action. All actions are single character commands which are executed
without waiting for a return, unless the command line option-tty is active. Tracer options:

+ (Spy)
Set a spy point (seespy/1 ) on the current predicate.

- (No spy)
Remove the spy point (seenospy/1 ) from the current predicate.

SWI-Prolog 5.5 Reference Manual



28 CHAPTER 2. OVERVIEW

1 ?- visible(+all), leash(-exit).

Yes
2 ?- trace, min([3, 2], X).

Call: ( 3) min([3, 2], G235) ? creep
Unify: ( 3) min([3, 2], G235)
Call: ( 4) min([2], G244) ? creep
Unify: ( 4) min([2], 2)
Exit: ( 4) min([2], 2)
Call: ( 4) min(3, 2, G235) ? creep
Unify: ( 4) min(3, 2, G235)
Call: ( 5) 3 < 2 ? creep
Fail: ( 5) 3 < 2 ? creep
Redo: ( 4) min(3, 2, G235) ? creep
Exit: ( 4) min(3, 2, 2)
Exit: ( 3) min([3, 2], 2)

Yes
[trace] 3 ?-

Figure 2.2: Example trace

/ (Find)
Search for a port. After the ‘/’, the user can enter a line to specify the port to search for. This
line consists of a set of letters indicating the port type, followed by an optional term, that should
unify with the goal run by the port. If no term is specified it is taken as a variable, searching for
any port of the specified type. If an atom is given, any goal whose functor has a name equal to
that atom matches. Examples:

/f Search for any fail port
/fe solve Search for a fail or exit port of any goal with name

solve
/c solve(a, ) Search for a call to solve/2 whose first argument

is a variable or the atoma
/a member( , ) Search for any port onmember/2 . This is equiv-

alent to setting a spy point onmember/2 .

. (Repeat find)
Repeat the last find command (see ‘/’).

A (Alternatives)
Show all goals that have alternatives.

C (Context)
Toggle ‘Show Context’. Ifon the context module of the goal is displayed between square
brackets (see section5). Default isoff .

SWI-Prolog 5.5 Reference Manual



2.9. OVERVIEW OF THE DEBUGGER 29

L (Listing)
List the current predicate withlisting/1 .

a (Abort)
Abort Prolog execution (seeabort/0 ).

b (Break)
Enter a Prolog break environment (seebreak/0 ).

c (Creep)
Continue execution, stop at next port. (Also return, space).

d (Display)
Set themax depth (Depth) option of debugger print options , limiting the depth to
which terms are printed. See also thewandp options.

e (Exit)
Terminate Prolog (seehalt/0 ).

f (Fail)
Force failure of the current goal.

g (Goals)
Show the list of parent goals (the execution stack). Note that due to tail recursion optimization
a number of parent goals might not exist any more.

h (Help)
Show available options (also ‘?’).

i (Ignore)
Ignore the current goal, pretending it succeeded.

l (Leap)
Continue execution, stop at next spy point.

n (No debug)
Continue execution in ‘no debug’ mode.

p (Print)
Set the prolog-flag debugger print options to [quoted(true),
portray(true), max depth(10)] . This is the default.

r (Retry)
Undo all actions (except for database and i/o actions) back to the call port of the current goal
and resume execution at the call port.

s (Skip)
Continue execution, stop at the next port ofthis goal (thus skipping all calls to children of this
goal).

u (Up)
Continue execution, stop at the next port ofthe parent goal (thus skipping this goal and all
calls to children of this goal). This option is useful to stop tracing a failure driven loop.

SWI-Prolog 5.5 Reference Manual



30 CHAPTER 2. OVERVIEW

w (Write)
Set the prolog-flagdebugger print options to [quoted(true)] , bypassing
portray/1 , etc.

The ideal 4 port model as described in many Prolog books [Clocksin & Melish, 1987] is not vis-
ible in many Prolog implementations because code optimisation removes part of the choice- and
exit-points. Backtrack points are not shown if either the goal succeeded deterministically or its alter-
natives were removed using the cut. When running in debug mode (debug/0 ) choice points are only
destroyed when removed by the cut. In debug mode, tail recursion optimisation is switched off.3

Reference information to all predicates available for manipulating the debugger is in section4.39.

2.10 Compilation

2.10.1 During program development

During program development, programs are normally loaded usingconsult/1 , or the list abbre-
viation. It is common practice to organise a project as a collection of source-files and aload-file, a
Prolog file containing onlyuse module/[1,2] or ensure loaded/1 directives, possibly with
a definition of theentry-pointof the program, the predicate that is normally used to start the program.
This file is often calledload.pl . If the entry-point is calledgo, a typical session starts as:

% pl
<banner>

1 ?- [load].
<compilation messages>

Yes
2 ?- go.
<program interaction>

When using Windows, the user may openload.pl from the Windows explorer, which will cause
plwin.exe to be started in the directory holdingload.pl . Prolog loadsload.pl before entering
the toplevel.

2.10.2 For running the result

There are various options if you want to make your program ready for real usage. The best choice
depends on whether the program is to be used only on machines holding the SWI-Prolog development
system, the size of the program and the operating system (Unix vs. Windows).

Using PrologScript

New in version 4.0.5 is the possibility to use a Prolog source file directly as a Unix script-file. the
same mechanism is useful to specify additional parameters for running a Prolog file on Windows.

3This implies the system can run out of local stack in debug mode, while no problems arise when running in non-debug
mode.

SWI-Prolog 5.5 Reference Manual



2.10. COMPILATION 31

If the first letter of a Prolog file is#, the first line is treated as comment.4 To create a Prolog script,
make the first line start like this:

#!/path/to/pl 〈options〉 -s

Prolog recognises this starting sequence and causes the interpreter to receive the following
argument-list:

/path/to/pl 〈options〉 -s 〈script〉 -- 〈ScriptArguments〉

Instead of-s , the user may use-f to stop Prolog from looking for a personal initialisation file.
Here is a simple script doing expression evaluation:

#!/usr/bin/pl -q -t main -f

eval :-
current_prolog_flag(argv, Argv),
append(_, [--|Args], Argv),
concat_atom(Args, ’ ’, SingleArg),
term_to_atom(Term, SingleArg),
Val is Term,
format(’˜w˜n’, [Val]).

main :-
catch(eval, E, (print_message(error, E), fail)),
halt.

main :-
halt(1).

And here are two example runs:

% eval 1+2
3
% eval foo
ERROR: Arithmetic: ‘foo/0’ is not a function
%

The Windows version supports the#! construct too, but here it serves a rather different role. The
Windows shell already allows the user to start Prolog source-files directly through the Windows file-
type association. Windows however makes it rather complicated to provide additional parameters,
such as the required stack-size for an individual Prolog file. The#! line provides for this, providing a
more flexible approach then changing the global defaults. The following starts Prolog with unlimited
stack-size on the given source-file:

4The#-sign can be the legal start of a normal Prolog clause. In the unlikely case this is required, leave the first line blank
or add a header-comment.

SWI-Prolog 5.5 Reference Manual



32 CHAPTER 2. OVERVIEW

#!/usr/bin/pl -L0 -T0 -G0 -s

....

Note the use of/usr/bin/pl , which specifies the interpreter. This argument is ignored in the
Windows version, but required to ensure best cross-platform compatibility.

Creating a shell-script

With the introduction ofPrologScript(see section2.10.2), using shell-scripts as explained in this
section has become redundant for most applications.

Especially on Unix systems and not-too-large applications, writing a shell-script that simply loads
your application and calls the entry-point is often a good choice. A skeleton for the script is given
below, followed by the Prolog code to obtain the program arguments.

#!/bin/sh

base=<absolute-path-to-source>
PL=pl

exec $PL -f none -g "load_files([’$base/load’],[silent(true)])" \
-t go -- $*

go :-
current_prolog_flag(argv, Arguments),
append(_SytemArgs, [--|Args], Arguments), !,
go(Args).

go(Args) :-
...

On Windows systems, similar behaviour can be achieved by creating a shortcut to Prolog, passing the
proper options or writing a.bat file.

Creating a saved-state

For larger programs, as well as for programs that are required to run on systems that do not have the
SWI-Prolog development system installed, creating a saved state is the best solution. A saved state is
created usingqsave program/[1,2] or using the linker plld(1). A saved state is a file containing
machine-independent intermediate code in a format dedicated for fast loading. Optionally, the emu-
lator may be integrated in the saved state, creating a single-file, but machine-dependent, executable.
This process is described in chapter10.

Compilation using the -c commandline option

This mechanism loads a series of Prolog source files and then creates a saved-state as
qsave program/2 does. The command syntax is:

SWI-Prolog 5.5 Reference Manual



2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 33

% pl [option ...] [-o output] -c file ...

Theoptionsargument are options toqsave program/2 written in the format below. The option-
names and their values are described withqsave program/2 .

-- option-name=option-value

For example, to create a stand-alone executable that starts by executingmain/0 and for which
the source is loaded throughload.pl , use the command

% pl --goal=main --stand_alone=true -o myprog -c load.pl

This performs exactly the same as executing

% pl
<banner>
?- [load].
?- qsave_program(myprog,

[ goal(main),
stand_alone(true)

]).
?- halt.

2.11 Environment Control (Prolog flags)

The predicatescurrent prolog flag/2 andset prolog flag/2 allow the user to examine
and modify the execution environment. It provides access to whether optional features are available
on this version, operating system, foreign-code environment, command-line arguments, version, as
well as runtime flags to control the runtime behaviour of certain predicates to achieve compatibility
with other Prolog environments.

current prolog flag(?Key, -Value)
The predicatecurrent prolog flag/2 defines an interface to installation features: op-
tions compiled in, version, home, etc. With both arguments unbound, it will generate all defined
prolog-flags. With the ‘Key’ instantiated it unify the value of the prolog-flag. Features come in
three types: boolean prolog-flags, prolog-flags with an atom value and prolog-flags with an in-
teger value. Some prolog flags are not defined in all versions, which is normally indicated in the
documentation below as“if present and true”. A boolean prolog-flag is true iff the prolog-flag
is presentand theValueis the atomtrue . Tests for such flags should be written as below.

( current_prolog_flag(windows, true)
-> <Do MS-Windows things>
; <Do normal things>
)

abort with exception(bool, changeable)
Determines howabort/0 is realised. See the description ofabort/0 for details.

SWI-Prolog 5.5 Reference Manual



34 CHAPTER 2. OVERVIEW

agc margin (integer, changeable)
If this amount of atoms has been created since the last atom-garbage collection, perform
atom garbage collection at the first opportunity. Initial value is 10,000. May be changed.
A value of 0 (zero) disables atom garbage collection. See alsoPL register atom() .

allow variable name as functor (bool, changeable)
If true (default is false),Functor(arg) is read as if it was written’Functor’(arg) .
Some applications use the Prologread/1 predicate for reading an application defined
script language. In these cases, it is often difficult to explain to non-Prolog users of the
application that constants and functions can only start with a lowercase letter. Variables
can be turned into atoms starting with an uppercase atom by callingread term/2 using
the optionvariable names and binding the variables to their name. Using this feature,
F(x) can be turned into valid syntax for such script languages. Suggested by Robert van
Engelen. SWI-Prolog specific.

argv (list)
List is a list of atoms representing the command-line arguments used to invoke SWI-
Prolog. Please note thatall arguments are included in the list returned.

arch (atom)
Identifier for the hardware and operating system SWI-Prolog is running on. Used to select
foreign files for the right architecture. See also section9.4andfile search path/2 .

associate(atom, changeable)
On Windows systems, this is set to the filename-extension (e.g.pl or pro associated with
plwin.exe .

autoload (bool, changeable)
If true (default) autoloading of library functions is enabled. See section2.13.

backquoted string (bool, changeable)
If true (defaultfalse ), read translates text between backquotes into a string object (see
section4.23). This flag is mainly for compatibility to LPA Prolog.

bounded(true)
ISO prolog-flag describing integer representation is bound bymin integer and
max integer .

c cc (atom)
Name of the C-compiler used to compile SWI-Prolog. Normally either gcc or cc. See
section9.7.

c ldflags (atom)
Special linker flags passed to link SWI-Prolog. See section9.7.

c libs (atom)
Libraries passed to the C-linker when SWI-Prolog was linked. May be used to determine
the libraries needed to create statically linked extensions for SWI-Prolog. See section9.7.

char conversion(bool, changeable)
Determines whether character-conversion takes place while reading terms. See also
char conversion/2 .

character escapes(bool, changeable)
If true (default), read/1 interprets\ escape sequences in quoted atoms and strings.
May be changed. This flag is local to the module in which it is changed.

SWI-Prolog 5.5 Reference Manual



2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 35

compiled at (atom)
Describes when the system has been compiled. Only available if the C-compiler used to
compile SWI-Prolog provides theDATE and TIME macros.

consolemenu (bool)
Set to true in plwin.exe to indicate the console supports menus. See also sec-
tion 4.35.2.

dde (bool)
Set totrue if this instance of Prolog supports DDE as described in section4.43.

debug(bool, changeable)
Switch debugging mode on/off. If debug mode is activated the system traps encountered
spy-points (seespy/1 ) and trace-points (seetrace/1 ). In addition, tail-recursion op-
timisation is disabled and the system is more conservative in destroying choice-points to
simplify debugging.

Disabling these optimisations can cause the system to run out of memory on programs
that behave correctly if debug mode is off.

debug on error (bool, changeable)
If true , start the tracer after an error is detected. Otherwise just continue execution. The
goal that raised the error will normally fail. See alsofileerrors/2 and the prolog-flag
report error . May be changed. Default istrue , except for the runtime version.

debuggerprint options (term, changeable)
This argument is given as option-list towrite term/2 for printing goals by the
debugger. Modified by the ‘w’, ‘p’ and ‘〈N〉 d’ commands of the debugger. Default is
[quoted(true), portray(true), max depth(10), attributes(portray)] .

debuggershow context (bool, changeable)
If true , show the context module while printing a stack-frame in the tracer. Normally
controlled using the ‘C’ option of the tracer.

double quotes(codes,chars,atom,string, changeable)
This flag determines how double-quotes strings are read by Prolog and is —like charac-
ter escapes— maintained for each module. Ifcodes (default), a list of character-codes
is returned, ifchars a list of one-character atoms, ifatom double quotes are the same
as single-quotes and finally,string reads the text into a Prolog string (see section4.23).
See alsoatom chars/2 andatom codes/2 .

dynamic stacks(bool)
If true , the system uses some form of ‘sparse-memory management’ to realise the stacks.
If false, malloc()/realloc() are used for the stacks. In earlier days this had consequenses
for foreign code. As of version 2.5, this is no longer the case.

Systems using ‘sparse-memory management’ are a bit faster as there is no stack-shifter,
and checking the stack-boundary is often realised by the hardware using a ‘guard-page’.
Also, memory is actually returned to the system after a garbage collection or call to
trim stacks/0 (called byprolog/0 after finishing a user-query).

editor (atom, changeable)
Determines the editor used byedit/1 . See section4.4for details on selecting the editor
used.

SWI-Prolog 5.5 Reference Manual



36 CHAPTER 2. OVERVIEW

emacsinferior process(bool)
If true, SWI-Prolog is running as aninferior processof (GNU/X-)Emacs. SWI-Prolog
assumes this is the case if the environment variableEMACSis t andINFERIOR is yes .

encoding(atom, changeable)
Default encoding used for opening files intext mode. The initial value is deduced from
the environment. See section2.17.1for details.

executable(atom)
Path-name of the running executable. Used byqsave program/2 as default emulator.

file name variables (bool, changeable)
If true (default false ), expand$varname and˜ in arguments of builtin-predicates
that accept a file name (open/3 , exists file/1 , access file/2 , etc.). The pred-
icateexpand file name/2 should be used to expand environment variables and wild-
card patterns. This prolog-flag is intended for backward compatibility with older versions
of SWI-Prolog.

float format (atom, changeable)
C-library printf() format specification used bywrite/1 and friends to determine how
floating point numbers are printed. The default is%g. The specified value is passed to
printf() without further checking. For example, if you want more digits printed,%.12g
will print all floats using 12 digits instead of the default 6.

When using quoted-write, the output is guaranteed to contain a decimal dot or ex-
ponent, soread/1 reads a floating point number. See alsoformat/[1,2] ,
write term/[2,3] .

gc (bool, changeable)
If true (default), the garbage collector is active. If false, neither garbage-collection, nor
stack-shifts will take place, even not on explicit request. May be changed.

generatedebug info (bool, changeable)
If true (default) generate code that can be debugged usingtrace/0 , spy/1 , etc. Can
be set tofalse using the-nodebug . The predicateload files/2 restores the value
of this flag after loading a file, causing modifications to be local to a source-file. Many of
the libraries have:- set_prolog_flag(generate_debug_info, false) to
hide their details from a normal trace.5

gnu libpthread version (atom)
Linux systems only. Reports the version of the Linux thread library used. See section8.2.1
for how it may affect you.

gui (bool)
Set totrue if XPCE is around and can be used for graphics.

history (integer, changeable)
If integer> 0, support Unixcsh(1) like history as described in section2.7. Otherwise,
only support reusing commands through the commandline editor. The default is to set this
prolog-flag to 0 if a commandline editor is provided (see prolog-flagreadline ) and 15
otherwise.

5In the current implementation this only causes a flag to be set on the predicate that causes children to be hidden from
the debugger. The name anticipates on anticipated changes to the compiler.

SWI-Prolog 5.5 Reference Manual



2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 37

home(atom)
SWI-Prolog’s notion of the home-directory. SWI-Prolog uses its home directory to find its
startup file as〈home〉/boot32.prc (32-bit machines) or〈home〉/boot64.prc (64-
bit machines) and to find its library as〈home〉/library .

hwnd (integer)
In plwin.exe , this refers to the MS-Windows window-handle of the console window.

integer rounding function (down,towardzero)
ISO prolog-flag describing rounding by// andrem arithmetic functions. Value depends
on the C-compiler used.

iso (bool, changeable)
Include some weird ISO compatibility that is incompatible to normal SWI-Prolog be-
haviour. Currently it has the following effect:

• is/2 and evaluation underflag/3 do not automatically convert floats to integers
if the float represents an integer.

• The //2 (float division)alwaysreturn a float, even if applied to integers that can be
divided.

• In the standard order of terms (see section4.6.1), all floats are before all integers.

• atom length/2 yields an instantiation error if the first argument is a number.

• clause/[2,3] raises a permission error when accessing static predicates.

• abolish/[1,2] raises a permission error when accessing static predicates.

large files (bool)
If present andtrue , SWI-Prolog has been compiled withlarge file support(LFS) and is
capable to access files larger than 2GB on 32-bit hardware. Large file-support is default
on installations built usingconfigure that support it and may be switched off using the
configure option--disable-largefile .6

max arity (unbounded)
ISO prolog-flag describing there is no maximum arity to compound terms.

max integer (integer)
Maximum integer value. Most arithmetic operations will automatically convert to floats if
integer values above this are returned.

max tagged integer (integer)
Maximum integer value represented as a ‘tagged’ value. Tagged integers require 4-bytes
storage and are used for indexing. Larger integers are represented as ‘indirect data’ and
require 16-bytes on the stacks (though a copy requires only 4 additional bytes).

min integer (integer)
Minimum integer value.

min tagged integer (integer)
Start of the tagged-integer value range.

open shared object (bool)
If true, open shared object/2 and friends are implemented, providing access to
shared libraries (.so files) or dynamic link libraries (.DLL files).

6BUG: As SWI-Prolog integers are 32-bits, SWI-Prolog cannot represent offsets in large files. Therefore, calls involving
file sizes or offsets do not work properly.

SWI-Prolog 5.5 Reference Manual



38 CHAPTER 2. OVERVIEW

optimise (bool, changeable)
If true , compile in optimised mode. The initial value istrue if Prolog was started with
the-O commandline option.

Currently optimise compilation implies compilation of arithmetic, and deletion of redun-
danttrue/0 that may result fromexpand goal/2 .

Later versions might imply various other optimisations such as integrating small predi-
cates into their callers, eliminating constant expressions and other predictable constructs.
Source code optimisation is never applied to predicates that are declared dynamic (see
dynamic/1 ).

pid (int)
Process identifier of the running Prolog process. Existence of this flag is implementation
dependent.

pipe (bool, changeable)
If true, open(pipe(command), mode, Stream) , etc. are supported. Can be
changed to disable the use of pipes in applications testing this feature. Not recommended.

readline (bool)
If true, SWI-Prolog is linked with the readline library. This is done by default if you have
this library installed on your system. It is also true for the Win32 plwin.exe version of
SWI-Prolog, which realises a subset of the readline functionality.

resourcedatabase(atom)
Set to the absolute-filename of the attached state. Typically this is the fileboot32.prc ,
the file specified with-x or the running executable. See alsoresource/3 .

report error (bool, changeable)
If true , print error messages, otherwise suppress them. May be changed. See also the
debug on error prolog-flag. Default istrue , except for the runtime version.

runtime (bool)
If present andtrue , SWI-Prolog is compiled with -DORUNTIME, disabling various
useful development features (currently the tracer and profiler).

savedprogram (bool)
If present andtrue , Prolog is started from a state saved withqsave program/[1,2] .

shared object extension(atom)
Extension used by the operating system for shared objects..so for most Unix systems
and .dll for Windows. Used for locating files using thefile type executable .
See alsoabsolute file name/3 .

signals(bool)
Determine whether Prolog is handling signals (software interrupts). This flag is
false if the hosting OS does not support signal handling or the command-line option
-nosignals is active. See section9.6.19for details.

systemthread id (int)
On MT systems (section8, refers to the thread-identifier used by the system for the calling
thread. See alsothread self/1 .

tail recursion optimisation (bool, changeable)
Determines whether or not tail-recursion optimisation is enabled. Normally the value of

SWI-Prolog 5.5 Reference Manual



2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 39

this flag is equal to thedebug flag. As programs may run out of stack if tail-recursion
optimisation is omitted, it is sometimes necessary to enable it during debugging.

toplevel print anon (bool, changeable)
If true , toplevel variables starting with an underscore () are printed normally. Iffalse
they are hidden. This may be used to hide bindings in complex queries from the toplevel.

toplevel print options (term, changeable)
This argument is given as option-list towrite term/2 for printing results of queries.
Default is[quoted(true), portray(true), max depth(10), attributes(portray)] .

toplevel var size(int, changeable)
Maximum size counted in literals of a term returned as a binding for a variable in a toplevel
query that is saved for re-use using the$ variable reference. See section2.8.

trace gc (bool, changeable)
If true (false is the default), garbage collections and stack-shifts will be reported on the
terminal. May be changed.

tty control (bool)
Determines whether the terminal is switched to raw mode forget single char/1 ,
which also reads the user-actions for the trace. May be set. See also the+/-tty
command-line option.

unix (bool)
If present andtrue , the operating system is some version of Unix. Defined if the C-
compiler used to compile this version of SWI-Prolog either defines__unix__ or unix .
On other systems this flag is not available.

unknown (fail,warning,error, changeable)
Determines the behaviour if an undefined procedure is encountered. Iffail , the pred-
icates fails silently. Ifwarn , a warning is printed, and execution continues as if the
predicate was not defined and iferror (default), anexistence error exception is
raised. This flag is local to each module.

verbose(Atom, changeable)
This flags is used byprint message/2 . If its value issilent , messages of type
informational andbanner are supressed. The-q switches the value from the initial
normal to silent .

verboseautoload (bool, changeable)
If true the normal consult message will be printed if a library is autoloaded. By default
this message is suppressed. Intended to be used for debugging purposes.

verbosefile search(bool, changeable)
If true (default false ), print messages indicating the progress of
absolute file name/[2,3] in locating files. Intended for debugging com-
plicated file-search paths. See alsofile search path/2 .

version (integer)
The version identifier is an integer with value:

10000×Major + 100×Minor + Patch

Note that in releases up to 2.7.10 this prolog-flag yielded an atom holding the three
numbers separated by dots. The current representation is much easier for implementing
version-conditional statements.

SWI-Prolog 5.5 Reference Manual



40 CHAPTER 2. OVERVIEW

windows (bool)
If present andtrue , the operating system is an implementation of Microsoft Windows
(3.1, 95/98/ME, NT/2000/XP, etc.). This flag is only available on MS-Windows based
versions.

write attributes (atom, changeable)
Defines howwrite/1 an friends write attributed variables. The option values are de-
scribed with theattributes option ofwrite term/3 . Default isignore .

write help with overstrike (bool)
Internal flag used byhelp/1 when writing to a terminal. If present andtrue it prints
bold and underlined text usingoverstrike.

xpce(bool)
Available and set totrue if the XPCE graphics system is loaded.

xpce version (atom)
Available and set to the version of the loaded XPCE system.

set prolog flag(+Key, +Value)
Define a new prolog-flag or change its value.Key is an atom. If the flag is a system-
defined flag that is not markedchangeableabove, an attempt to modify the flag yields
a permission error . If the providedValue does not match the type of the flag, a
type error is raised.

In addition to ISO, SWI-Prolog allows for user-defined prolog flags. The type of the flag is
determined from the initial value and cannot be changed afterwards.

2.12 An overview of hook predicates

SWI-Prolog provides a large number of hooks, mainly to control handling messages, debugging,
startup, shut-down, macro-expansion, etc. Below is a summary of all defined hooks with an indication
of their portability.

• portray/1
Hook intowrite term/3 to alter the way terms are printed (ISO).

• message hook/3
Hook into print message/2 to alter the way system messages are printed (Quin-
tus/SICStus).

• library directory/1
Hook intoabsolute file name/3 to define new library directories. (most Prolog system).

• file search path/2
Hook intoabsolute file name/3 to define new search-paths (Quintus/SICStus).

• term expansion/2
Hook into load files/1 to modify read terms before they are compiled (macro-processing)
(most Prolog system).

• goal expansion/2
Same asterm expansion/2 for individual goals (SICStus).

SWI-Prolog 5.5 Reference Manual



2.13. AUTOMATIC LOADING OF LIBRARIES 41

• prolog load file/2
Hook into load files/2 to load other data-formats for Prolog sources from ‘non-file’ re-
sources. Theload files/2 predicate is the ancestor ofconsult/1 , use module/1 ,
etc.

• prolog edit:locate/3
Hook intoedit/1 to locate objects (SWI).

• prolog edit:edit source/1
Hook intoedit/1 to call some internal editor (SWI).

• prolog edit:edit command/2
Hook intoedit/1 to define the external editor to use (SWI).

• prolog list goal/1
Hook into the tracer to list the code associated to a particular goal (SWI).

• prolog trace interception/4
Hook into the tracer to handle trace-events (SWI).

• prolog:debug control hook/1
Hook in spy/1 , nospy/1 , nospyall/0 and debugging/0 to extend these control-
predicates to higher-level libraries.

• prolog:help hook/1
Hook inhelp/0 , help/1 andapropos/1 to extend the help-system.

• resource/3
Defines a new resource (not really a hook, but similar) (SWI).

• exception/3
Old attempt to a generic hook mechanism. Handles undefined predicates (SWI).

• attr unify hook/2
Unification hook for attributed variables. Can be defined in any module. See section6.1 for
details.

2.13 Automatic loading of libraries

If —at runtime— an undefined predicate is trapped the system will first try to import the predicate
from the module’s default module. If this fails theauto loaderis activated. On first activation an
index to all library files in all library directories is loaded in core (seelibrary directory/1
and file search path/2 ). If the undefined predicate can be located in the one of the li-
braries that library file is automatically loaded and the call to the (previously undefined) predicate
is restarted. By default this mechanism loads the file silently. Thecurrent prolog flag/2
verbose autoload is provided to get verbose loading. The prolog-flagautoload can be used
to enable/disable the entire auto load system.

The auto-loader only works if the unknown flag (seeunknown/2 ) is set totrace (default). A
more appropriate interaction with this flag should be considered.

SWI-Prolog 5.5 Reference Manual



42 CHAPTER 2. OVERVIEW

Autoloading only handles (library) source files that use the module mechanism described in chap-
ter 5. The files are loaded withuse module/2 and only the trapped undefined predicate will be
imported to the module where the undefined predicate was called. Each library directory must hold a
file INDEX.pl that contains an index to all library files in the directory. This file consists of lines of
the following format:

index(Name, Arity, Module, File).

The predicatemake/0 updates the autoload index. It searches for all library directories
(seelibrary directory/1 and file search path/2 ) holding the fileMKINDEX.pl or
INDEX.pl . If the current user can write or create the fileINDEX.pl and it does not exist or
is older than the directory or one of its files, the index for this directory is updated. If the file
MKINDEX.pl exists updating is achieved by loading this file, normally containing a directive calling
make library index/2 . Otherwisemake library index/1 is called, creating an index for
all *.pl files containing a module.

Below is an example creating a completely indexed library directory.

% mkdir ˜/lib/prolog
% cd !$
% pl -g true -t ’make_library_index(.)’

If there are more than one library files containing the desired predicate the following search schema
is followed:

1. If there is a library file that defines the module in which the undefined predicate is trapped, this
file is used.

2. Otherwise library files are considered in the order they appear in thelibrary directory/1
predicate and within the directory alphabetically.

make library index(+Directory)
Create an index for this directory. The index is written to the file ’INDEX.pl’ in the specified
directory. Fails with a warning if the directory does not exist or is write protected.

make library index(+Directory, +ListOfPatterns)
Normally used inMKINDEX.pl , this predicate createsINDEX.pl for Directory, indexing all
files that match one of the file-patterns inListOfPatterns.

Sometimes library packages consist of one public load file and a number of files used by this
load-file, exporting predicates that should not be used directly by the end-user. Such a library
can be placed in a sub-directory of the library and the files containing public functionality can
be added to the index of the library. As an example we give the XPCE library’sMKINDEX.pl ,
including the public functionality oftrace/browse.pl to the autoloadable predicates for
the XPCE package.

:- make_library_index(’.’,
[ ’*.pl’,

’trace/browse.pl’
]).

SWI-Prolog 5.5 Reference Manual



2.14. GARBAGE COLLECTION 43

reload library index
Force reloading the index after modifying the set of library directories by changing the rules for
library directory/2 , file search path/2 , adding or deletingINDEX.pl files.
This predicate doesnot update theINDEX.pl files. Checkmake library index/[1,2]
andmake/0 for updating the index files.

Normally, the index is reloaded automatically if a predicate cannot be found in the index and
the set of library directories has changed. Usingreload library index/0 is necessary if
directories are removed or the order of the library directories is changed.

2.14 Garbage Collection

SWI-Prolog provides garbage-collection, last-call optimization and atom garbage collection. These
features are controlled using prolog flags (seecurrent prolog flag/2 ).

2.15 Syntax Notes

SWI-Prolog uses standard ‘Edinburgh’ syntax. A description of this syntax can be found in the Prolog
books referenced in the introduction. Below are some non-standard or non-common constructs that
are accepted by SWI-Prolog:

• 0’ 〈char〉
This construct is not accepted by all Prolog systems that claim to have Edinburgh compatible
syntax. It describes the character code of〈char〉. To test whetherC is a lower case character
one can usebetween(0’a, 0’z, C) .

• /* .../* ...*/ ...*/
The/* ...*/ comment statement can be nested. This is useful if some code with/* ...*/
comment statements in it should be commented out.

2.15.1 ISO Syntax Support

SWI-Prolog offers ISO compatible extensions to the Edinburgh syntax.

Processor Character Set

The processor character set specifies the class of each character used for parsing Prolog source text.
Character classification is fixed to use UCS/UNICODE as provided by the C-librarywchar t based
primitives. See also section2.17.

Character Escape Syntax

Within quoted atoms (using single quotes:’ 〈atom〉’ special characters are represented using escape-
sequences. An escape sequence is lead in by the backslash (\ ) character. The list of escape sequences
is compatible with the ISO standard, but contains one extension and the interpretation of numerically
specified characters is slightly more flexible to improve compatibility.

\ a
Alert character. Normally the ASCII character 7 (beep).

SWI-Prolog 5.5 Reference Manual



44 CHAPTER 2. OVERVIEW

\ b
Backspace character.

\ c
No output. All input characters up to but not including the first non-layout character are skipped.
This allows for the specification of pretty-looking long lines. For compatibility with Quintus
Prolog. Not supported by ISO. Example:

format(’This is a long line that would look better if it was \c
split across multiple physical lines in the input’)

\ 〈RETURN〉
No output. Skips input till the next non-layout character or to the end of the next line. Same
intention as\c but ISO compatible.

\ f
Form-feed character.

\ n
Next-line character.

\ r
Carriage-return only (i.e. go back to the start of the line).

\ t
Horizontal tab-character.

\ v
Vertical tab-character (ASCII 11).

\ x23
Hexadecimal specification of a character.23 is just an example. The ‘x’ may be followed by
a maximum of 2 hexadecimal digits. The closing\ is optional. The code\xa\3 emits the
character 10 (hexadecimal ‘a’) followed by ‘3’. The code\x201 emits 32 (hexadecimal ‘20’)
followed by ‘1’. According to ISO, the closing\ is obligatory and the number of digits is un-
limited. The SWI-Prolog definition allows for ISO compatible specification, but is compatible
with other implementations.

\ 40
Octal character specification. The rules and remarks for hexadecimal specifications apply to
octal specifications too, but the maximum allowed number of octal digits is 3.

\ 〈character〉
Any character immediately preceded by a\ and not covered by the above escape sequences is
copied verbatim. Thus,’\\’ is an atom consisting of a single\ and ’\’’ and ’’’’ both
describe the atom with a single’ .

Character escaping is only available if thecurrent prolog flag(character escapes, true)
is active (default). Seecurrent prolog flag/2 . Character escapes conflict withwritef/2 in
two ways: \40 is interpreted as decimal 40 bywritef/2 , but character escapes handling by read

SWI-Prolog 5.5 Reference Manual



2.16. INFINITE TREES (CYCLIC TERMS) 45

has already interpreted as 32 (40 octal). Also,\l is translated to a single ‘l’. It is advised to use the
more widely supportedformat/[2,3] predicate instead. If you insist upon usingwritef/2 ,
either switchcharacter escapes to false , or use double\\ , as inwritef(’\\l’) .

Syntax for non-decimal numbers

SWI-Prolog implements both Edinburgh and ISO representations for non-decimal numbers. Accord-
ing to Edinburgh syntax, such numbers are written as〈radix〉’ 〈number〉, where〈radix〉 is a number
between 2 and 36. ISO defines binary, octal and hexadecimal numbers using0[bxo] 〈number〉. For
example:A is 0b100 \/ 0xf00 is a valid expression. Such numbers are always unsigned.

2.16 Infinite trees (cyclic terms)

SWI-Prolog has limited support for infinite trees, also known as cyclic terms. Full support re-
quires special code in all builtin predicates that require recursive exploration of a term. The
current version supports cycles terms in the pure Prolog kernel including the garbage collec-
tor and in the following predicates:=/2 , ==/2 , \==/2 , \=/2 , =@=/2, \=@=/2 , @</2,
@=</2, @>/2, @>=/2, compare/3 , =../2 , copy term/2 , duplicate term/2 , write/1 ,
dif/2 , when/2 , term variables/2 , numbervars/[3,4] , hash term/2 , recorda/3 ,
recordz/3 , findall/3 , bagof/3 , setof/3 , throw/1 .

2.17 Wide character support

SWI-Prolog supportswide characters, characters with character codes above 255 that cannot be repre-
sented in a singlebyte. Universal Character Set(UCS) is the ISO/IEC 10646 standard that specifies a
unique 31-bits unsigned integer for any character in any language. It is a superset of 16-bit UNICODE,
which in turn is a superset of ISO 8859-1 (ISO Latin-1), a superset of US-ASCII. UCS can handle
strings holding characters from multiple languages and character classification (uppercase, lowercase,
digit, etc.) and operations such as case-conversion are unambiguously defined.

For this reason SWI-Prolog has two representations for atoms and string objects (see section4.23.
If the text fits in ISO Latin-1, it is represented as an array of 8-bit characters. Otherwise the text is
represented as an array of 32-bit numbers. This representational issue is completely transparent to the
Prolog user. Users of the foreign language interface as described in section9 sometimes need to be
aware of these issues though.

Character coding comes into view when characters of strings need to be read from or written to
file or when they have to be communicated to other software components using the foreign language
interface. In this section we only deal with I/O through streams, which includes file I/O as well as I/O
through network sockets.

2.17.1 Wide character encodings on streams

Although characters are uniquely coded using the UCS standard internally, streams and files are byte
(8-bit) oriented and there are a variety of ways to represent the larger UCS codes in an 8-bit octet
stream. The most popular one, especially in the context of the web, is UTF-8. Bytes 0 . . . 127

SWI-Prolog 5.5 Reference Manual



46 CHAPTER 2. OVERVIEW

represent simply the corresponding US-ASCII character, while bytes 128 . . . 255 are used for multi-
byte encoding of characters placed higher in the UCS space. Especially on MS-Windows the 16-bit
UNICODE standard, represented by pairs of bytes is also popular.

Prolog I/O streams have a property calledencodingwhich specifies the used encoding that influ-
enceget code/2 andput code/2 as well as all the other text I/O predicates.

The default encoding for files is derived from the Prolog flagencoding , which is initialised
from the environment. If the environment variableLANGends in ”UTF-8”, this encoding is assumed.
Otherwise the default istext and the translation is left to the wide-character functions of the C-
library. 7 The encoding can be specified explicitely inload files/2 for loading Prolog source with
an alternative encoding,open/4 when opening files or usingset stream/2 on any open stream.
For Prolog sourcefiles we also provide theencoding/1 directive that can be used to switch between
encodings that are compatible to US-ASCII (ascii , iso latin 1, utf8 and many locales). See
also section3.1.3for writing Prolog files with non-us-ascii characters.

SWI-Prolog currently defines and supports the following encodings:

octet
Default encoding forbinary streams. This causes the stream to be read and written fully
untranslated.

ascii
7-bit encoding in 8-bit bytes. Equivalent toiso latin 1, but generates errors and warnings
on encountering values above 127.

iso latin 1
8-bit encoding supporting many western languages. This causes the stream to be read and
written fully untranslated.

text
C-library default locale encoding for textfiles. Files are read and written using the C-library
functions mbrtowc() and wcrtomb(). This may be the same as one of the other locales, notably
it may be the same asiso latin 1 for western languages andutf8 in a UTF-8 context.

utf8
Multi-byte encoding of full UCS, compatible toascii . See above.

unicode be
UNICODE Big Endian. Reads input in pairs of bytes, most significant byte first. Can only
represent 16-bit characters.

unicode le
UNICODE Little Endian. Reads input in pairs of bytes, least significant byte first. Can only
represent 16-bit characters.

Note that not all encodings can represent all characters. This implies that writing text to a stream
may cause errors because the stream cannot represent these characters. The behaviour of a stream on
these errors can be controlled usingset stream/2 . Initially the terminal stream write the charac-
ters using Prolog escape sequences while other streams generate an I/O exception.

7The Prolog native UTF-8 mode is considerably faster than the generic mbrtowc() one.

SWI-Prolog 5.5 Reference Manual



2.18. SYSTEM LIMITS 47

BOM: Byte Order Mark

From section2.17.1, you may have got the impression text-files are complicated. This section deals
with a related topic, making live often easier for the user, but providing another worry to the program-
mer. BOM or Byte Order Markeris a technique for identifying UNICODE text-files as well as the
encoding they use. Such files start with the UNICODE character 0xFEFF, a non-breaking, zero-width
space character. This is a pretty unique sequence that is not likely to be the start of a non-UNICODE
file and uniquely distinguishes the various UNICODE file formats. As it is a zero-width blank, it even
doesn’t produce any output. This solves all problems, or . . .

Some formats start of as US-ASCII and may contain some encoding mark to switch to UTF-8,
such as theencoding="UTF-8" in an XML header. Such formats often explicitely forbit the the
use of a UTF-8 BOM. In other cases there is additional information telling the encoding making the
use of a BOM redundant or even illegal.

The BOM is handled by SWI-Prologopen/4 predicate. By default, text-files are probed for the
BOM when opened for reading. If a BOM is found, the encoding is set accordingly and the property
bom(true) is available throughstream property/2 . When opening a file for writing, writing a
BOM can be requested using the optionbom(true) with open/4 .

2.18 System limits

2.18.1 Limits on memory areas

SWI-Prolog has a number of memory areas which are only enlarged to a certain limit. The default
sizes for these areas should suffice for most applications, but big applications may require larger ones.
They are modified by command line options. The table below shows these areas. The first column
gives the option name to modify the size of the area. The option character is immediately followed by
a number and optionally by ak or m. With k or no unit indicator, the value is interpreted in Kbytes
(1024 bytes), withm, the value is interpreted in Mbytes (1024× 1024 bytes).

The local-, global- and trail-stack are limited to 128 Mbytes on 32 bit processors, or more gener-
ally to 2bits-per-long−5 bytes.

The PrologScript facility described in section2.10.2provides a mechanism for specifying options
with the load-file. On Windows the default stack-sizes are controlled using the Windows registry
on the keyHKEY_CURRENT_USER\Software\SWI\Prolog using the nameslocalSize ,
globalSize andtrailSize . The value is aDWORDexpressing the default stack size in Kbytes.
A GUI for modifying these values is provided using the XPCE package. To use this, start the XPCE
manual tools usingmanpce/0 , after which you findPreferencesin theFile menu.

The heap

With the heap, we refer to the memory area used bymalloc() and friends. SWI-Prolog uses the
area to store atoms, functors, predicates and their clauses, records and other dynamic data. As of
SWI-Prolog 2.8.5, no limits are imposed on the addresses returned bymalloc() and friends.

On some machines, the runtime stacks described above are allocated using ‘sparse allocation’.
Virtual space up to the limit is claimed at startup and committed and released while the area grows
and shrinks. On Win32 platform this is realised usingVirtualAlloc() and friends. On Unix
systems this is realised usingmmap() .

SWI-Prolog 5.5 Reference Manual



48 CHAPTER 2. OVERVIEW

Option Default Area name Description
-L 2M local stack The local stack is used to store

the execution environments of
procedure invocations. The
space for an environment is re-
claimed when it fails, exits with-
out leaving choice points, the
alternatives are cut of with the
!/0 predicate or no choice points
have been created since the in-
vocation and the last subclause
is started (tail recursion optimi-
sation).

-G 4M global stack The global stack is used to store
terms created during Prolog’s
execution. Terms on this stack
will be reclaimed by backtrack-
ing to a point before the term
was created or by garbage col-
lection (provided the term is no
longer referenced).

-T 4M trail stack The trail stack is used to store as-
signments during execution. En-
tries on this stack remain alive
until backtracking before the
point of creation or the garbage
collector determines they are nor
needed any longer.

-A 1M argument stack The argument stack is used to
store one of the intermediate
code interpreter’s registers. The
amount of space needed on this
stack is determined entirely by
the depth in which terms are
nested in the clauses that con-
stitute the program. Overflow
is most likely when using long
strings in a clause.
In addition, this stack is used by
some builtin predicates to han-
dle cyclic terms. Its default size
limit is proportional to the global
stack limit such that it will never
overflow.

Table 2.2: Memory areas

SWI-Prolog 5.5 Reference Manual



2.18. SYSTEM LIMITS 49

2.18.2 Other Limits

Clauses The only limit on clauses is their arity (the number of arguments to the head), which is
limited to 1024. Raising this limit is easy and relatively cheap, removing it is harder.

Atoms and Strings SWI-Prolog has no limits on the sizes of atoms and strings.read/1 and its
derivatives however normally limit the number of newlines in an atom or string to 5 to improve
error detection and recovery. This can be switched off withstyle check/1 .

The number of atoms is limited to 16777216 (16M) on 32-bit machines. On 64-bit machines
this is virtually unlimited. See also section9.6.2.

Memory areas On 32-bit hardware, SWI-Prolog data is packed in a 32-bit word, which contains both
type and value information. The size of the various memory areas is limited to 128 Mb for each
of the areas, except for the program heap, which is not limited. On 64-bit hardware there are no
meaningful limits.

Integers Integers are 64-bit on 32 as well as 64-bit machines. Integers up to the value of the
max tagged integer prolog-flag are represented more efficiently on the stack. For clauses
and records the difference is much smaller.

Floats Floating point numbers are represented as C-native double precision floats, 64 bit IEEE on
most machines.

2.18.3 Reserved Names

The boot compiler (see-b option) does not support the module system. As large parts of the sys-
tem are written in Prolog itself we need some way to avoid name clashes with the user’s predicates,
database keys, etc. Like Edinburgh C-Prolog [Pereira, 1986] all predicates, database keys, etc. that
should be hidden from the user start with a dollar ($) sign (seestyle check/1 ).

SWI-Prolog 5.5 Reference Manual



Initialising and Managing a
Prolog Project 3
Prolog text-books give you an overview of the Prolog language. The manual tells you what predicates
are provided in the system and what they do. This chapter wants to explain how to run a project.
There is no ultimate ‘right’ way to do this. Over the years we developed some practice in this area and
SWI-Prolog’s commands are there to support this practice. This chapter describes the conventions
and supporting commands.

The first two sections (section3.1 and section3.2 only require plain Prolog. The remainder dis-
cusses the use of the built-in graphical tools that require the XPCE graphical library installed on your
system.

3.1 The project source-files

Organisation of source-files depends largely on the size of your project. If you are doing exercises for
a Prolog course you’ll normally use one file for each exercise. If you have a small project you’ll work
work with one directory holding a couple of files and some files to link it all together. Even bigger
projects will be organised in sub-projects each using their own directory.

3.1.1 File Names and Locations

File Name Extensions

The first consideration is what extension to use for the source-files. Tradition calls for.pl , but con-
flicts with Perl force the use of another extension on systems where extensions have global meaning,
such as MS-Windows. On such systems.pro is the common alternative.1

All versions of SWI-Prolog load files with the extension.pl as well as with the registered alter-
native extension without explicitly specifying the extension. For portability reasons we propose the
following convention:

If there is no conflict because you do not use a conflicting application or the system does not force
a unique relation between extension and application, use.pl .

With a conflict choose.pro and use this extension for the files you want to load through your file-
manager. Use.pl for all other files for maximal portability.

Project Directories

Large projects are generally composed of sub-projects, each using their own directory or directory-
structure. If nobody else will ever touch your files and you use only one computer there is little to

1On MS-Windows, the alternative extension is stored in the registry-key
HKEYCURRENTUSER/Software/SWI/Prolog/fileExtension orHKEYLOCALMACHINE/Software/SWI/Prolog/fileExtension

SWI-Prolog 5.5 Reference Manual



3.1. THE PROJECT SOURCE-FILES 51

worry about, but this is rarely the case with a large project.
To improve portability, SWI-Prolog uses the POSIX notation for filenames, which uses

the forward slash (/ ) to separate directories. Just before hitting the file-system it uses
prolog to os filename/2 to convert the filename to the conventions used by the hosting oper-
ating system. It isstronglyadvised to write paths using the/ , especially on systems using the\ for
this purpose (MS-Windows). Using\ violates the portability rules and requires you todoublethe \
due to the Prolog quoted-atom escape rules.

Portable code should useprolog to os filename/2 to convert computed paths into system-
paths when constructing commands forshell/1 and friends.

Sub-projects using search-paths

Thanks to Quintus, Prolog adapted an extensible mechanism for searching files using
file search path/2 . This mechanism allows for comfortable and readable specifications.

Suppose you have extensive library packages on graph-algorithms, set-operations and ui-
primitives. These sub-projects are likely candidates for re-use in future projects. A good choice is
to create a directory with sub-directories for each of these sub-projects.

Next, there are three options. One is to add the sub-projects to the directory-hierarchy of the
current project. Another is to use a completely dislocated directory and finally the sub-project can be
added to the SWI-Prolog hierarchy. Using local installation, a typicalfile search path/2 is:

:- prolog_load_context(directory, Dir),
asserta(user:file_search_path(myapp, Dir)).

user:file_search_path(graph, myapp(graph)).
user:file_search_path(ui, myapp(ui)).

For using sub-projects in the SWI-Prolog hierarchy one should use the path-aliasswi as basis. For a
system-wide installation use an absolute-path.

Extensive sub-projects with a small well-defined API should define a load-file using
use module/1 calls to import the various library-components and export the API.

3.1.2 Project Special Files

There are a number of tasks you typically carry out on your project, such as loading it, creating a
saved-state, debugging it, etc. Good practice on large projects is to define small files that hold the
commands to execute such a task, name this file after the task and give it a file-extension that makes
starting easy (see section3.1.1). The taskload is generally central to these tasks. Here is a tentative
list.

• load.pl
Use this file to set up the environment (prolog flags and file search paths) and load the sources.
Quite commonly this file also provides convenient predicates to parse command-line options
and start the application.

• run.pl
Use this file to start the application. Normally it loadsload.pl in silent-mode, and calls one
of the starting predicates fromload.pl .

SWI-Prolog 5.5 Reference Manual



52 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

• save.pl
Use this file to create a saved-state of the application by loadingload.pl and call
qsave program/2 to generate a saved-state with the proper options.

• debug.pl
Loads the program for debugging. In addition to loadingload.pl this file defines rules for
portray/1 to modify printing rules for complex terms and customisation rules for the debug-
ger and editing environment. It may start some of these tools.

3.1.3 International Sourcefiles

As discussed in section2.17, SWI-Prolog supports international character handling. Its internal en-
coding is UNICODE. I/O streams convert to/from this internal format. This sections discusses the
options for source-files not in US-ASCII.

SWI-Prolog can read files in any of the encodings described in section2.17. Two encodings are of
particular interest. Thetext encoding deals with the currentlocale, the default used by this computer
for representing textfiles. The encodingsutf8 , unicode le and unicode be are UNICODE
encodings: they can represent—in the same file—characters of virtually any known language. In
addition, they do so unambiguously.

If one wants to represent non US-ASCII text as Prolog terms in a source-file there are several
options:

• Use escape sequences
This approach describes NON-ASCII as sequences of the form\ octal\ . The numerical argu-
ment is interpreted as a UNICODE character.2 The resulting Prolog file is strict 7-bit US-ASCII,
but if there are many NON-ASCII characters it becomes very unreadable.

• Use local conventions
Alternatively the file may be specified using local conventions, such as the EUC encoding for
Japanese text. The disadvantage is portability. If the file is moved to another machine this
machine must be using the samelocale or the file is unreadable. There is no elegant if files
from multiple locales must be united in one application using this technique. In other words, it
is fine for local projects in countries with uniform locale conventions.

• Using UTF-8 files
The best way to specify sourcefiles with many NON-ASCII characters is definitely the use of
UTF-8 encoding. Prolog can be notified two ways of this encoding, using a UTF-8BOM (see
section2.17.1) or using the directive:- encoding(utf8). . Many todays text editors,
including PceEmacs, are capable of editing UTF-8 files. Projects that started using local con-
ventions can be be re-coded using the Unixiconv tool or often using a commands offered by
the editor.

3.2 Using modules

Modules have been debated fiercely in the Prolog world. Despite all counter-arguments we feel they
are extremely useful because

2To my knowledge, the ISO escape sequences is limited to 3 octal digits, which means most characters cannot be
represented.

SWI-Prolog 5.5 Reference Manual



3.3. THE TEST-EDIT-RELOAD CYCLE 53

• They hide local predicates
This is the reason they have been invented in the first place. Hiding provides two features.
They allow for short predicate names without worrying about conflicts. Given the flat name-
space introduced by modules, they still require meaningful module names as well as meaningful
names for exported predicates.

• They document the interface
Possibly more important then avoiding name-conflicts is their role in documenting which part
of the file is for public usage and which is private. When editing a module you may assume
you can reorganise anything but the name and semantics of the exported predicates without
worrying.

• They help the editor
The PceEmacs built-in editor does on-the-fly cross-referencing of the current module, colouring
predicates based on their origin and usage. Using modules, the editor can quickly find out what
is provided by the imported modules by reading just the first term. This allows it to indicate
real-time which predicates are not used or not defined.

Using modules is generally easy. Only if you write meta-predicates (predicates reasoning about
other predicates) that are exported from a module good understanding of resolution of terms to predi-
cates inside a module is required. Here is a typical example fromreadutil .

:- module(read_util,
[ read_line_to_codes/2, % +Fd, -Codes

read_line_to_codes/3, % +Fd, -Codes, ?Tail
read_stream_to_codes/2, % +Fd, -Codes
read_stream_to_codes/3, % +Fd, -Codes, ?Tail
read_file_to_codes/3, % +File, -Codes, +Options
read_file_to_terms/3 % +File, -Terms, +Options

]).

3.3 The test-edit-reload cycle

SWI-Prolog does not enforce the use of a particular editor for writing down Prolog source code.
Editors are complicated programs that must be mastered in detail for real productive programming
and if you are familiar with a specific editor you should not be forced to change. You may specify
your favourite editor using the prolog flageditor , the environment variableEDITORor by defining
rules forprolog edit:edit source/1 (see section4.4).

The use of a built-in editor, which is selected by setting the prolog-flageditor to pce emacs,
has advantages. The XPCEeditor object around which the built-in PceEmacs is built can be opened
as a Prolog stream allowing analysis of your source by the real Prolog system.

3.3.1 Locating things to edit

The central predicate for editing something isedit/1 , an extensible front-end that searches for
objects (files, predicates, modules as well as XPCE classes and methods) in the Prolog database. If
multiple matches are found it provides a choice. Together with the built-in completion on atoms bound
to theTABkey this provides a quick way to edit objects:

SWI-Prolog 5.5 Reference Manual



54 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

?- edit(country).
Please select item to edit:

1 chat:country/10 ’/staff/jan/lib/prolog/chat/countr.pl’:16
2 chat:country/1 ’/staff/jan/lib/prolog/chat/world0.pl’:72

Your choice?

3.3.2 Editing and incremental compilation

One of the nice features of Prolog is that the code can be modified while the program is running.
Using pure Prolog you can trace a program, find it is misbehaving, enter abreak environment, modify
the source code, reload it and finally doretry on the misbehaving predicate and try again. This
sequence is not uncommon for long-running programs. For faster programs one normally aborts after
understanding the misbehaviour, edit the source, reload it and try again.

One of the nice features of SWI-Prolog is the availability ofmake/0 , a simple predicate that
checks all loaded source files to see which ones you have modified. It then reloads these files, consid-
ering the module from which the file was loaded originally. This greatly simplifies the trace-edit-verify
development cycle. After the tracer reveals there is something wrong withprove/3 , you do:

?- edit(prove).

Now edit the source, possibly switching to other files and making multiple changes. After finishing
invokemake/0 , either through the editor UI (Compile/Make (Control-C Control-M )) or on
the toplevel and watch the files being reloaded.3

?- make.
% show compiled into photo_gallery 0.03 sec, 3,360 bytes

3.4 Using the PceEmacs built-in editor

3.4.1 Activating PceEmacs

Initially edit/1 uses the editor specified in theEDITORenvironment variable. There are two ways
to force it to use the built-in editor. One is to set the prolog-flageditor to pce emacs and the
other is by starting the editor explictely using theemacs/[0,1] predicates.

3.4.2 Bluffing through PceEmacs

PceEmacs closely mimics Richard Stallman’s GNU-Emacs commands, adding features from modern
window-based editors to make it more acceptable for beginners.4

3Watching these files is a good habit. If expected files are not reloaded you may have forgotten to save them from the
editor or you may have been editing the wrong file (wrong directory).

4Decent merging with MS-Windows control-key conventions is difficult as many conflict with GNU-Emacs. Expecially
the cut/copy/paste commands conflict with important GNU-Emacs commands.

SWI-Prolog 5.5 Reference Manual



3.4. USING THE PCEEMACS BUILT-IN EDITOR 55

At the basis, PceEmacs maps keyboard sequences to methods defined on the extendededitor
object. Some frequently used commands are, with their key-binding, presented in the menu-bar above
each editor window. A complete overview of the bindings for the currentmodeis provided through
Help/Show key bindings (Control-h Control-b ).

Edit modes

Modes are the heart of (Pce)Emacs. Modes define dedicated editing support for a particular kind of
(source-)text. For our purpose we wantProlog mode. Their are various ways to make PceEmacs use
Prolog mode for a file.

• Using the proper extension
If the file ends in.pl or the selected alternative (e.g..pro ) extension, Prolog mode is selected.

• Using#!/path/to/pl
If the file is aProlog Scriptfile, starting with the line#!/path/to/pl options -s , Pro-
log mode is selected regardless of the extension

• Using-*- Prolog -*-
If the above sequence appears in the first line of the file (inside a Prolog comment) Prolog mode
is selected.

• Explicit selection
Finally, usingFile/Mode/Prolog (y )ou can switch to Prolog mode explicitly.

Frequently used editor commands

Below we list a few important commands and how to activate them.

• Cut/Copy/Paste
These commands follow Unix/X11 traditions. You’re best suited with a three-button mouse.
After selecting using the left-mouse (double-click uses word-mode and triple line-mode), the
selected text isautomaticallycopied to the clipboard (X11 primary selection on Unix).Cut is
achieved using theDEL key or by typing something else at the location.Pasteis achieved using
the middle-mouse (or wheel) button. If you don’t have a middle mouse-button, pressing the
left- and right-button at the same time is interpreted as a middle-button click. If nothing helps
there is theEdit/Paste menu-entry. Text is pasted at the caret-location.

• Undo
Undo is bound to the GNU-EmacsControl- as well as the MS-WindowsControl-Z sequence.

• Abort
Multi-key sequences can be aborted at any stage usingControl-G.

• Find
Find (Search) is started usingControl-S (forward) orControl-R (backward). PceEmacs imple-
mentsincremental search. This is difficult to use for novices, but very powerful once you get
the clue. After one of the above start-keys the system indicates search mode in the status line.
As you are typing the search-string, the system searches for it, extending the search with every
character you type. It illustrates the current match using a green background.

SWI-Prolog 5.5 Reference Manual



56 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

If the target cannot be found, PceEmacs warns you and no longer extends the search-string.5

During search some characters have special meaning. Typing anything but these characters
commits the search, re-starting normal edit mode. Special commands are:

Control-S
Search for next forwards.

Control-R
Search for next backwards.

Control-W
Extend search to next word-boundary.

Control-G
Cancel search, go back to where it started.

ESC
Commit search, leaving caret at found location.

Backspace
Remove a character from the search string.

• Dynamic Abbreviation
Also calleddabbrevis an important feature of Emacs clones to support programming. After
typing the first few letters of an identifier you may hitAlt-/, causing PceEmacs to search back-
wards for identifiers that start the same and using it to complete the text you typed. A second
Alt-/ searches further backwards. If there are no hits before the caret it starts searching forwards.
With some practice, this system allows for very fast entering code with nice and readable iden-
tifiers (or other difficult long words).

• Open (a file)
Is calledFile/Find file (Control-x Control-f ). By default the file is loaded into the
current window. If you want to keep this window, HitAlt-s or click the little icon at the bottom-
left to make the windowsticky.

• Split view
Sometimes you want to look at two places of the same file. To do this, useControl-x 2 to create
a new window pointing to the same file. Do not worry, you can edit as well as move around in
both.Control-x 1 kills all other windows running on the same file.

These were the most commonly used commands. In section section3.4.3 we discuss specific
support for dealing with Prolog source code.

3.4.3 Prolog Mode

In the previous section (section3.4.2) we explained the basics of PceEmacs. Here we continue with
Prolog specific functionality. Possibly the most interesting isSyntax highlighting. Unlike most editors
where this is based on simple patterns, PceEmacs syntax highlighting is achieved by Prolog itself ac-
tually reading and interpreting the source as you type it. There are three moments at which PceEmacs
checks (part of) the syntax.

5GNU-Emacs keeps extending the string, but why? Adding more text will not make it match.

SWI-Prolog 5.5 Reference Manual



3.4. USING THE PCEEMACS BUILT-IN EDITOR 57

Clauses
Blue bold Head of an exported predicate
Red bold Head of a predicate that is not called
Black Bold Head of remaining predicates

Calls in the clause-body
Blue Call to built-in or imported predicate
Red Call to not-defined predicate
Purple Call to dynamic predicate

Other entities
Dark green Comment
Dark blue Quoted atom or string
Brown Variable

Table 3.1: Colour conventions

• After typing a.
After typing a. that is not preceeded by asymbolcharacter the system assumes you completed
a clause, tries to find the start of this clause and verifies the syntax. If this process succeeds it
colours the elements of the clause according to the rules given below. Colouring is done using
information from the last full check on this file. If it fails, the syntax error is displayed in the
status line and the clause is not coloured.

• After the commandControl-c Control-s
Acronym forCcheckSyntax it performs the same checks as above for the clause surrounding
the caret. On a syntax error however, the caret is moved to the expected location of the error.6

• After pausing for two seconds
After a short pause (2 seconds), PceEmacs opens the edit-buffer and reads it as a whole, creating
an index of defined, called, dynamic, imported and exported predicates. After completing this,
it re-reads the file and colours all clauses and calls with valid syntax.

• After typingControl-l Control-l
TheControl-l commands re-centers the window (scrolls the window to make the caret the center
of the window). Hitting this command twice starts the same process as above.

The colour schema itself is defined inemacs/prolog colour . The colouring can be extended
and modified using multifile predicates. Please check this source-file for details. In general, under-
lined objects have a popup (right-mouse button) associated for common commands such as viewing
the documentation or source.Bold text is used to indicate the definition of objects (typically predicates
when using plain Prolog). Other colours follow intuitive conventions. See table3.4.3.

Layout support Layout is not ‘just nice’, it isessentialfor writing readable code. There is much
debate on the proper layout of Prolog. PceEmacs, being a rather small project supports only one
particular style for layout.7 Below are examples of typical constructs.

6In most cases the location where the parser cannot proceed is further down the file than the actual error-location.
7Defined in Prolog in the fileemacs/prolog mode, you may wish to extend this. Please contribute your extensions!

SWI-Prolog 5.5 Reference Manual



58 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

head(arg1, arg2).

head(arg1, arg2) :- !.

head(Arg1, arg2) :- !,
call1(Arg1).

head(Arg1, arg2) :-
( if(Arg1)
-> then
; else
).

head(Arg1) :-
( a
; b
).

head :-
a(many,

long,
arguments(with,

many,
more),

and([ a,
long,
list,
with,
a,

| tail
])).

PceEmacs uses the same conventions as GNU-Emacs. TheTAB key indents the current line according
to the syntax rules.Alt-q indents all lines of the current clause. It provides support for head, calls
(indented 1 tab), if-then-else, disjunction and argument-lists broken across multiple lines as illustrated
above.

Finding your way around

The commandAlt-. extracts name and arity from the caret location and jumps (after conformation
or edit) to the definition of the predicate. It does so based on the source-location database of loaded
predicates also used byedit/1 . This makes locating predicates reliable if all sources are loaded and
up-to-date (seemake/0 ).

In addition, references to files inuse module/[1,2] , consult/1 , etc. are red if the file can-
not be found and underlined blue if the file can be loaded. A popup allows for opening the referenced
file.

SWI-Prolog 5.5 Reference Manual



3.5. THE GRAPHICAL DEBUGGER 59

3.5 The Graphical Debugger

SWI-Prolog offers two debuggers. One is the traditional text-console based 4-port Prolog tracer and
the other is a window-based source-level debugger. The window-based debugger requires XPCE
installed. It operates based on theprolog trace interception/4 hook and other low-level
functionality described in chapterB.

Window-based tracing provides much better overview due to the eminent relation to your source-
code, a clear list of named variables and their bindings as well as a graphical overview of the call and
choice-point stack. There are some drawbacks though. Using a textual trace on the console one can
scroll back and examine the past, while the graphical debugger just presents a (much better) overview
of the current state.

3.5.1 Invoking the window-based debugger

Whether the text-based or window-based debugger is used is controlled using the predicates
guitracer/0 andnoguitracer/0 . Entering debug mode is controlled using the normal pred-
icates for this:trace/0 andspy/1 . In addition, PceEmacs prolog mode provides the command
Prolog/Break at (Control-c b ) to insert a break-point at a specific location in the source-code.

guitracer
This predicate installs the above-mentioned hooks that redirect tracing to the window-based
environment. No window appears. The debugger window appears as actual tracing is started
throughtrace/0 , by hitting a spy-point defined byspy/1 or a break-point defined using
PceEmacs commandProlog/Break at (Control-c b ).

noguitracer
Disable the hooks installed byguitracer/0 , reverting to normal text-console based tracing.

3.6 The Prolog Navigator

Another tool is theProlog Navigator. This tool can be started from PceEmacs using the command
Browse/Prolog navigator, from the GUI debugger or using the programmatic IDE interface de-
scribed in section3.7.

3.7 Accessing the IDE from your program

Over the years a collection of IDE components have been developed, each with their own interface.
In addition, some of these components require each other and loading IDE components must be on
demand to avoid the IDE being part of a saved-state (seeqsave program/2 ). For this reason,
access to the IDE will be concentrated on a single interface calledprolog ide/1 :

prolog ide(+Action)
This predicate ensures the IDE enabling XPCE component is loaded, cre-
ates the XPCE classprolog ide and sends Ation to its one and only instance
\index{@prolog_ide}\objectname{prolog_ide} . Action is one of the fol-
lowing:

SWI-Prolog 5.5 Reference Manual



60 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

open navigator(+Directory)
Open the Prolog Navigator (see section3.6) in the givenDirectory.

open debug status
Open a window to edit spy- and trace-points.

open query window
Opens a little window to run Prolog queries from a GUI component.

3.8 Summary of the iDE

The SWI-Prolog development environment consists of a number of interrelated but not (yet) integrated
tools. Here is a list of the most important features and tips.

• Atom completion
The console8 completes a partial atom on theTAB key and shows alternatives on the command
Alt-?.

• Useedit/1 to finding locations
The commandedit/1 takes the name of a file, module, predicate or other entity registered
through extensions and starts the users preferred editor at the right location.

• Select editor
External editors are selected using theEDITORenvironment variable, by setting the prolog flag
editor or by defining the hookprolog edit:edit source/1 .

• Update Prolog after editing
Usingmake/0 , all files you have edited are re-loaded.

• PceEmacs
Offers syntax-highlighting and checking based on real-time parsing of the editor’s buffer,
layout-support and navigation support.

• Using the graphical debugger
The predicatesguitracer/0 andnoguitracer/0 switch between traditional text-based
and window-based debugging. The tracer is activated using thetrace/0 , spy/1 or menu-
items from PceEmacs or the PrologNavigator.

• The Prolog Navigator
Shows the file-structure and structure inside the file. It allows for loading files, editing, setting
spy-points, etc.

8On Windows this is realised by plwin.exe, on Unix through the GNU readline library, which is included automatically
when found byconfigure .

SWI-Prolog 5.5 Reference Manual



Built-in predicates 4
4.1 Notation of Predicate Descriptions

We have tried to keep the predicate descriptions clear and concise. First the predicate name is printed
in bold face, followed by the arguments in italics. Arguments are preceded by a ‘+’, ‘-’ or ‘?’ sign.
‘+’ indicates the argument is input to the predicate, ‘-’ denotes output and ‘?’ denotes ‘either input
or output’.1 Constructs like ‘op/3 ’ refer to the predicate ‘op’ with arity ‘3’. Finally, arguments may
have the ‘:’ specifier, which implies the argument is module-sensitive. Normally the argument is a
callable term refering to a predicate in a specific module. See section5 for more information on
module-handing.

4.2 Character representation

In traditional (Edinburgh-) Prolog, characters are represented usingcharacter-codes. Character codes
are integer indices into a specific character set. Traditionally the character set was 7-bits US-ASCII.
8-bit character sets have been allowed for a long time, providing support for national character sets,
of which iso-latin-1 (ISO 8859-1) is applicable to many western languages. Text-files are supposed to
represent a sequence of character-codes.

ISO Prolog introduces three types, two of which are used for characters and one for accessing
binary streams (seeopen/4 ). These types are:

• code
A character-codeis an integer representing a single character. As files may use multi-byte
encoding for supporting different character sets (utf-8 encoding for example), reading a code
from a text-file is in general not the same as reading a byte.

• char
Alternatively, characters may be represented asone-character-atoms. This is a very natural rep-
resentation, hiding encoding problems from the programmer as well as providing much easier
debugging.

• byte
Bytes are used for accessing binary-streams.

The current version of SWI-Prolog does not provide support for multi-byte character encoding.
This implies for example that it is not capable of breaking a multi-byte encoded atom into characters.
For SWI-Prolog, bytes and codes are the same and one-character-atoms are simple atoms containing
one byte.

1These marks donot suggest instantiation (e.g. var(+Var)).

SWI-Prolog 5.5 Reference Manual



62 CHAPTER 4. BUILT-IN PREDICATES

To ease the pain of these multiple representations, SWI-Prolog’s built-in predicates dealing with
character-data work as flexible as possible: they accept data in any of these formats as long as the
interpretation is unambiguous. In addition, for output arguments that are instantiated, the character
is extracted before unification. This implies that the following two calls are identical, both testing
whether the next input characters is ana.

peek_code(Stream, a).
peek_code(Stream, 97).

These multiple-representations are handled by a large number of built-in predicates, all of which are
ISO-compatible. For converting betweem code and character there ischar code/2 . For breaking
atoms and numbers into characters are areatom chars/2 , atom codes/2 , number codes/2
and number chars/2 . For character I/O on streams there isget char/[1,2] ,
get code/[1,2] , get byte/[1,2] , peek char/[1,2] , peek code/[1,2] ,
peek byte/[1,2] , put code/[1,2] , put char/[1,2] and put byte/[1,2] . The
prolog-flag double quotes (see current prolog flag/2 ) controls how text between
double-quotes is interpreted.

4.3 Loading Prolog source files

This section deals with loading Prolog source-files. A Prolog source file is a plain text file containing
a Prolog program or part thereof. Prolog source files come in three flavours:

A traditional Prolog source file contains a Prolog clauses and directives, but nomodule-
declaration. They are normally loaded usingconsult/1 or ensure loaded/1 .

A module Prolog source file starts with a module declaration. The subsequent Prolog code is loaded
into the specified module and only thepublicpredicates are made available to the context load-
ing the module. Module files are normally loaded usinguse module/[1,2] . See chapter5
for details.

An include Prolog source file is loaded using theinclude/1 directive and normally contains only
directives.

Prolog source-files are located usingabsolute file name/3 with the following options:

locate_prolog_file(Spec, Path) :-
absolute_file_name(Spec,

[ file_type(prolog),
access(read)

],
Path).

The file type (prolog) option is used to determine the extension of the file using
prolog file type/2 . The default extension is.pl . Spec allows for the path-alias
construct defined byabsolute file name/3 . The most commonly used path-alias is
library (LibraryFile). The example below loads the library fileoset.pl (containing predicates
for manipulating ordered sets).

SWI-Prolog 5.5 Reference Manual



4.3. LOADING PROLOG SOURCE FILES 63

:- use_module(library(oset)).

SWI-Prolog recognises grammar rules (DCG) as defined in [Clocksin & Melish, 1987]. The
user may define additional compilation of the source file by defining the dynamic predicates
term expansion/2 and goal expansion/2 . Transformations byterm expansion/2
overrule the systems grammar rule transformations. It is not allowed to useassert/1 , retract/1
or any other database predicate interm expansion/2 other than for local computational pur-
poses.2

Directives may be placed anywhere in a source file, invoking any predicate. They are executed
when encountered. If the directive fails, a warning is printed. Directives are specified by :-/1 or ?-/1.
There is no difference between the two.

SWI-Prolog does not have a separatereconsult/1 predicate. Reconsulting is implied auto-
matically by the fact that a file is consulted which is already loaded.

load files(+Files, +Options)
The predicateload files/2 is the parent of all the other loading predicates except for
include/1 . It currently supports a subset of the options of Quintusload files/2 . Files
is either specifies a single, or a list of source-files. The specification for a source-file is handled
absolute file name/2 . See this predicate for the supported expansions.Optionsis a list
of options using the format

OptionName(OptionValue)

The following options are currently supported:

autoload(Bool)
If true (default false ), indicate this load is ademandload. This implies that,
depending on the setting of the prolog-flagverbose autoload the load-action is
printed at levelinformational or silent . See alsoprint message/2 and
current prolog flag/2 .

derived from(File)
Indicate that the loaded file is derived fromFile. Used bymake/0 to time-check and load
the original file rather than the derived file.

encoding(Encoding)
Specify the way characters are encoded in the file. Default is taken from the prolog flag
encoding . See section2.17.1for details.

expand(Bool)
If true , run the filenames throughexpand file name/2 and load the returned files.
Default isfalse , except forconsult/1 which is intended for interactive use. Flexible
location of files is defined byfile search path/2 .

if(Condition)
Load the file only if the specified condition is satisfied. The valuetrue loads the file
unconditionally,changed loads the file if it was not loaded before, or has been modified
since it was loaded the last time,not loaded loads the file if it was not loaded before.

2It does work for normal loading, but not forqcompile/1 .

SWI-Prolog 5.5 Reference Manual



64 CHAPTER 4. BUILT-IN PREDICATES

imports(ListOrAll)
If all and the file is a module file, import all public predicates. Otherwise import only
the named predicates. Each predicate is refered to as〈name〉/〈arity〉. This option has no
effect if the file is not a module file.

must be module(Bool)
If true , raise an error if the file is not a module file. Used byuse module/[1,2] .

qcompile(Bool)
If this call appears in a directive of a file that is compiled into Quick Load Format using
qcompile/1 and this flag istrue , the contents of the argument files are included in the
.qlf file instead of the loading directive.

silent(Bool)
If true , load the file without printing a message. The specified value is the default for all
files loaded as a result of loading the specified files.

stream(Input)
This SWI-Prolog extension compiles the data from the streamInput. If this option is used,
Files must be a single atom which is used to identify the source-location of the loaded
clauses as well as remove all clauses if the data is re-consulted.

This option is added to allow compiling from non-file locations such as databases, the
web, theuser(seeconsult/1 ) or other servers.

Theload files/2 predicate can be hooked to load other data or data from other objects than
files. Seeprolog load file/2 for a description andhttp load for an example.

consult(+File)
ReadFile as a Prolog source file.File may be a list of files, in which case all members are con-
sulted in turn.File may start with the Unix shell special sequences˜ , 〈user〉 and$〈var〉. File
may also belibrary(Name) , in which case the libraries are searched for a file with the spec-
ified name. See alsolibrary directory/1 andfile search path/2 . consult/1
may be abbreviated by just typing a number of file names in a list. Examples:

?- consult(load). % consultload or load.pl
?- [library(quintus)]. % load Quintus compatibility library
?- [user].

The predicateconsult/1 is equivalent to loadfiles(Files, []), except for handling the spe-
cial file user , which reads clauses from the terminal. See also thestream (Input) option of
load files/2 .

ensure loaded(+File)
If the file is not already loaded, this is equivalent toconsult/1 . Otherwise, if the file defines a
module, import all public predicates. Finally, if the file is already loaded, is not a module file and
the context module is not the global user module,ensure loaded/1 will call consult/1 .

With the semantics, we hope to get as closely possible to the clear semantics without
the presence of a module system. Applications using modules should consider using
use module/[1,2] .

SWI-Prolog 5.5 Reference Manual



4.3. LOADING PROLOG SOURCE FILES 65

Equivalent to loadfiles(Files, [if(not loaded)]).3

include(+File)
Pretend the terms inFile are in the source-file in which:- include(File) appears. The
include construct is only honnoured if it appears as a directive in a source-file. NormallyFile
contains a sequence of directives.

require(+ListOfNameAndArity)
Declare that this file/module requires the specified predicates to be defined “with their com-
monly accepted definition”. This predicate originates from the Prolog portability layer for
XPCE. It is intended to provide a portable mechanism for specifying that this module requires
the specified predicates.

The implementation normally first verifies whether the predicate is already defined. If not, it
will search the libraries and load the required library.

SWI-Prolog, having autoloading, doesnot load the library. Instead it creates a procedure header
for the predicate if it does not exist. This will flag the predicate as ‘undefined’. See also
check/0 andautoload/0 .

encoding(+Encoding)
This directive can appear anywhere in a sourcefile to define how characters are encoded in the
remainder of the file. It can be used in files that are encoded with a superset of US-ASCII,
currently UTF-8 and ISO Latin-1. See also section2.17.1.

make
Consult all source files that have been changed since they were consulted. It checksall loaded
source files: files loaded into a compiled state usingpl -c ... and files loaded using consult
or one of its derivatives. The predicatemake/0 is called afteredit/1 , automatically reload-
ing all modified files. It the user uses an external editor (in a separate window),make/0 is
normally used to update the program after editing. In addition,make/0 updates the autoload
indices (see section2.13) and runslist undefined/0 from thecheck library to report on
undefined predicates.

library directory(?Atom)
Dynamic predicate used to specify library directories. Default./lib , ˜/lib/prolog and
the system’s library (in this order) are defined. The user may add library directories using
assert/1 , asserta/1 or remove system defaults usingretract/1 .

file searchpath(+Alias, ?Path)
Dynamic predicate used to specify ‘path-aliases’. This feature is best described using an exam-
ple. Given the definition

file_search_path(demo, ’/usr/lib/prolog/demo’).

the file specificationdemo(myfile) will be expanded to/usr/lib/prolog/demo/
myfile . The second argument offile search path/2 may be another alias.

3On older versions the condition used to be if(changed). Poor time management on some machines or due to copying
often caused problems. Themake/0 predicate deals with updating the running system after changing the sourcecode.

SWI-Prolog 5.5 Reference Manual



66 CHAPTER 4. BUILT-IN PREDICATES

Below is the initial definition of the file search path. This path impliesswi( 〈Path〉) refers to
a file in the SWI-Prolog home directory. The aliasforeign( 〈Path〉) is intended for storing
shared libraries (.so or .DLL files). See alsoload foreign library/[1,2] .

user:file_search_path(library, X) :-
library_directory(X).

user:file_search_path(swi, Home) :-
current_prolog_flag(home, Home).

user:file_search_path(foreign, swi(ArchLib)) :-
current_prolog_flag(arch, Arch),
atom_concat(’lib/’, Arch, ArchLib).

user:file_search_path(foreign, swi(lib)).

The file search path/2 expansion is used by all loading predicates as well as by
absolute file name/[2,3] .

The prolog-flagverbose file search can be set totrue to help debugging Prolog’s
search for files.

expand file searchpath(+Spec, -Path)
Unifies Path with all possible expansions of the file name specificationSpec. See also
absolute file name/3 .

prolog file type(?Extension, ?Type)
This dynamic multifile predicate defined in moduleuser determines the extensions considered
by file search path/2 . Extensionis the filename extension without the leading dot,Type
denotes the type as used by thefile type (Type) option of file search path/2 . Here
is the initial definition ofprolog file type/2 :

user:prolog_file_type(pl, prolog).
user:prolog_file_type(Ext, prolog) :-

current_prolog_flag(associate, Ext),
Ext \== pl.

user:prolog_file_type(qlf, qlf).
user:prolog_file_type(Ext, executable) :-

current_prolog_flag(shared_object_extension, Ext).

Users may wish to change the extension used for Prolog source files to avoid conflicts (for
example withperl ) as well as to be compatible with some specific implementation. The
preferred alternative extension is.pro .

sourcefile(?File)
Succeeds ifFile is a loaded Prolog source file.File is the absolute and canonical path to the
source-file.

sourcefile(?Pred, ?File)
Is true if the predicate specified byPredwas loaded from fileFile, whereFile is an absolute path
name (seeabsolute file name/2 ). Can be used with any instantiation pattern, but the
database only maintains the source file for each predicate. See alsoclause property/2 .

SWI-Prolog 5.5 Reference Manual



4.3. LOADING PROLOG SOURCE FILES 67

prolog load context(?Key, ?Value)
Determine loading context. The following keys are defined:

Key Description
module Module into which file is loaded
file File loaded
stream Stream identifier (seecurrent input/1 )
directory Directory in whichFile lives.
term position Position of last term read. Term of the form

’$stream position’(0, 〈Line〉,0,0,0)

Quintus compatibility predicate. See alsosource location/2 .

source location(-File, -Line)
If the last term has been read from a physical file (i.e., not from the fileuser or a string), unify
File with an absolute path to the file andLinewith the line-number in the file. New code should
useprolog load context/2 .

term expansion(+Term1, -Term2)
Dynamic and multifile predicate, normally not defined. When defined by the user all terms read
during consulting are given to this predicate. If the predicate succeeds Prolog will assertTerm2
in the database rather then the read term (Term1). Term2may be a term of a the form ‘?-Goal’
or ‘:- Goal’. Goal is then treated as a directive. IfTerm2is a list all terms of the list are stored
in the database or called (for directives). IfTerm2is of the form below, the system will assert
Clauseand record the indicated source-location with it.

’$source location’( 〈File〉, 〈Line〉): 〈Clause〉

When compiling a module (see chapter5 and the directivemodule/2 ), expand term/2
will first try term expansion/2 in the module being compiled to allow for term-expansion
rules that are local to a module. If there is no local definition, or the local definition fails to
translate the term,expand term/2 will try term expansion/2 in moduleuser . For
compatibility with SICStus and Quintus Prolog, this feature should not be used. See also
expand term/2 , goal expansion/2 andexpand goal/2 .

expand term(+Term1, -Term2)
This predicate is normally called by the compiler to perform preprocessing. First it calls
term expansion/2 . If this predicate fails it performs a grammar-rule translation. If this
fails it returns the first argument.

goal expansion(+Goal1, -Goal2)
Like term expansion/2 , goal expansion/2 provides for macro-expansion of Prolog
source-code. Betweenexpand term/2 and the actual compilation, the body of clauses anal-
ysed and the goals are handed toexpand goal/2 , which uses thegoal expansion/2
hook to do user-defined expansion.

The predicategoal expansion/2 is first called in the module that is being compiled, and
then on theuser module. IfGoal is of the formModule:Goal whereModule is instantiated,
goal expansion/2 is called onGoalusing rules from moduleModulefollowed byuser .

SWI-Prolog 5.5 Reference Manual



68 CHAPTER 4. BUILT-IN PREDICATES

Only goals apearing in the body of clauses when reading a source-file are expanded using mech-
anism, and only if they appear literally in the clause, or as an argument to the meta-predicates
not/1 , call/1 , once/1 , ignore/1 , findall/3 , bagof/3 , setof/3 or forall/2 .
A real predicate definition is required to deal with dynamically constructed calls.

expand goal(+Goal1, -Goal2)
This predicate is normally called by the compiler to perform preprocessing. First it calls
goal expansion/2 . If this fails it returns the first argument.

at initialization( +Goal)
RegisterGoal to be run when the system initialises. Initialisation takes place after reloading a
.qlf (formerly .wic) file as well as after reloading a saved-state. The hooks are run in the order
they were registered. A warning message is issued ifGoal fails, but execution continues. See
alsoat halt/1

at halt(+Goal)
RegisterGoal to be run fromPL cleanup() , which is called when the system halts. The
hooks are run in the reverse order they were registered (FIFO). Success or failure executing a
hook is ignored. If the hook raises an exception this is printed usingprint message/2 . An
attempt to callhalt/[0,1] from a hook is ignored.

initialization( +Goal)
Call Goal and register it usingat initialization/1 . Directives that do other things
than creating clauses, records, flags or setting predicate attributes should normally be written
using this tag to ensure the initialisation is executed when a saved system starts. See also
qsave program/[1,2] .

compiling
Succeeds if the system is compiling source files with the-c option or qcompile/1
into an intermediate code file. Can be used to perform conditional code optimisations in
term expansion/2 (see also the-O option) or to omit execution of directives during com-
pilation.

preprocessor(-Old, +New)
Read the input file via a Unix process that acts as preprocessor. A preprocessor is specified as
an atom. The first occurrence of the string ‘%f’ is replaced by the name of the file to be loaded.
The resulting atom is called as a Unix command and the standard output of this command is
loaded. To use the Unix C preprocessor one should define:

?- preprocessor(Old, ’/lib/cpp -C -P %f’), consult(...).

Old = none

4.3.1 Quick load files

SWI-Prolog supports compilation of individual or multiple Prolog source files into ‘Quick Load Files’.
A ‘Quick Load Files’ (.qlf file) stores the contents of the file in a precompiled format.

SWI-Prolog 5.5 Reference Manual



4.4. LISTING AND EDITOR INTERFACE 69

These files load considerably faster than source files and are normally more compact. They are
machine independent and may thus be loaded on any implementation of SWI-Prolog. Note however
that clauses are stored as virtual machine instructions. Changes to the compiler will generally make
old compiled files unusable.

Quick Load Files are created usingqcompile/1 . They are loaded usingconsult/1 or one
of the other file-loading predicates described in section4.3. If consult is given the explicit.pl file,
it will load the Prolog source. When given the.qlf file, it will load the file. When no extension is
specified, it will load the.qlf file when present and the.pl file otherwise.

qcompile(+File)
Takes a single file specification likeconsult/1 (i.e., accepts constructs like
library(LibFile) and creates a Quick Load File fromFile. The file-extension of
this file is.qlf . The base name of the Quick Load File is the same as the input file.

If the file contains ‘:- consult( +File ) ’, ‘ :- [ +File ] ’ or
:- load files( +File , [qcompile(true), ...]) statements, the referred
files are compiled into the same.qlf file. Other directives will be stored in the.qlf file and
executed in the same fashion as when loading the.pl file.

For term expansion/2 , the same rules as described in section2.10apply.

Conditional execution or optimisation may test the predicatecompiling/0 .

Source references (source file/2 ) in the Quick Load File refer to the Prolog source file
from which the compiled code originates.

4.4 Listing and Editor Interface

SWI-Prolog offers an extensible interface which allows the user to edit objects of the program: predi-
cates, modules, files, etc. The editor interface is implemented byedit/1 and consists of three parts:
locating, selectingandstarting the editor.

Any of these parts may be extended or redefined by adding clauses to various multi-file (see
multifile/1 ) predicates defined in the moduleprolog edit .

The built-in edit specifications foredit/1 (seeprolog edit:locate/3 ) are described be-
low.

Fully specified objects
〈Module〉:〈Name〉/〈Arity〉 Refers a predicate
module(〈Module〉) Refers to a module
file(〈Path〉) Refers to a file
sourcefile(〈Path〉) Refers to a loaded source-file

Ambiguous specifications
〈Name〉/〈Arity〉 Refers this predicate in any module
〈Name〉 Refers to (1) named predicate in any module with any ar-

ity, (2) a (source) file or (3) a module.

edit(+Specification)
First exploitsprolog edit:locate/3 to translateSpecificationinto a list of Locations.
If there is more than one ‘hit’, the user is asked to select from the locations found. Finally,
prolog edit:edit source/1 is used to invoke the user’s preferred editor. Typically,

SWI-Prolog 5.5 Reference Manual



70 CHAPTER 4. BUILT-IN PREDICATES

edit/1 can be handed the name of a predicate, module, basename of a file, XPCE class,
XPCE method, etc.

edit
Edit the ‘default’ file usingedit/1 . The default file is the file loaded with the commandline
option-s or, in windows, the file loaded by double-clicking from the Windows shell.

prolog edit:locate(+Spec, -FullSpec, -Location)
WhereSpecis the specification provided throughedit/1 . This multifile predicate is used to
enumerate locations at with an object satisfying the givenSpeccan be found.FullSpecis unified
with the complete specification for the object. This distinction is used to allow for ambiguous
specifications. For example, ifSpecis an atom, which appears as the base-name of a loaded file
and as the name of a predicate,FullSpecwill be bound tofile (Path) or Name/Arity.

Location is a list of attributes of the location. Normally, this list will contain the term
file (File) and —if available— the termline (Line).

prolog edit:locate(+Spec, -Location)
Same asprolog edit:locate/3 , but only deals with fully-sepecified objects.

prolog edit:edit source(+Location)
Start editor onLocation. Seeprolog edit:locate/3 for the format of a location term.
This multi-file predicate is normally not defined. If it succeeds,edit/1 assumes the editor is
started.

If it fails, edit/1 uses its internal defaults, which are defined by the prolog-flageditor
and/or the environment variableEDITOR. The following rules apply. If the prolog-flag
editor is of the format$〈name〉, the editor is determined by the environment variable〈name〉.
Else, if this flag ispce emacs or built in andXPCE is loaded or can be loaded, the built-in
Emacs clone is used. Else, if the environmentEDITOR is set, this editor is used. Finally,vi is
used as default on Unix systems andnotepad on Windows.

See the default user preferences filedotfiles/dotplrc for examples.

prolog edit:edit command(+Editor, -Command)
Determines howEditor is to be invoked usingshell/1 . Editor is the determined editor (see
edit source/1 ), without the full path specification, and without possible (exe) extension.
Commandis an atom describing the command. The pattern%f is replaced by the full file-name
of the location, and%dby the line number. If the editor can deal with starting at a specified
line, two clauses should be provided, one holding only the%f pattern, and one holding both
patterns.

The default contains definitions forvi , emacs, emacsclient , vim andnotepad (latter
without line-number version).

Please contribute your specifications tojan@swi.psy.uva.nl .

prolog edit:load
Normally not-defined multifile predicate. This predicate may be defined to provide loading
hooks for user-extensions to the edit module. For example, XPCE provides the code below to
load swi edit , containing definitions to locate classes and methods as well as to bind this
package to the PceEmacs built-in editor.

SWI-Prolog 5.5 Reference Manual



4.5. VERIFY TYPE OF A TERM 71

:- multifile prolog_edit:load/0.

prolog_edit:load :-
ensure_loaded(library(swi_edit)).

listing(+Pred)
List specified predicates (when an atom is given all predicates with this name will be listed).
The listing is produced on the basis of the internal representation, thus losing user’s layout and
variable name information. See alsoportray clause/1 .

listing
List all predicates of the database usinglisting/1 .

portray clause(+Clause)
Pretty print a clause. A clause should be specified as a term ‘〈Head〉 :- 〈Body〉’. Facts are
represented as ‘〈Head〉 :- true ’ or simply 〈Head〉. See alsoportray clause/2 .

portray clause(+Stream, +Clause)
Pretty print a clause toStream. Seeportray clause/1 for details.

4.5 Verify Type of a Term

var(+Term)
Succeeds ifTermcurrently is a free variable.

nonvar(+Term)
Succeeds ifTermcurrently is not a free variable.

integer(+Term)
Succeeds ifTermis bound to an integer.

float(+Term)
Succeeds ifTermis bound to a floating point number.

number(+Term)
Succeeds ifTermis bound to an integer or a floating point number.

atom(+Term)
Succeeds ifTermis bound to an atom.

string(+Term)
Succeeds ifTermis bound to a string.

atomic(+Term)
Succeeds ifTermis bound to an atom, string, integer or floating point number.

compound(+Term)
Succeeds ifTermis bound to a compound term. See alsofunctor/3 and =../2.

SWI-Prolog 5.5 Reference Manual



72 CHAPTER 4. BUILT-IN PREDICATES

callable(+Term)
Succeeds ifTerm is bound to an atom or a compound term, so it can be handed without type-
error tocall/1 , functor/3 and =../2.

ground(+Term)
Succeeds ifTermholds no free variables.

cyclic term(+Term)
Succeeds ifTerm contains cycles, i.e. is an infinite term. See alsoacyclic term/1 and
section2.16.4

acyclic term(+Term)
Succeeds ifTermdoes not contain cycles, i.e. can be processed recursively in finite time. See
alsocyclic term/1 and section2.16.

4.6 Comparison and Unification or Terms

4.6.1 Standard Order of Terms

Comparison and unification of arbitrary terms. Terms are ordered in the so called “standard order”.
This order is defined as follows:

1. Variables< Atoms< Strings< Numbers< Terms5

2. Old Variable< New Variable6

3. Atomsare compared alphabetically.

4. Stringsare compared alphabetically.

5. Numbersare compared by value. Integers and floats are treated identically.

6. Compoundterms are first checked on their arity, then on their functor-name (alphabetically) and
finally recursively on their arguments, leftmost argument first.

If the prologflag (seecurrent prolog flag/2 ) iso is defined, all floating point numbers
precede all integers.

+Term1== +Term2
Succeeds ifTerm1is equivalent toTerm2. A variable is only identical to a sharing variable.

+Term1\== +Term2
Equivalent to\+Term1 == Term2 .

+Term1= +Term2
Unify Term1with Term2. Succeeds if the unification succeeds.

4The predicatescyclic term/1 andacyclic term/1 are compatible to SICStus Prolog. Some Prolog systems
supporting cyclic terms useis cyclic/1 .

5Strings might be considered atoms in future versions. See also section4.23
6In fact the variables are compared on their (dereferenced) addresses. Variables living on the global stack are always<

than variables on the local stack. Programs should not rely on the order in which variables are sorted.

SWI-Prolog 5.5 Reference Manual



4.6. COMPARISON AND UNIFICATION OR TERMS 73

unify with occurs check(+Term1, +Term2)
As =/2 , but usingsound-unification. That is, a variable only unifies to a term if this term does
not contain the variable itself. To illustrate this, consider the two goals below:

1 ?- A = f(A).

A = f(f(f(f(f(f(f(f(f(f(...))))))))))
2 ?- unify_with_occurs_check(A, f(A)).

No

I.e. the first creates acyclic-term, which is printed as an infinitely nestedf/1 term (see the
max depth option ofwrite term/2 ). The second executes logically sound unification and
thus fails.

+Term1\= +Term2
Equivalent to\+Term1 = Term2 .

+Term1=@=+Term2
Succeeds ifTerm1is ‘structurally equal’ toTerm2. Structural equivalence is weaker than equiv-
alence (==/2 ), but stronger than unification (=/2 ). Two terms are structurally equal if their
tree representation is identical and they have the same ‘pattern’ of variables. Examples:

a =@= A false
A =@= B true

x(A,A) =@= x(B,C) false
x(A,A) =@= x(B,B) true
x(A,B) =@= x(C,D) true

The predicates=@=/2 and\=@=/2 are cycle-safe. Attributed variables are considered struc-
turally equal iff their attributes are structurally equal.

+Term1\=@= +Term2
Equivalent to‘\+Term1 =@= Term2’ .

+Term1@<+Term2
Succeeds ifTerm1is beforeTerm2in the standard order of terms.

+Term1@=<+Term2
Succeeds if both terms are equal (==/2 ) or Term1 is beforeTerm2 in the standard order of
terms.

+Term1@>+Term2
Succeeds ifTerm1is afterTerm2in the standard order of terms.

+Term1@>=+Term2
Succeeds if both terms are equal (==/2 ) or Term1is afterTerm2in the standard order of terms.

compare(?Order, +Term1, +Term2)
Determine or test theOrder between two terms in the standard order of terms.Order is one of
<, > or =, with the obvious meaning.

SWI-Prolog 5.5 Reference Manual



74 CHAPTER 4. BUILT-IN PREDICATES

?=(@Term1, @Term2)
Decide whether the equality ofTerm1andTerm2can be compared safely, i.e. whether the result
of Term1 == Term2 can change due to further instantiation of either term. It is defined as
by ?=(A,B) :- (A==B ; A B̄), !. . See alsodif/2 .

unifiable(@X, @Y, -Unifier)
If X andYcan unify, unifyUnifier with a list ofVar = Value, representing the bindings required
to makeX andY equivalent.7 This predicate can handle cyclic terms. Attributed variables are
handles as normal variables. Associated hooks arenot executed.

4.7 Control Predicates

The predicates of this section implement control structures. Normally these constructs are translated
into virtual machine instructions by the compiler. It is still necessary to implement these constructs
as true predicates to support meta-calls, as demonstrated in the example below. The predicate finds
all currently defined atoms of 1 character long. Note that the cut has no effect when called via one of
these predicates (see !/0).

one_character_atoms(As) :-
findall(A, (current_atom(A), atom_length(A, 1)), As).

fail
Always fail. The predicatefail/0 is translated into a single virtual machine instruction.

true
Always succeed. The predicatetrue/0 is translated into a single virtual machine instruction.

repeat
Always succeed, provide an infinite number of choice points.

!
Cut. Discard choice points of parent frame and frames created after the parent frame. As of
SWI-Prolog 3.3, the semantics of the cut are compliant with the ISO standard. This implies that
the cut is transparent to;/2 , ->/2 and*->/2 . Cuts appearing in theconditionpart of->/2
and*->/2 as well as in\+/1 are local to the condition.8

t1 :- (a, !, fail ; b). % cuts a/0 and t1/0
t2 :- (a -> b, ! ; c). % cuts b/0 and t2/0
t3 :- call((a, !, fail ; b)). % cuts a/0
t4 :- \+(a, !, fail ; b). % cuts a/0

+Goal1 , +Goal2
Conjunction. Succeeds if both ‘Goal1’ and ‘Goal2’ can be proved. It is defined as (this defini-
tion does not lead to a loop as the second comma is handled by the compiler):

7This predicate was introduced for the implementation ofdif/2 andwhen/2 after discussion with Tom Schrijvers and
Bart Demoen. None of us is really happy with the name and therefore suggestions for a new name are welcome.

8Up to version 4.0.6, the sequence X=!, X acted as a true cut. This feature has been deleted for ISO compliance.

SWI-Prolog 5.5 Reference Manual



4.8. META-CALL PREDICATES 75

Goal1, Goal2 :- Goal1, Goal2.

+Goal1 ; +Goal2
The ‘or’ predicate is defined as:

Goal1 ; _Goal2 :- Goal1.
_Goal1 ; Goal2 :- Goal2.

+Goal1 | +Goal2
Equivalent to;/2 . Retained for compatibility only. New code should use;/2 .

+Condition -> +Action
If-then and If-Then-Else. The->/2 construct commits to the choices made at its left-hand
side, destroying choice-points created inside the clause (by;/2 ), or by goals called by this
clause. Unlike!/0 , the choicepoint of the predicate as a whole (due to multiple clauses) isnot
destroyed. The combination;/2 and->/2 acts as if defines by:

If -> Then; _Else :- If, !, Then.
If -> _Then; Else :- !, Else.
If -> Then :- If, !, Then.

Please note that (If-> Then) acts as (If-> Then ;fail ), making the constructfail if the condition
fails. This unusual semantics is part of the ISO and all de-facto Prolog standards.

+Condition *-> +Action ; +Else
This construct implements the so-called ‘soft-cut’. The control is defined as follows: IfCon-
dition succeeds at least once, the semantics is the same as (Condition, Action). If Condition
does not succeed, the semantics is that of (\+ Condition, Else). In other words, IfCondition
succeeds at least once, simply behave as the conjunction ofConditionandAction, otherwise
executeElse.

The constructA *-> B, i.e. without anElsebranche, is translated as the normal conjunctionA,
B.9

\+ +Goal
Succeeds if ‘Goal’ cannot be proven (mnemonic:+ refers toprovableand the backslash (\ ) is
normally used to indicate negation in Prolog).

4.8 Meta-Call Predicates

Meta call predicates are used to call terms constructed at run time. The basic meta-call mechanism
offered by SWI-Prolog is to use variables as a subclause (which should of course be bound to a valid
goal at runtime). A meta-call is slower than a normal call as it involves actually searching the database
at runtime for the predicate, while for normal calls this search is done at compile time.

9BUG: The decompiler implemented byclause/2 returns this construct as a normal conjunction too.

SWI-Prolog 5.5 Reference Manual



76 CHAPTER 4. BUILT-IN PREDICATES

call(+Goal)
InvokeGoal as a goal. Note that clauses may have variables as subclauses, which is identical
to call/1 .

call(+Goal, +ExtraArg1, . . .)
AppendExtraArg1, ExtraArg2, . . .to the argument list ofGoaland call the result. For example,
call(plus(1), 2, X) will call plus/3 , bindingX to 3.

The call/[2..] construct is handled by the compiler, which implies that redefinition as a predicate
has no effect. The predicatescall/[2-6] are defined as true predicates, so they can be
handled by interpreted code.

apply(+Term, +List)
Append the members ofList to the arguments ofTermand call the resulting term. For example:
apply(plus(1), [2, X]) will call plus(1, 2, X) . apply/2 is incorporated in the
virtual machine of SWI-Prolog. This implies that the overhead can be compared to the overhead
of call/1 . New code should use call/[2..] if the length ofList is fixed, which is more widely
supported and faster because there is no need to build and examine the argument list.

not(+Goal)
Succeeds whenGoal cannot be proven. Retained for compatibility only. New code should use
\+/1 .

once(+Goal)
Defined as:

once(Goal) :-
Goal, !.

once/1 can in many cases be replaced with->/2 . The only difference is how the cut behaves
(see !/0). The following two clauses are identical:

1) a :- once((b, c)), d.
2) a :- b, c -> d.

ignore(+Goal)
CallsGoalasonce/1 , but succeeds, regardless of whetherGoalsucceeded or not. Defined as:

ignore(Goal) :-
Goal, !.

ignore(_).

call with depth limit( +Goal, +Limit, -Result)
If Goal can be proven without recursion deeper thanLimit levels,
call with depth limit/3 succeeds, bindingResult to the deepest recursion level
used during the proof. Otherwise,Resultis unified with depth limit exceeded if the
limit was exceeded during the proof, or the entire predicate fails ifGoal fails without exceeding
Limit.

SWI-Prolog 5.5 Reference Manual



4.8. META-CALL PREDICATES 77

The depth-limit is guarded by the internal machinery. This may differ from the depth computed
based on a theoretical model. For example,true/0 is translated into an inlined virtual machine
instruction. Also,repeat/0 is not implemented as below, but as a non-deterministic foreign
predicate.

repeat.
repeat :-

repeat.

As a result,call with depth limit/3 may still loop inifitly on programs that should
theoretically finish in finite time. This problem can be cured by using Prolog equivalents to
such built-in predicates.

This predicate may be used for theorem-provers to realise techniques likeiterrative deepening.
It was implemented after discussion with Steve Moylesmoyle@ermine.ox.ac.uk .

call cleanup(:Goal, +Catcher, :Cleanup)
CallsGoal. If Goal is completely finished, either by deterministic success, failure, its choice-
point being cut or raising an exception andCatcherunifies to the termination code (see below),
Cleanupis called. Success or failure ofCleanupis ignored and possibly choicepoints it created
are destroyed (asonce/1 ). If cleanup throws an exception this is executed as normal.10

Catcher is unified with a term describing how the call has finished. If this unification fails,
Cleanupis not called.

exit
Goalsucceeded without leaving any choicepoints.

fail
Goal failed.

!
Goal succeeded with choicepoints and these are now discarded by the execution of a cut
(or orther pruning of the search tree such as if-then-else).

exception(Exception)
Goal raised the givenException.

Typical use of this predicate is cleanup of permanent data storage required to executeGoal,
close file-descriptors, etc. The example below provides a non-deterministic search for a term in
a file, closing the stream as needed.

term_in_file(Term, File) :-
open(File, read, In),
call_cleanup(term_in_stream(Term, In), _, close(In)).

term_in_stream(Term, In) :-
repeat,
read(In, T),

10BUG: During the execution ofCleanup, garbage collection and stack-shifts are disabled.

SWI-Prolog 5.5 Reference Manual



78 CHAPTER 4. BUILT-IN PREDICATES

( T == end_of_file
-> !, fail
; T = Term
).

Note that this predicate is impossible to implement in Prolog other then reading all terms into a
list, close the file and callmember/2 because withoutcall cleanup/3 there is no way to
gain control if the choicepoint left by repeat is killed by a cut.

This predicate is a SWI-Prolog extension. See alsocall cleanup/2 for compatibility to
other Prolog implementations.

call cleanup(:Goal, :Cleanup)
This predicate is equivalent tocall cleanup (Goal, , Cleanup), calling Cleanupregard-
less of the reason for termination and without providing information. This predicate provides
compatibility to a number of other Prolog implementations.

4.9 ISO compliant Exception handling

SWI-Prolog defines the predicatescatch/3 andthrow/1 for ISO compliant raising and catching of
exceptions. In the current implementation (4.0.6), most of the built-in predicates generate exceptions,
but some obscure predicates merely print a message, start the debugger and fail, which was the normal
behaviour before the introduction of exceptions.

catch(:Goal, +Catcher, :Recover)
Behaves ascall/1 if no exception is raised when executingGoal. If a exception is raised
using throw/1 while Goal executes, and theGoal is the innermost goal for whichCatcher
unifies with the argument ofthrow/1 , all choicepoints generated byGoal are cut, the system
backtracks to the start ofcatch/3 while preserving the thrown exception term andRecoveris
called as incall/1 .

The overhead of calling a goal throughcatch/3 is very comparable tocall/1 . Recovery
from an exception is much slower, especially if the exception-term is large due to the copying
thereof.

throw(+Exception)
Raise an exception. The system looks for the innermostcatch/3 ancestor for whichException
unifies with theCatcherargument of thecatch/3 call. Seecatch/3 for details.

ISO demandsthrow/1 to make a copy ofException, walk up the stack to acatch/3 call,
backtrack and try to unify the copy ofExceptionwith Catcher. SWI-Prolog delays making a
copy of Exceptionand backtracking until it actually found a matchingcatch/3 goal. The
advantage is that we can start the debugger at the first possible location while preserving the
entire exception context if there is no matchingcatch/3 goal. This aproach can lead to
different behaviour ifGoal andCatcherof catch/3 call share variables. We assume this to
be highly unlikely and could not think of a scenario where this is useful.11

11I’d like to acknowledge Bart Demoen for his clarifications on these matters.

SWI-Prolog 5.5 Reference Manual



4.9. ISO COMPLIANT EXCEPTION HANDLING 79

If an exception is raised in a callback from C (see chapter9) and not caught in the same
call-back, PL next solution() fails and the exception context can be retrieved using
PL exception() .

4.9.1 Debugging and exceptions

Before the introduction of exceptions in SWI-Prolog a runtime error was handled by printing an
error message, after which the predicate failed. If the prologflag (seecurrent prolog flag/2 )
debug on error was in effect (default), the tracer was switched on. The combination of the error
message and trace information is generally sufficient to locate the error.

With exception handling, things are different. A programmer may wish to trap an exception using
catch/3 to avoid it reaching the user. If the exception is not handled by user-code, the interactive
toplevel will trap it to prevent termination.

If we do not take special precautions, the context information associated with an unexpected
exception (i.e, a programming error) is lost. Therefore, if an exception is raised, which is not caught
usingcatch/3 and the toplevel is running, the error will be printed, and the system will enter trace
mode.

If the system is in an non-interactive callback from foreign code and there is nocatch/3 active
in the current context, it cannot determine whether or not the exception will be caught by the external
routine calling Prolog. It will then base its behaviour on the prologflag debugon error:

• current prolog flag(debugon error, false)
The exception does not trap the debugger and is returned to the foreign routine calling Prolog,
where it can be accessed usingPL exception() . This is the default.

• current prolog flag(debugon error, true)
If the exception is not caught by Prolog in the current context, it will trap the tracer to help
analysing the context of the error.

While looking for the context in which an exception takes place, it is advised to switch on debug
mode using the predicatedebug/0 .

4.9.2 The exception term

Builtin predicates generates exceptions using a termerror (Formal, Context). The first argument
is the ‘formal’ description of the error, specifying the class and generic defined context information.
When applicable, the ISO error-term definition is used. The second part describes some additional
context to help the programmer while debugging. In its most generic form this is a term of the form
context (Name/Arity, Message), whereName/Arity describes the built-in predicate that raised the
error, andMessageprovides an additional description of the error. Any part of this structure may be a
variable if no information was present.

4.9.3 Printing messages

The predicateprint message/2 may be used to print a message term in a human readable for-
mat. The other predicates from this section allow the user to refine and extend the message system.
The most common usage ofprint message/2 is to print error messages from exceptions. The
code below prints errors encountered during the execution ofGoal, without further propagating the
exception and without starting the debugger.

SWI-Prolog 5.5 Reference Manual



80 CHAPTER 4. BUILT-IN PREDICATES

...,
catch(Goal, E,

( print_message(error, E),
fail

)),
...

Another common use is to definedmessage hook/3 for printing messages that are normallysilent,
suppressing messages, redirecting messages or make something happen in addition to printing the
message.

print message(+Kind, +Term)
The predicateprint message/2 is used to print messages, notably from exceptions in a
human-readable format.Kind is one of informational , banner , warning , error ,
help or silent . A human-readable message is printed to the streamuser error .

If the prolog flag (seecurrent prolog flag/2 ) verbose is silent , messages with
Kind informational , or banner are treated as silent. See-q .

This predicate first translates theTerm into a list of ‘message lines’ (see
print message lines/3 for details). Next it will call the hookmessage hook/3 to
allow the user intercepting the message. Ifmessage hook/3 fails it will print the message
unlessKind is silent.

The print message/2 predicate and its rules are in the file
〈plhome〉/boot/messages.pl , which may be inspected for more information on the
error messages and related error terms.

See alsomessage to string/2 .

print messagelines(+Stream, +Prefix, +Lines)
Print a message (seeprint message/2 ) that has been translated to a list of message ele-
ments. The elements of this list are:

〈Format〉-〈Args〉
WhereFormat is an atom andArgs is a list of format argument. Handed toformat/3 .

flush
If this appears as the last element,Streamis flushed (seeflush output/1 ) and no final
newline is generated.

at same line
If this appears as first element, no prefix is printed for the first line and the line-position is
not forced to 0 (seeformat/1 , ˜N ).

〈Format〉
Handed toformat/3 asformat(Stream, Format, []) .

nl
A new line is started and if the message is not complete thePrefix is printed too.

See alsoprint message/2 andmessage hook/3 .

SWI-Prolog 5.5 Reference Manual



4.10. HANDLING SIGNALS 81

messagehook(+Term, +Kind, +Lines)
Hook predicate that may be define in the moduleuser to intercept messages from
print message/2 . TermandKind are the same as passed toprint message/2 . Lines
is a list of format statements as described withprint message lines/3 . See also
message to string/2 .

This predicate should be defined dynamic and multifile to allow other modules defining clauses
for it too.

messageto string(+Term, -String)
Translates a message-term into a string object (see section4.23. Primarily intended to write
messages to Windows in XPCE (see section1.5) or other GUI environments.

4.10 Handling signals

As of version 3.1.0, SWI-Prolog is capable to handle software interrupts (signals) in Prolog as well as
in foreign (C) code (see section9.6.11).

Signals are used to handle internal errors (execution of a non-existing CPU intruction, arithmetic
domain errors, illegal memory access, resource overflow, etc.), as well as for dealing asynchronous
inter-process communication.

Signals are defined by the POSIX standard and part of all Unix machines. The MS-Windows
Win32 provides a subset of the signal handling routines, lacking the vital funtionality to raise a signal
in another thread for achieving asynchronous inter-process (or inter-thread) communication (Unix
kill() function).

on signal(+Signal, -Old, :New)
Determines the reaction onSignal. Old is unified with the old behaviour, while the behaviour is
switched toNew. As with similar environment-control predicates, the current value is retrieved
usingon signal(Signal, Current, Current) .

The action description is an atom denoting the name of the predicate that will be called if
Signalarrives.on signal/3 is a meta predicate, which implies that〈Module〉:〈Name〉 refers
the〈Name〉/1 in the module〈Module〉.
Two predicate-names have special meaning.throw implies Prolog will map the signal onto a
Prolog exception as described in section4.9. default resets the handler to the settings active
before SWI-Prolog manipulated the handler.

Signals bound to a foreign function throughPL signal() are reported using the term
$foreign function (Address).

After receiving a signal mapped tothrow , the exception raised has the structure

error(signal( 〈SigName〉, 〈SigNum〉), 〈Context〉)

One possible usage of this is, for example, to limit the time spent on proving a goal. This
requires a little C-code for setting the alarm timer (see chapter9):

#include <SWI-Prolog.h>
#include <unistd.h>

SWI-Prolog 5.5 Reference Manual



82 CHAPTER 4. BUILT-IN PREDICATES

foreign_t
pl_alarm(term_t time)
{ double t;

if ( PL_get_float(time, &t) )
{ alarm((long)(t+0.5));

PL_succeed;
}

PL_fail;
}

install_t
install()
{ PL_register_foreign("alarm", 1, pl_alarm, 0);
}

Next, we can define the Prolog below. This will runGoal just asonce/1 , throwing the excep-
tion error (signal(alrm, ), ) if a timeout occurs.12

:- load_foreign_library(alarm).

:- on_signal(alrm, _, throw).

:- module_transparent
call_with_time_limit/2.

call_with_time_limit(Goal, MaxTime) :-
alarm(MaxTime),
call_cleanup(Goal, _, alarm(0)), !.

The signal names are defined by the C-Posix standards as symbols of the form
SIG 〈SIGNAME〉. The Prolog name for a signal is the lowercase version of〈SIGNAME〉. The
predicatecurrent signal/3 may be used to map between names and signals.

Initially, some signals are mapped tothrow , while all other signals aredefault . The fol-
lowing signals throw an exception:ill , fpe , segv , pipe , alrm , bus , xcpu , xfsz and
vtalrm .

current signal(?Name, ?Id, ?Handler)
Enumerate the currently defined signal handling.Nameis the signal name,Id is the numerical
identifier andHandler is the currently defined handler (seeon signal/3 ).

12Note thatcall with depth limit/2 is defined intime , part of the ‘clib’ package. The version provided in this
library runs on POSIX systems as well as MS-Windows and can schedule multiple concurrent alarms.

SWI-Prolog 5.5 Reference Manual



4.11. THE ‘BLOCK’ CONTROL-STRUCTURE 83

4.10.1 Notes on signal handling

Before deciding to deal with signals in your application, please consider the following:

• Portibility
On MS-Windows, the signal interface is severely limited. Different Unix brands support differ-
ent sets of signals, and the relation between signal name and number may vary.

• Safety
Signal handling is not completely safe in the current implementation, especially ifthrow is
used in combination with external foreign code. The system will use the C longjmp() construct
to direct control to the innermostPL next solution() , thus forcing an external procedure
to be abandoned at an arbitrary moment. Most likely not all SWI-Prologs own foreign code
is (yet) safe too. For the multi-threaded versions this is even worse: signals can easily violate
thread synchronisation consistency.

The C-interface described in section9.6.11provides the optionPL SIGSYNCfor registering
a signal handler that delays delivery of signals to a safe point. Unfortunately this may cause
signals to be delayed for a long time if Prolog is executing foreign code.

• Garbage Collection
The garbage collector will block all signals that are handled by Prolog. While handling a signal,
the garbage-collector is disabled.

• Time of delivery
Normally delivery is immediate (or as defined by the operating system used). Signals are
blocked when the garbage collector is active, and internally delayed if they occur within in
a ‘critical section’. The critical sections are generally very short.

4.11 The ‘block’ control-structure

Theblock/3 predicate and friends have been introduced before ISO compatiblecatch/3 excep-
tion handling for compatibility with some Prolog implementation. The only feature not covered by
catch/3 and throw/1 is the posibility to execute global cuts. New code should usecatch/3
andthrow/1 to deal with exceptions.

block(+Label, +Goal, -ExitValue)
ExecuteGoal in a block. Label is the name of the block.Label is normally an atom, but the
system imposes no type constraints and may even be a variable.ExitValueis normally unified
to the second argument of anexit/2 call invoked byGoal.

exit(+Label, +Value)
Calling exit/2 makes the innermostblockwhich Labelunifies exit. The block’sExitValueis
unified withValue. If this unification fails the block fails.

fail(+Label)
Calling fail/1 makes the innermostblockwhichLabelunifies fail immediately. Implemented
as

fail(Label) :- !(Label), fail.

SWI-Prolog 5.5 Reference Manual



84 CHAPTER 4. BUILT-IN PREDICATES

! (+Label)
Cut all choice-points created since the entry of the innermostblockwhichLabelunifies.

4.12 DCG Grammar rules

Grammar rules form a comfortable interface todifference-lists. They are designed both to support
writing parsers that build a parse-tree from a list as for generating a flat list from a term. Unfortunately,
Definite Clause Grammar (DCG) handling is not part of the Prolog standard. Most Prolog engines
implement DCG, but the details differ slightly.

Grammar rules look like ordinary clauses using-->/2 for separating the head and body rather
then :-/2 . Expanding grammar rules is done byexpand term/2 , which adds two additional
argument to each term for representing the difference list. We will illustrate the behaviour by defining
a rule-set for parsing an integer.

integer(I) -->
digit(D0),
digits(D),
{ number_chars(I, [D0|D])
}.

digits([D|T]) -->
digit(D), !,
digits(T).

digits([]) -->
[].

digit(D) -->
[D],
{ code_type(D, digit)
}.

The body of a grammar rule can contain three types of terms. A compound term interpreted as a
reference to a grammar-rule. Code between{ . . .} is interpreted as a reference to ordinary Prolog
code and finally, a list is interpreted as a sequence of literals. The Prolog control-constructs (\+/1 ,
->/2 , ;// 2, ,/2 and!/0 ) can be used in grammar rules.

Grammar rule-sets are called using the builtin predicatesphrase/2 andphrase/3 :

phrase(+RuleSet, +InputList)
Equivalent tophrase( RuleSet , InputList , []) .

phrase(+RuleSet, +InputList, -Rest)
Activate the rule-set with given name. ‘InputList’ is the list of tokens to parse, ‘Rest’ is unified
with the remaining tokens if the sentence is parsed correctly. The example below calls the
rule-set ‘integer’ defined above.

?- phrase(integer(X), "42 times", Rest).

SWI-Prolog 5.5 Reference Manual



4.13. DATABASE 85

X = 42
Rest = [32, 116, 105, 109, 101, 115]

4.13 Database

SWI-Prolog offers three different database mechanisms. The first one is the common assert/retract
mechanism for manipulating the clause database. As facts and clauses asserted usingassert/1 or
one of its derivatives become part of the program these predicates compile the term given to them.
retract/1 and retractall/1 have to unify a term and therefore have to decompile the pro-
gram. For these reasons the assert/retract mechanism is expensive. On the other hand, once compiled,
queries to the database are faster than querying the recorded database discussed below. See also
dynamic/1 .

The second way of storing arbitrary terms in the database is using the “recorded database”. In this
database terms are associated with akey. A key can be an atom, integer or term. In the last case only
the functor and arity determine the key. Each key has a chain of terms associated with it. New terms
can be added either at the head or at the tail of this chain. This mechanism is considerably faster than
the assert/retract mechanism as terms are not compiled, but just copied into the heap.

The third mechanism is a special purpose one. It associates an integer or atom with a key, which
is an atom, integer or term. Each key can only have one atom or integer associated with it. It is faster
than the mechanisms described above, but can only be used to store simple status information like
counters, etc.

abolish(:PredicateIndicator)
Removes all clauses of a predicate with functorFunctorand arityArity from the database. All
predicate attributes (dynamic, multifile, index, etc.) are reset to their defaults. Abolishing an
imported predicate only removes the import link; the predicate will keep its old definition in its
definition module.

According to the ISO standard,abolish/1 can only be applied to dynamic procedures.
This is odd, as for dealing with dynamic procedures there is alreadyretract/1 and
retractall/1 . The abolish/1 predicate has been introduced in DEC-10 Prolog pre-
cisely for dealing with static procedures. In SWI-Prolog,abolish/1 works on static proce-
dures, unless the prolog flagiso is set totrue .

It is advised to useretractall/1 for erasing all clauses of a dynamic predicate.

abolish(+Name, +Arity)
Same asabolish(Name/Arity) . The predicateabolish/2 conforms to the Edinburgh
standard, whileabolish/1 is ISO compliant.

redefine systempredicate(+Head)
This directive may be used both in moduleuser and in normal modules to redefine any system
predicate. If the system definition is redefined in moduleuser , the new definition is the default
definition for all sub-modules. Otherwise the redefinition is local to the module. The system
definition remains in the modulesystem .

Redefining system predicate facilitates the definition of compatibility packages. Use in other
context is discouraged.

SWI-Prolog 5.5 Reference Manual



86 CHAPTER 4. BUILT-IN PREDICATES

retract(+Term)
WhenTermis an atom or a term it is unified with the first unifying fact or clause in the database.
The fact or clause is removed from the database.

retractall( +Head)
All facts or clauses in the database for which theheadunifies withHeadare removed.

assert(+Term)
Assert a fact or clause in the database.Term is asserted as the last fact or clause of the corre-
sponding predicate.

asserta(+Term)
Equivalent toassert/1 , butTermis asserted as first clause or fact of the predicate.

assertz(+Term)
Equivalent toassert/1 .

assert(+Term, -Reference)
Equivalent toassert/1 , but Referenceis unified with a unique reference to the asserted
clause. This key can later be used withclause/3 or erase/1 .

asserta(+Term, -Reference)
Equivalent toassert/2 , butTermis asserted as first clause or fact of the predicate.

assertz(+Term, -Reference)
Equivalent toassert/2 .

recorda(+Key, +Term, -Reference)
AssertTermin the recorded database under keyKey. Key is an integer, atom or term.Reference
is unified with a unique reference to the record (seeerase/1 ).

recorda(+Key, +Term)
Equivalent torecorda( Key, Value , ) .

recordz(+Key, +Term, -Reference)
Equivalent torecorda/3 , but puts theTermat the tail of the terms recorded underKey.

recordz(+Key, +Term)
Equivalent torecordz( Key, Value , ) .

recorded(+Key, -Value, -Reference)
Unify Valuewith the first term recorded underKeywhich does unify.Referenceis unified with
the memory location of the record.

recorded(+Key, -Value)
Equivalent torecorded( Key, Value , ) .

erase(+Reference)
Erase a record or clause from the database.Referenceis an integer returned byrecorda/3 or
recorded/3 , clause/3 , assert/2 , asserta/2 or assertz/2 . Other integers might

SWI-Prolog 5.5 Reference Manual



4.13. DATABASE 87

conflict with the internal consistency of the system. Erase can only be called once on a record
or clause. A second call also might conflict with the internal consistency of the system.13

flag(+Key, -Old, +New)
Key is an atom, integer or term. As with the recorded database, ifKey is a term, only the name
and arity are used to locate the flag. UnifyOld with the old value associated withKey. If the
key is used for the first timeOld is unified with the integer 0. Then store the value ofNew,
which should be an integer, float, atom or arithmetic expression, underKey. flag/3 is a fast
mechanism for storing simple facts in the database. The flag database is shared between threads
and updates are atomic, making it suitable for generating unique integer counters.14

4.13.1 Update view

Traditionally, Prolog systems used theimmediate update view: new clauses became visible to predi-
cates backtracking over dynamic predicates immediately and retracted clauses became invisible im-
mediately.

Starting with SWI-Prolog 3.3.0 we adhere thelogical update view, where backtrackable predicates
that enter the definition of a predicate will not see any changes (either caused byassert/1 or
retract/1 ) to the predicate. This view is the ISO standard, the most commonly used and the
most ‘safe’.15 Logical updates are realised by keeping reference-counts on predicates andgeneration
information on clauses. Each change to the database causes an increment of the generation of the
database. Each goal is tagged with the generation in which it was started. Each clause is flagged
with the generation it was created as well as the generation it was erased. Only clauses with ‘created’
. . . ‘erased’ interval that encloses the generation of the current goal are considered visible.

4.13.2 Indexing databases

By default, SWI-Prolog, as most other implementations, indexes predicates on their first argument.
SWI-Prolog allows indexing on other and multiple arguments using the declarationindex/1 .

For advanced database indexing, it defineshash term/2 :

hash term(+Term, -HashKey)
If Term is a ground term (seeground/1 ), HashKeyis unified with a positive integer value
that may be used as a hash-key to the value. IfTerm is not ground, the predicate succeeds
immediately, leavingHashKeyan unbound variable.

This predicate may be used to build hash-tables as well as to exploit argument-indexing to find
complex terms more quickly.

The hash-key does not rely on temporary information like addresses of atoms and may be as-
sumed constant over different invocations and versions of SWI-Prolog. Thehash term/2
predicate is cycle-safe.

13BUG: The system should have a special type for pointers, thus avoiding the Prolog user having to worry about consis-
tency matters. Currently some simple heuristics are used to determine whether a reference is valid.

14The flag/3 predicate is not portable. Non-backtrackable global variables (nb setval/2 ) and non-backtrackable
assignment (nb setarg/3 ) are more widely recognised special-purpose alternatives for non-backtrackable and/or global
state.

15For example, using the immediate update view, no call to a dynamic predicate is deterministic.

SWI-Prolog 5.5 Reference Manual



88 CHAPTER 4. BUILT-IN PREDICATES

4.14 Declaring predicates properties

This section describes directives which manipulate attributes of predicate definitions. The functors
dynamic/1 , multifile/1 anddiscontiguous/1 are operators of priority 1150 (seeop/3 ),
which implies the list of predicates they involve can just be a comma separated list:

:- dynamic
foo/0,
baz/2.

On SWI-Prolog all these directives are just predicates. This implies they can also be called by a pro-
gram. Do not rely on this feature if you want to maintain portability to other Prolog implementations.

dynamic +Name/+Arity, . . .
Informs the interpreter that the definition of the predicate(s) may change during execution (us-
ing assert/1 and/orretract/1 ). In the multi-threaded version, the clauses of dynamic
predicates are shared between the threads. The directivethread local/1 provides an alter-
native where each threads has its own clause-list for the predicate. Dynamic predicates can be
turned into static ones usingcompile predicates/1 .

compile predicates(:ListOfNameArity)
Compile a list of specified dynamic predicates (seedynamic/1 andassert/1 ) into normal
static predicates. This call tells the Prolog environment the definition will not change anymore
and further calls toassert/1 or retract/1 on the named predicates raise a permission
error. This predicate is designed to deal with parts of the program that is generated at runtime
but does not change during the remainder of the program execution.16

multifile +Name/+Arity, . . .
Informs the system that the specified predicate(s) may be defined over more than one file. This
stopsconsult/1 from redefining a predicate when a new definition is found.

discontiguous+Name/+Arity, . . .
Informs the system that the clauses of the specified predicate(s) might not be together in the
source file. See alsostyle check/1 .

index(+Head)
Index the clauses of the predicate with the same name and arity asHeadon the specified argu-
ments.Head is a term of which all arguments are either ‘1’ (denoting ‘index this argument’)
or ‘0’ (denoting ‘do not index this argument’). Indexing has no implications for the semantics
of a predicate, only on its performance. If indexing is enabled on a predicate a special purpose
algorithm is used to select candidate clauses based on the actual arguments of the goal. This
algorithm checks whether indexed arguments might unify in the clause head. Only atoms, in-
tegers and compound terms are considered. Compound terms are indexed on the combination
of their name and arity. Indexing is very useful for predicates with many clauses representing
facts.

16The specification of this predicate is from Richard O’Keefe. The implementation is allowed to optimise the predicate.
This is not yet implemented. In multi-threaded Prolog however, static code runs faster as it does not require synchronization.
This is particulary true on SMP hardware.

SWI-Prolog 5.5 Reference Manual



4.15. EXAMINING THE PROGRAM 89

Due to the representation technique used at most 4 arguments can be indexed. All indexed
arguments should be in the first 32 arguments of the predicate. If more than 4 arguments are
specified for indexing only the first 4 will be accepted. Arguments above 32 are ignored for
indexing.

By default all predicates with〈arity〉 ≥ 1 are indexed on their first argument. It is possible to
redefine indexing on predicates that already have clauses attached to them. This will initiate
a scan through the predicates clause list to update the index summary information stored with
each clause.

If—for example—one wants to represents sub-types using a fact list ‘subtype(Sub, Super)’ that
should be used both to determine sub- and super types one should declare subtype/2 as follows:

:- index(sub_type(1, 1)).

sub_type(horse, animal).
...
...

Note that this type of indexing makes selecting clauses much faster but remainslinear with
respect to the number of clauses, while hashing as described withhash/1 provides constant
access time.

hash(+Head)
Index the given predicate by hashing on the first argument. This is done by default on any pred-
icate with more than 5 clauses having a first argument that can be indexed and at most two that
can not be indexed. On dynamic predicates the hash-table is resized as the number of clauses
grows, providing roughly constant-time access regardless of the number of clauses predicates
that can be indexed on the first argument. See alsoindex/1 andpredicate property/2 .

4.15 Examining the program

current atom(-Atom)
Successively unifiesAtomwith all atoms known to the system. Note thatcurrent atom/1
always succeeds ifAtomis instantiated to an atom.

current blob(?Blob, ?Type)
Examine the type or enumerate blobs of the givenType. Typed blobs are supported through
the foreign language interface for storing arbitrary BLOBS (Binary Large Object) or handles to
external entities. See section9.6.6for details.

current functor(?Name, ?Arity)
Successively unifiesNamewith the name andArity with the arity of functors known to the
system.

current flag(-FlagKey)
Successively unifiesFlagKeywith all keys used for flags (seeflag/3 ).

current key(-Key)
Successively unifiesKeywith all keys used for records (seerecorda/3 , etc.).

SWI-Prolog 5.5 Reference Manual



90 CHAPTER 4. BUILT-IN PREDICATES

current predicate(?Name, ?Head)
Successively unifiesNamewith the name of predicates currently defined andHeadwith the
most general term built fromNameand the arity of the predicate. This predicate succeeds for
all predicates defined in the specified module, imported to it, or in one of the modules from
which the predicate will be imported if it is called.

current predicate(:Name/Arity)
ISO compliant implementation of current predicate/2 . Unlike
current predicate/2 , the current implementation ofcurrent predicate/1
does not consider predicates that can be autoloaded ‘current’.

predicate property( :Head, ?Property)
Succeeds ifHeadrefers to a predicate that has propertyProperty. Can be used to test whether a
predicate has a certain property, obtain all properties known forHead, find all predicates having
propertyor even obtaining all information available about the current program.Propertyis one
of:

built in
Is true if the predicate is locked as a built-in predicate. This implies it cannot be redefined
in its definition module and it can normally not be seen in the tracer.

dynamic
Is true if assert/1 andretract/1 may be used to modify the predicate. This prop-
erty is set usingdynamic/1 .

exported
Is true if the predicate is in the public list of the context module.

imported from(Module)
Is true if the predicate is imported into the context module from moduleModule.

file(FileName)
Unify FileNamewith the name of the source file in which the predicate is defined. See
alsosource file/2 .

foreign
Is true if the predicate is defined in the C language.

indexed(Head)
Predicate is indexed (seeindex/1 ) according toHead. Head is a term whose name
and arity are identical to the predicate. The arguments are unified with ‘1’ for indexed
arguments, ‘0’ otherwise.

interpreted
Is true if the predicate is defined in Prolog. We return true on this because, although the
code is actually compiled, it is completely transparent, just like interpreted code.

line count(LineNumber)
Unify LineNumberwith the line number of the first clause of the predicate. Fails if the
predicate is not associated with a file. See alsosource file/2 .

multifile
Is true there may be multiple (or no) file providing clauses for the predicate. This property
is set usingmultifile/1 .

SWI-Prolog 5.5 Reference Manual



4.15. EXAMINING THE PROGRAM 91

nodebug
Details of the predicate are not shown by the debugger. This is the default for
builtin predicates. User predicates can be compiled this way using the Prolog flag
generate debug info .

notrace
Do not show ports of this predicate in the debugger.

number of clauses(ClauseCount)
Unify ClauseCountto the number of clauses associated with the predicate. Fails for for-
eign predicates.

thread local
If true (only possible on the multi-threaded version) each thread has its own clauses for
the predicate. This property is set usingthread local/1 .

transparent
Is true if the predicate is declared transparent using themodule transparent/1 dec-
laration.

undefined
Is true if a procedure definition block for the predicate exists, but there are no clauses for
it and it is not declared dynamic or multifile. This is true if the predicate occurs in the
body of a loaded predicate, an attempt to call it has been made via one of the meta-call
predicates or the predicate had a definition in the past. See the library packagecheck for
example usage.

volatile
If true, the clauses are not saved into a saved-state byqsave program/[1,2] . This
property is set usingvolatile/1 .

dwim predicate(+Term, -Dwim)
‘Do What I Mean’ (‘dwim’) support predicate.Termis a term, which name and arity are used as
a predicate specification.Dwim is instantiated with the most general term built fromNameand
the arity of a defined predicate that matches the predicate specified byTerm in the ‘Do What
I Mean’ sense. Seedwim match/2 for ‘Do What I Mean’ string matching. Internal sys-
tem predicates are not generated, unlessstyle check(+dollar) is active. Backtracking
provides all alternative matches.

clause(?Head, ?Body)
Succeeds whenHeadcan be unified with a clause head andBodywith the corresponding clause
body. Gives alternative clauses on backtracking. For factsBodyis unified with the atomtrue.
Normally clause/2 is used to find clause definitions for a predicate, but it can also be used
to find clause heads for some body template.

clause(?Head, ?Body, ?Reference)
Equivalent toclause/2 , but unifiesReferencewith a unique reference to the clause (see also
assert/2 , erase/1 ). If Referenceis instantiated to a reference the clause’s head and body
will be unified with HeadandBody.

nth clause(?Pred, ?Index, ?Reference)
Provides access to the clauses of a predicate using their index number. Counting starts at 1.

SWI-Prolog 5.5 Reference Manual



92 CHAPTER 4. BUILT-IN PREDICATES

If Referenceis specified it unifiesPred with the most general term with the same name/arity
as the predicate andIndexwith the index-number of the clause. Otherwise the name and arity
of Pred are used to determine the predicate. IfIndex is providedReferencewill be unified
with the clause reference. IfIndex is unbound, backtracking will yield both the indices and
the references of all clauses of the predicate. The following example finds the 2nd clause of
member/2 :

?- nth_clause(member(_,_), 2, Ref), clause(Head, Body, Ref).

Ref = 160088
Head = system : member(G575, [G578|G579])
Body = member(G575, G579)

clauseproperty(+ClauseRef, -Property)
Queries properties of a clause.ClauseRefis a reference to a clause as produced byclause/3 ,
nth clause/3 or prolog frame attribute/3 . Propertyis one of the following:

file(FileName)
Unify FileNamewith the name of the source file in which the clause is defined. Fails if
the clause is not associated to a file.

line count(LineNumber)
Unify LineNumberwith the line number of the clause. Fails if the clause is not associated
to a file.

fact
True if the clause has no body.

erased
True if the clause has been erased, but not yet reclaimed because it is referenced.

4.16 Input and output

SWI-Prolog provides two different packages for input and output. The native I/O system is based
on the ISO standard predicatesopen/3 , close/1 and friends.17 Being more widely portable and
equiped with a clearer and more robust specification, new code is encouraged to use these predicates
for manipulation of I/O streams.

Section4.16.2describestell/1 , see/1 and friends, providing I/O in the spirit of the outdated
Edinburgh standard. These predicates are layered on top of the ISO predicates. Both packages are
fully integrated; the user may switch freely between them.

4.16.1 ISO Input and Output Streams

The predicates described in this section provide ISO compliant I/O, where streams are explicitly cre-
ated using the predicateopen/3 . The resulting stream identifier is then passed as a parameter to the
reading and writing predicates to specify the source or destination of the data.

This schema is not vulnerable to filename and stream ambiguities as well as changes to the work-
ing directory. New code is adviced to use these predicates to manage input and output streams.

17Actually based on Quintus Prolog, providing this interface before the ISO standard existed.

SWI-Prolog 5.5 Reference Manual



4.16. INPUT AND OUTPUT 93

open(+SrcDest, +Mode, -Stream, +Options)
ISO compliant predicate to open a stream.SrcDesis either an atom, specifying a file, or a
term ‘pipe( Command) ’, like see/1 andtell/1 . Modeis one ofread , write , append
or update . Modeappend opens the file for writing, positioning the file-pointer at the end.
Modeupdate opens the file for writing, positioning the file-pointer at the beginning of the file
without truncating the file.Streamis either a variable, in which case it is bound to an integer
identifying the stream, or an atom, in which case this atom will be the stream identifier.18 The
Optionslist can contain the following options:

type(Type)
Using typetext (default), Prolog will write a text-file in an operating-system compatible
way. Using typebinary the bytes will be read or written without any translation. See
also the optionencoding .

alias(Atom)
Gives the stream a name. Below is an example. Be careful with this option as stream-
names are global. See alsoset stream/2 .

?- open(data, read, Fd, [alias(input)]).

...,
read(input, Term),
...

encoding(Encoding)
Define the encoding used for reading and writing text to this stream. The default encoding
for type text is derived from the Prolog flagencoding . For binary streams the
default encoding isoctet . For details on encoding issues, see section2.17.1.

bom(Bool)
Check for a BOM (Byte Order Marker) or write one. If omitted, the default istrue
for moderead and false for modewrite . See alsostream property/2 and
especially section2.17.1for a discussion on this feature.

eof action(Action)
Defines what happens if the end of the input stream is reached. Actioneof code makes
get0/1 and friends return -1 andread/1 and friends return the atomend of file .
Repetitive reading keeps yielding the same result. Actionerror is like eof code , but
repetitive reading will raise an error. With actionreset , Prolog will examine the file
again and return more data if the file has grown.

buffer(Buffering)
Defines output buffering. The atomfull (default) defines full buffering,line buffering
by line, andfalse implies the stream is fully unbuffered. Smaller buffering is useful
if another process or the user is waiting for the output as it is being produced. See also
flush output/[0,1] . This option is not an ISO option.

closeon abort(Bool)
If true (default), the stream is closed on an abort (seeabort/0 ). If false , the stream

18New code should use thealias (Alias) option for compatibility to the ISO standard

SWI-Prolog 5.5 Reference Manual



94 CHAPTER 4. BUILT-IN PREDICATES

is not closed. If it is an output stream, it will be flushed however. Useful for logfiles and
if the stream is associated to a process (using thepipe/1 construct).

lock(LockingMode)
Try to obtain a lock on the open file. Default isnone , which does not lock the file. The
value read or shared means other processes may read the file, but not write it. The
valuewrite or exclusive means no other process may read or write the file.
Locks are acquired through the POSIX function fcntl() using the commandF SETLKW,
which makes a blocked call wait for the lock to be released. Please note that fcntl() locks
areadvisoryand therefore only other applications using the same advisory locks honour
your lock. As there are many issues around locking in Unix, expecially related to NFS
(network file system), please study the fcntl() manual page before trusting your locks!
The lock option is a SWI-Prolog extension.

The optionreposition is not supported in SWI-Prolog. All streams connected to a file may
be repositioned.

open(+SrcDest, +Mode, ?Stream)
Equivalent toopen/4 with an empty option-list.

open null stream(?Stream)
Open a stream that produces no output. All counting functions are enabled on such a stream.
An attempt to read from a null-stream will immediately signal end-of-file. Similar to Unix
/dev/null . Streamcan be an atom, giving the null-stream an alias name.

close(+Stream)
Close the specified stream. IfStreamis not open an error message is displayed. If the closed
stream is the current input or output stream the terminal is made the current input or output.

close(+Stream, +Options)
Providesclose (Stream, [force(true)]) as the only option. Called this way, any resource error
(such as write-errors while flushing the output buffer) are ignored.

stream property(?Stream, ?StreamProperty)
ISO compatible predicate for querying status of open I/O streams.StreamPropertyis one of:

alias(Atom)
If Atomis bound, test of the stream has the specified alias. Otherwise unifyAtomwith the
first alias of the stream.19

buffer(Buffering)
SWI-Prolog extension to query the buffering mode of this stream.Buffering is one of
full , line or false . See alsoopen/4 .

bom(Bool)
If present andtrue , a BOM (Byte Order Mark) was detected while opening the file for
reading or a BOM was written while opening the stream. See section2.17.1for details.

encoding(Encoding)
Query the encoding used for text. See section2.17.1for an overview of wide character
and encoding issues in SWI-Prolog.

19BUG: Backtracking does not give other aliases.

SWI-Prolog 5.5 Reference Manual



4.16. INPUT AND OUTPUT 95

end of stream(E)
If Streamis an input stream, unifyE with one of the atomsnot , at or past . See also
at end of stream/[0,1] .

eof action(A)
Unify A with one ofeof code , reset or error . Seeopen/4 for details.

file name(Atom)
If Streamis associated to a file, unifyAtomto the name of this file.

file no(Integer)
If the stream is associated with a POSIX file-descriptor, unifyIntegerwith the descriptor
number. SWI-Prolog extension used primarily for integration with foreign code. See also
Sfileno() fromSWI-Stream.h .

input
True if Streamhas moderead .

mode(IOMode)
Unify IOModeto the mode given toopen/4 for opening the stream. Values are:read ,
write , append and the SWI-Prolog extensionupdate .

output
True if Streamhas modewrite , append or update .

position(Term)
Unify Term with the current stream-position. A stream-position is a term
of format $stream position (CharIndex, LineNo, LinePos). See also
set stream position/2 .

reposition(Bool)
Unify Bool with true if the position of the stream can be set (seeseek/4 ). It is assumed
the position can be set if the stream has aseek-functionand is not based on a POSIX
file-descriptor that is not associated to a regular file.

representation errors(Mode)
Determines behaviour of character output if the stream cannot represent a character. For
example, an ISO Latin-1 stream cannot represent cyrillic characters. The behaviour is one
of error (throw and I/O error exception),prolog (write \...\ escape code orxml
(write &#...; XML character entity). The initial mode isprolog for the user streams
anderror for all other streams. See also section2.17.1andset stream/2 .

type(T)
Unify Boolwith text or binary .

tty(Bool)
This property is reported withBoolequalstrue if the stream is associated with a terminal.
See alsoset stream/2 .

current stream(?Object, ?Mode, ?Stream)
The predicatecurrent stream/3 is used to access the status of a stream as well as to
generate all open streams.Objectis the name of the file opened if the stream refers to an open
file, an integer file-descriptor if the stream encapsulates an operating-system stream or the atom
[] if the stream refers to some other object.Modeis one ofread or write .

SWI-Prolog 5.5 Reference Manual



96 CHAPTER 4. BUILT-IN PREDICATES

set stream position(+Stream, +Pos)
Set the current position ofStreamto Pos. Posis a term as returned bystream property/2
using theposition (Pos) property. See alsoseek/4 .

seek(+Stream, +Offset, +Method, -NewLocation)
Reposition the current point of the givenStream. Methodis one ofbof , currentor eof, indicat-
ing positioning relative to the start, current point or end of the underlying object.NewLocation
is unified with the new offset, relative to the start of the stream.

If the seek modifies the current location, the line number and character position in the line are
set to 0.

If the stream cannot be repostioned, areposition error is raised. The predicateseek/4
is compatible to Quintus Prolog, though the error conditions and signalling is ISO compliant.
See alsostream property/2 andset stream position/2 . Please note that the use
of seek/4 on non-binary files (seeopen/4 ) is of limited use as the reffered positions are byte
offsets.

set stream(+Stream, +Attribute)
Modify an attribute of an existing stream.Attribute specifies the stream property to set. See
alsostream property/2 andopen/4 .

alias(AliasName)
Set the alias of an already created stream. IfAliasNameis the name of one of the standard
streams is used, this stream is rebound. Thus,set stream(S, current input) is
the same asset input/1 and by setting the alias of a stream touser input , etc. all
user terminal input is read from this stream. See alsointeractor/0 .

buffer(Buffering)
Set the buffering mode of an already created stream. Buffering is one offull , line or
false .

closeon abort(Bool)
Determine whether or not the stream is closed byabort/0 . By default streams are
closed.

encoding(Atom)
Defines the mapping between bytes and character codes used for the stream. See sec-
tion 2.17.1for supported encodings.

eof action(Action)
Set end-of-file handling to one ofeof code , reset or error .

timeout(Seconds)
This option can be used to make streams generate an exception if it takes longer than
Secondsbefore any new data arrives at the stream. The valueinfinite (default) makes the
stream block indefinitely. Likewait for input/3 , this call only applies to streams
that support the select() system call. For further information about timeout handling, see
wait for input/3 . The exception is of the form

error (timeout error (read, Stream),)

record position(Bool)
Do/do not record the line-count and line-position (seeline count/2 and
line position/2 ).

SWI-Prolog 5.5 Reference Manual



4.16. INPUT AND OUTPUT 97

representation errors(Mode)
Change the behaviour when writing characters to the stream that cannot be represented by
the encoding. See alsostream property/2 and section2.17.1.

file name(FileName)
Set the file name associated to this stream. This call can be used to set the file for error-
locations ifStreamcorresponds toFileNameand is not optained by opening the file di-
rectly but, for example, through a network service.

tty(Bool)
Modify whether Prolog thinks there is a terminal (i.e. human interaction) connected
to this stream. On Unix systems the initial value comes from isatty(). On Win-
dows, the initial user streams are supposed to be associated to a terminal. See also
stream property/2 .

set prolog IO(+In, +Out, +Error )
Prepare the given streams for interactive behaviour normally associated to the terminal.
In becomes theuser input and current input of the calling thread. Out becomes
user output and current output . If Error equalsOut an unbuffered stream is as-
sociated to the same destination and linked touser error . OtherwiseError is used for
user error . Output buffering forOut is set to line and buffering onError is dis-
abled. See alsoprolog/0 and set stream/2 . The clib package provides the library
prolog server creating a TCP/IP server for creating an interactive session to Prolog.

4.16.2 Edinburgh-style I/O

The package for implicit input and output destination is (almost) compatible to Edinburgh DEC-10
and C-Prolog. The reading and writing predicates refer to resp. thecurrent input- and output stream.
Initially these streams are connected to the terminal. The current output stream is changed using
tell/1 or append/1 . The current input stream is changed usingsee/1 . The streams current
value can be obtained usingtelling/1 for output- andseeing/1 for input streams.

Source and destination are either a file,user , or a term ‘pipe(Command)’. The reserved
stream nameuser refers to the terminal.20 In the predicate descriptions below we will call the
source/destination argument ‘SrcDest’. Below are some examples of source/destination specifica-
tions.

?- see(data). % Start reading from file ‘data’.
?- tell(user). % Start writing to the terminal.
?- tell(pipe(lpr)). % Start writing to the printer.

Another example of using thepipe/1 construct is shown below.21 Note that thepipe/1 con-
struct is not part of Prolog’s standard I/O repertoire.

getwd(Wd) :-
seeing(Old), see(pipe(pwd)),
collect_wd(String),

20The ISO I/O layer usesuser input , user output anduser error .
21As of version 5.3.15, the pipe construct is supported in the MS-Windows version, both forplcon.exe and

plwin.exe . The implementation uses code from the LUA programming language (http://www.lua.org ).

SWI-Prolog 5.5 Reference Manual



98 CHAPTER 4. BUILT-IN PREDICATES

seen, see(Old),
atom_codes(Wd, String).

collect_wd([C|R]) :-
get0(C), C \== -1, !,
collect_wd(R).

collect_wd([]).

Compatibility notes

Unlike Edinburgh Prolog systems,telling/1 andseeing/1 do not return the filename of the
current input/output, but the stream-identifier, to ensure the design pattern below works under all
circumstances.22

...,
telling(Old), tell(x),
...,
told, tell(Old),
...,

The predicatestell/1 andsee/1 first check foruser , thepipe (command) and a stream-handle.
Otherwise, if the argument is an atom it is first compared to open streams associated to a file with
exactlythe same name. If such a stream, created usingtell/1 or see/1 exists, output (input) is
switch to the open stream. Otherwise a file with the specified name is opened.

The behaviour is compatible to Edinburgh Prolog. This is not without problems. Changing direc-
tory, non-file streams, multiple names referring to the same file easily lead to unexpected behaviour.
New code, especially when managing multiple I/O channals should consider using the ISO I/O predi-
cates defined in section4.16.1.

see(+SrcDest)
OpenSrcDestfor reading and make it the current input (seeset input/1 ). If SrcDestis a
stream-handle, just makes this stream the current input. See the introduction of section4.16.2
for details.

tell(+SrcDest)
OpenSrcDestfor writing and make it the current output (seeset output/1 ). If SrcDestis a
stream-handle, just makes this stream the current output. See the introduction of section4.16.2
for details.

append(+File)
Similar to tell/1 , but positions the file pointer at the end ofFile rather than truncating an
existing file. The pipe construct is not accepted by this predicate.

seeing(?SrcDest)
Same ascurrent input/1 , except thatuser is returned if the current input is the stream
user input to improve compatibility with traditional Edinburgh I/O. See the introduction of
section4.16.2for details.

22Filenames can be ambiguous and SWI-Prolog streams can refer to much more than just files.

SWI-Prolog 5.5 Reference Manual



4.17. STATUS OF STREAMS 99

telling(?SrcDest)
Same ascurrent output/1 , except thatuser is returned if the current output is the stream
user output to improve compatibility with traditional Edinburgh I/O. See the introduction
of section4.16.2for details.

seen
Close the current input stream. The new input stream becomesuser input.

told
Close the current output stream. The new output stream becomesuseroutput.

4.16.3 Switching Between Edinburgh and ISO I/O

The predicates below can be used for switching between the implicit- and the explicit stream based
I/O predicates.

set input(+Stream)
Set the current input stream to becomeStream. Thus, open(file, read, Stream), setinput(Stream)
is equivalent to see(file).

set output(+Stream)
Set the current output stream to becomeStream.

current input( -Stream)
Get the current input stream. Useful to get access to the status predicates associated with
streams.

current output(-Stream)
Get the current output stream.

4.17 Status of streams

wait for input(+ListOfStreams, -ReadyList, +TimeOut)
Wait for input on one of the streams inListOfStreamsand return a list of streams on which input
is available inReadyList. wait for input/3 waits for at mostTimeOutseconds.Timeout
may be specified as a floating point number to specify fractions of a second. IfTimeoutequals
infinite , wait for input/3 waits indefinitely.23

This predicate can be used to implement timeout while reading and to handle input from multi-
ple sources. The following example will wait for input from the user and an explicitly opened
second terminal. On return,Inputsmay holduser or P4or both.

?- open(’/dev/ttyp4’, read, P4),
wait_for_input([user, P4], Inputs, 0).

23For compatibility reasons, aTimeoutvalue of 0 (integer) also waits indefinitely. To call select() without giving up the
CPU pass the float 0.0. If compatibility with versions older than 5.1.3 is desired pass the float value 1e-7.

SWI-Prolog 5.5 Reference Manual



100 CHAPTER 4. BUILT-IN PREDICATES

This predicate relies on the select() call on most operating systems. On Unix this call is imple-
mented for any stream referring to a file-handle, which implies all OS-based streams: sockets,
terminals, pipes, etc. On non-Unix systems select() is generally only implemented for socket-
based streams. See alsosocket from theclib package.

Note thatwait for input/3 returns streams that have data waiting. This does not mean
you can, for example, callread/2 on the stream without blocking as the stream might hold
an incomplete term. The predicateset stream/2 using the optiontimeout (Seconds) can
be used to make the stream generate an exception if no new data arrives for within the timeout.
Suppose two processes communicate by exchanging Prolog terms. The following code makes
the server immune for clients that write an incomplete term:

...,
tcp_accept(Server, Socket, _Peer),
tcp_open(Socket, In, Out),
set_stream(In, timeout(10)),
catch(read(In, Term), _, (close(Out), close(In), fail)),
...,

character count(+Stream, -Count)
Unify Countwith the current character index. For input streams this is the number of characters
read since the open, for output streams this is the number of characters written. Counting starts
at 0.

line count(+Stream, -Count)
Unify Countwith the number of lines read or written. Counting starts at 1.

line position(+Stream, -Count)
Unify Countwith the position on the current line. Note that this assumes the position is 0 after
the open. Tabs are assumed to be defined on each 8-th character and backspaces are assumed to
reduce the count by one, provided it is positive.

fileerrors(-Old, +New)
Define error behaviour on errors when opening a file for reading or writing. Valid values are the
atomson (default) andoff . FirstOld is unified with the current value. Then the new value is
set toNew.24

With the introduction of exception-handling, it is adviced to usecatch/3 to catch possibly
file-errors and act accordingly. Note that iffileerrors is off , noexception is generated.

4.18 Primitive character I/O

See section4.2for an overview of supported character representations.

nl
Write a newline character to the current output stream. On Unix systemsnl/0 is equivalent to
put(10) .

24Note that Edinburgh Prolog definesfileerrors/0 andnofileerrors/0 . As this does not allow you to switch
back to the old mode I think this definition is better.

SWI-Prolog 5.5 Reference Manual



4.18. PRIMITIVE CHARACTER I/O 101

nl(+Stream)
Write a newline toStream.

put(+Char)
Write Char to the current output stream,Char is either an integer-expression evaluating to a
character code or an atom of one character. Depreciated. New code should useput char/1
or put code/1 .

put(+Stream, +Char)
Write Char to Stream. Seeput/1 for details.

put byte(+Byte)
Write a single byte to the output.Bytemust be an integer between 0 and 255.

put byte(+Stream, +Byte)
Write a single byte to a stream.Bytemust be an integer between 0 and 255.

put char(+Char)
Write a character to the current output, obeying the encoding defined for the current output
stream. Note that this may raise an exception if the encoding ofStreamcannot representChar.

put char(+Stream, +Char)
Write a character toStream, obeying the encoding defined forStream. Note that this may raise
an exception if the encoding ofStreamcannot representChar.

put code(+Code)
Similar toput char/1 , but using acharacter code. Codeis a non-negative integer. Note that
this may raise an exception if the encoding ofStreamcannot representCode.

put code(+Stream, +Code)
Same asput code/1 but directingCodeto Stream.

tab(+Amount)
WritesAmountspaces on the current output stream.Amountshould be an expression that eval-
uates to a positive integer (see section4.26).

tab(+Stream, +Amount)
WritesAmountspaces toStream.

flush output
Flush pending output on current output stream.flush output/0 is automatically generated
by read/1 and derivatives if the current input stream isuser and the cursor is not at the left
margin.

flush output(+Stream)
Flush output on the specified stream. The stream must be open for writing.

ttyflush
Flush pending output on streamuser. See alsoflush output/[0,1] .

get byte(-Byte)
Read the current input stream and unify the next byte withByte(an integer between 0 and 255.
Byteis unified with -1 on end of file.

SWI-Prolog 5.5 Reference Manual



102 CHAPTER 4. BUILT-IN PREDICATES

get byte(+Stream, -Byte)
Read the next byte fromStream, returning an integer between 0 and 255.

get code(-Code)
Read the current input stream and unifyCodewith the character code of the next character.
Codeis unified with -1 on end of file. See alsoget char/1 .

get code(+Stream, -Code)
Read the next character-code fromStream.

get char(-Char)
Read the current input stream and unifyChar with the next character as a one-character-atom.
See alsoatom chars/2 . On end-of-file,Char is unified to the atomend of file .

get char(+Stream, -Char)
Unify Char with the next character fromStream as a one-character-atom. See also
get char/2 , get byte/2 andget code/2 .

get0(-Char)
Edinburgh version of the ISOget code/1 predicate. Note that Edinburgh prolog didn’t sup-
port wide characters and therefore technically speakingget0/1 should have been mapped to
get byte/1 . The intention ofget0/1 however is to read character codes.

get0(+Stream, -Char)
Edinburgh version of the ISOget code/2 predicate. See alsoget0/1 .

get(-Char)
Read the current input stream and unify the next non-blank character withChar. Char is unified
with -1 on end of file.

get(+Stream, -Char)
Read the next non-blank character fromStream.

peek byte(-Byte)
Reads the next input byte likeget byte/1 , but does not remove it from the input stream.

peek byte(+Stream, -Byte)
Reads the next input byte likeget byte/2 , but does not remove it from the stream.

peek code(-Code)
Reads the next input code likeget code/1 , but does not remove it from the input stream.

peek code(+Stream, -Code)
Reads the next input code likeget code/2 , but does not remove it from the stream.

peek char(-Char)
Reads the next input character likeget char/1 , but does not remove it from the input stream.

peek char(+Stream, -Char)
Reads the next input character likeget char/2 , but does not remove it from the stream.

SWI-Prolog 5.5 Reference Manual



4.18. PRIMITIVE CHARACTER I/O 103

skip(+Code)
Read the input untilChar or the end of the file is encountered. A subsequent call to
get code/1 will read the first character afterCode.

skip(+Stream, +Code)
Skip input (asskip/1 ) onStream.

get single char(-Code)
Get a single character from input stream ‘user’ (regardless of the current input stream). Unlike
get code/1 this predicate does not wait for a return. The character is not echoed to the user’s
terminal. This predicate is meant for keyboard menu selection etc. If SWI-Prolog was started
with the-tty option this predicate reads an entire line of input and returns the first non-blank
character on this line, or the character code of the newline (10) if the entire line consisted of
blank characters.

at end of stream
Succeeds after the last character of the current input stream has been read. Also succeeds if
there is no valid current input stream.

at end of stream(+Stream)
Succeeds after the last character of the named stream is read, orStreamis not a valid input
stream. The end-of-stream test is only available on buffered input stream (unbuffered input
streams are rarely used, seeopen/4 ).

copy stream data(+StreamIn, +StreamOut, +Len)
Copy Len codes from streamStreamInto StreamOut. Note that the copy is done using the
semantics ofget code/2 andput code/2 , taking care of possibly recoding that needs take
place between two textfiles. See section2.17.1.

copy stream data(+StreamIn, +StreamOut)
Copy data all (remaining) data from streamStreamInto StreamOut.

read pending input(+StreamIn, -Codes, ?Tail)
Read input pending in the input buffer ofStreamInand return it in the difference listCodes-
Tail. I.e. the available characters codes are used to create the listCodesending in the tailTail.
This predicate is intended for efficient unbuffered copying and filtering of input comming from
network connections or devices.

The following code fragment realises efficient non-blocking copy of data from an input- to
an output stream. Theat end of stream/1 call checks for end-of-stream and fills the
input buffer. Note that the use of aget code/2 andput code/2 based loop requires a
flush output/1 call aftereachput code/2 . Thecopy stream data/2 does not al-
low for inspection of the copied data and suffers from the same buffering issues.

copy(In, Out) :-
repeat,

( at_end_of_stream(In)
-> !
; read_pending_input(In, Chars, []),

format(Out, ’˜s’, [Chars]),

SWI-Prolog 5.5 Reference Manual



104 CHAPTER 4. BUILT-IN PREDICATES

flush_output(Out),
fail

).

4.19 Term reading and writing

This section describes the basic term reading and writing predicates. The predicates
term to atom/2 , atom to term/3 andsformat/3 provide means for translating atoms and
strings to terms. The predicatesformat/[1,2] andwritef/2 provide formatted output.

There are two ways to manipulate the output format. The predicateprint/[1,2] may be
programmed usingportray/1 . The format of floating point numbers may be manipulated using
the prologflag (seecurrent prolog flag/2 ) float format .

Reading is sensitive to the prologflagcharacter escapes , which controls the interpretation
of the\ character in quoted atoms and strings.

write term(+Term, +Options)
The predicatewrite term/2 is the generic form of all Prolog term-write predicates. Valid
options are:

attributes(Atom)
Define how attributed variables (see section6.1) are written. The default is determined by
the prolog flagwrite attributes . Defined values areignore (ignore the attribute),
dots (write the attributes as{...} ), write (simply hand the attributes recursively to
write term/2 ) andportray (hand the attributes toattr portray hook/2 ).

backquoted string(Bool)
If true , write a string object (see section4.23) as ‘ . . .‘ . The default depends on the
prolog flag with the same name.

character escapes(Bool)
If true , andquoted (true) is active, special characters in quoted atoms and strings are
emitted as ISO escape-sequences. Default is taken from the reference module (see below).

ignore ops(Bool)
If true , the generic term-representation (〈functor〉(〈args〉 . . . )) will be used for all terms,
Otherwise (default), operators, list-notation and{} /1 will be written using their special
syntax.

max depth(Integer)
If the term is nested deeper thanInteger, print the remainder as eclipse (. . . ). A 0 (zero)
value (default) imposes no depth limit. This option also delimits the number of printed for
a list. Example:

?- write_term(a(s(s(s(s(0)))), [a,b,c,d,e,f]), [max_depth(3)]).
a(s(s(...)), [a, b|...])

Yes

Used by the toplevel and debugger to limit screen output. See also the prolog-flags
toplevel print options anddebugger print options .

SWI-Prolog 5.5 Reference Manual



4.19. TERM READING AND WRITING 105

module(Module)
Define the reference module (defaultuser ). This defines the default value for the
character escapes option as well as the operator definitions to use. See alsoop/3 .

numbervars(Bool)
If true , terms of the format$VAR(N) , where〈N〉 is a positive integer, will be writ-
ten as a variable name. IfN is an atom it is written without quotes. This extension
allows for writing variables with user-provided names. The default isfalse . See also
numbervars/3 .

portray( Bool)
If true , the hookportray/1 is called before printing a term that is not a variable. If
portray/1 succeeds, the term is considered printed. See alsoprint/1 . The default
is false . This option is an extension to the ISO writeterm options.

quoted(Bool)
If true , atoms and functors that needs quotes will be quoted. The default isfalse .

write term(+Stream, +Term, +Options)
As write term/2 , but output is sent toStreamrather than the current output.

write canonical(+Term)
Write Termon the current output stream using standard parenthesised prefix notation (i.e., ig-
noring operator declarations). Atoms that need quotes are quoted. Terms written with this
predicate can always be read back, regardless of current operator declarations. Equivalent to
write term/2 using the optionsignore ops andquoted .

write canonical(+Stream, +Term)
Write Termin canonical form onStream.

write(+Term)
Write Term to the current output, using brackets and operators where appropriate. See
current prolog flag/2 for controlling floating point output format.

write(+Stream, +Term)
Write Termto Stream.

writeq(+Term)
Write Termto the current output, using brackets and operators where appropriate. Atoms that
need quotes are quoted. Terms written with this predicate can be read back withread/1
provided the currently active operator declarations are identical.

writeq(+Stream, +Term)
Write Termto Stream, inserting quotes.

print( +Term)
PrintsTermon the current output stream similar towrite/1 , but for each (sub)term ofTerm
first the dynamic predicateportray/1 is called. If this predicate succeedsprint assumes the
(sub)term has been written. This allows for user defined term writing.

print( +Stream, +Term)
PrintTermto Stream.

SWI-Prolog 5.5 Reference Manual



106 CHAPTER 4. BUILT-IN PREDICATES

portray( +Term)
A dynamic predicate, which can be defined by the user to change the behaviour ofprint/1
on (sub)terms. For each subterm encountered that is not a variableprint/1 first calls
portray/1 using the term as argument. For lists only the list as a whole is given to
portray/1 . If portray succeedsprint/1 assumes the term has been written.

read(-Term)
Read the next Prolog term from the current input stream and unify it withTerm. On a syntax
error read/1 displays an error message, attempts to skip the erroneous term and fails. On
reaching end-of-fileTermis unified with the atomend of file .

read(+Stream, -Term)
ReadTermfrom Stream.

read clause(-Term)
Equivalent toread/1 , but warns the user for variables only occurring once in a term (sin-
gleton variables) which do not start with an underscore ifstyle check(singleton) is
active (default). Used to read Prolog source files (seeconsult/1 ). New code should use
read term/2 with the optionsingletons(warning) .

read clause(+Stream, -Term)
Read a clause fromStream. Seeread clause/1 .

read term(-Term, +Options)
Read a term from the current input stream and unify the term withTerm. The reading is con-
trolled by options from the list ofOptions. If this list is empty, the behaviour is the same as
for read/1 . The options are upward compatible to Quintus Prolog. The argument order is ac-
cording to the ISO standard. Syntax-errors are always reported using exception-handling (see
catch/3 ). Options:

variables(Vars)
Unify Varswith a list of variables in the term. The variables appear in the order they have
been read. See alsoterm variables/2 . (ISO).

variable names(Vars)
Unify Vars with a list of ‘Name= Var’, whereNameis an atom describing the variable
name andVar is a variable that shares with the corresponding variable inTerm. (ISO).

singletons(Vars)
As variable names, but only reports the variables occurring only once in theTerm
read. Variables starting with an underscore (‘’) are not included in this list. (ISO).

syntax errors(Atom)
If error (default), throw and exception on a syntax error. Other values arefail , which
causes a message to be printed usingprint message/2 , after which the predicate fails,
quiet which causes the predicate to fail silently anddec10 which causes syntax errors
to be printed, after whichread term/[2,3] continues reading the next term. Using
dec10 , read term/[2,3] never fails. (Quintus, SICStus).

module(Module)
SpecifyModulefor operators,character escapes flag anddouble quotes flag.

SWI-Prolog 5.5 Reference Manual



4.19. TERM READING AND WRITING 107

The value of the latter two is overruled if the correspondingread term/3 option is
provided. If no module is specified, the current ‘source-module’ is used. (SWI-Prolog).

character escapes(Bool)
Defines how to read\ escape-sequences in quoted atoms. See the prolog-flags
character escapes , current prolog flag/2 . (SWI-Prolog).

double quotes(Bool)
Defines how to read ”. . . ” strings. See the prolog-flagsdouble quotes ,
current prolog flag/2 . (SWI-Prolog).

backquoted string(Bool)
If true , read‘ . . .‘ to a string object (see section4.23). The default depends on the
prolog flag with the same name.

term position(Pos)
UnifiesPoswith the starting position of the term read.Posif of the same format as use by
stream property/2 .

subterm positions(TermPos)
Describes the detailed layout of the term. The formats for the various types of terms if
given below. All positions are character positions. If the input is related to a normal
stream, these positions are relative to the start of the input, when reading from the terminal,
they are relative to the start of the term.

From-To
Used for primitive types (atoms, numbers, variables).

string position(From, To)
Used to indicate the position of a string enclosed in double quotes (" ).

brace term position(From, To, Arg)
Term of the form{... }, as used in DCG rules.Arg describes the argument.

list position(From, To, Elms, Tail)
A list. Elms describes the positions of the elements. If the list specifies the tail
as | 〈TailTerm〉, Tail is unified with the term-position of the tail, otherwise with the
atomnone .

term position(From, To, FFrom, FTo, SubPos)
Used for a compound term not matching one of the above.FFrom andFTo describe
the position of the functor.SubPosis a list, each element of which describes the
term-position of the corresponding subterm.

read term(+Stream, -Term, +Options)
Read term with options fromStream. Seeread term/2 .

read history(+Show, +Help, +Special, +Prompt, -Term, -Bindings)
Similar to read term/2 using the optionvariable names, but allows for history substi-
tutions.read history/6 is used by the top level to read the user’s actions.Showis the com-
mand the user should type to show the saved events.Help is the command to get an overview
of the capabilities.Specialis a list of commands that are not saved in the history.Promptis the
first prompt given. Continuation prompts for more lines are determined byprompt/2 . A %w
in the prompt is substituted by the event number. See section2.7for available substitutions.

SWI-Prolog callsread history/6 as follows:

SWI-Prolog 5.5 Reference Manual



108 CHAPTER 4. BUILT-IN PREDICATES

read_history(h, ’!h’, [trace], ’%w ?- ’, Goal, Bindings)

prompt( -Old, +New)
Set prompt associated withread/1 and its derivatives.Old is first unified with the current
prompt. On success the prompt will be set toNew if this is an atom. Otherwise an error
message is displayed. A prompt is printed if one of the read predicates is called and the cursor
is at the left margin. It is also printed whenever a newline is given and the term has not been
terminated. Prompts are only printed when the current input stream isuser.

prompt1(+Prompt)
Sets the prompt for the next line to be read. Continuation lines will be read using the prompt
defined byprompt/2 .

4.20 Analysing and Constructing Terms

functor(?Term, ?Functor, ?Arity)
Succeeds ifTermis a term with functorFunctorand arityArity. If Termis a variable it is unified
with a new term holding only variables.functor/3 silently fails on instantiation faults25 If
Termis an atom or number,Functorwill be unified withTermand arity will be unified with the
integer 0 (zero).

arg(?Arg, ?Term, ?Value)
Term should be instantiated to a term,Arg to an integer between 1 and the arity ofTerm.
Value is unified with theArg-th argument ofTerm. Arg may also be unbound. In this case
Value will be unified with the successive arguments of the term. On successful unifica-
tion, Arg is unified with the argument number. Backtracking yields alternative solutions.26

The predicatearg/3 fails silently if Arg = 0 or Arg > arity and raises the exception
domain error(not less then zero, Arg ) if Arg < 0.

?Term=.. ?List
List is a list which head is the functor ofTermand the remaining arguments are the arguments
of the term. Each of the arguments may be a variable, but not both. This predicate is called
‘Univ’. Examples:

?- foo(hello, X) =.. List.

List = [foo, hello, X]

?- Term =.. [baz, foo(1)]

Term = baz(foo(1))

25In version 1.2 instantiation faults led to error messages. The new version can be used to do type testing without the
need to catch illegal instantiations first.

26The instantiation pattern (-, +, ?) is an extension to ‘standard’ Prolog.

SWI-Prolog 5.5 Reference Manual



4.20. ANALYSING AND CONSTRUCTING TERMS 109

numbervars(+Term, +Start, -End)
Unify the free variables ofTermwith a term$VAR(N), whereN is the number of the variable.
Counting starts atStart. Endis unified with the number that should be given to the next variable.
Example:

?- numbervars(foo(A, B, A), 0, End).

A = ’$VAR’(0)
B = ’$VAR’(1)
End = 2

See also thenumbervars option towrite term/3 andnumbervars/4 .

numbervars(+Term, +Start, -End, +Options)
As numbervars/3 , but providing the following options:

functor name(+Atom)
Name of the functor to use instead of$VAR.

attvar(+Action)
What to do if an attributed variable is encountered. Options areskip , which causes
numbervars/3 to ignore the attributed variable,bind which causes it to thread it as a
normal variable and assign the next$VAR(N) term to it or (default)error which raises
the atype error exception.27

term variables(+Term, -List)
Unify List with a list of variables, each sharing with a unique variable ofTerm.28 See also
term variables/3 . For example:

?- term_variables(a(X, b(Y, X), Z), L).

L = [G367, G366, G371]
X = G367
Y = G366
Z = G371

term variables(+Term, -List, ?Tail)
Difference list version ofterm variables/2 . I.e.Tail is the tail of the variable-listList.

copy term(+In, -Out)
Create a version ifIn with renamed (fresh) variables and unify it toOut. Attributed variables
(see section6.1) have their attributed copied. The implementation ofcopy term/2 can deal
with infinite trees (cyclic terms). As pure Prolog cannot distinguish a ground term from another
ground term with exactly the same structure, ground sub-terms aresharedbetweenIn andOut.
Sharing ground terms does affectsetarg/3 . SWI-Prolog providesduplicate term/2 to
create a true copy of a term.

27This behaviour was decided after a long discussion between David Reitter, Richard O’Keefe, Bart Demoen and Tom
Schrijvers.

28This predicate used to be calledfree variables/2 . The nameterm variables/2 is more widely used. The
old predicate is still available from the librarybackcomp .

SWI-Prolog 5.5 Reference Manual



110 CHAPTER 4. BUILT-IN PREDICATES

4.20.1 Non-logical operations on terms

Prolog is not capable tomodify instantiated parts of a term. Lacking that capability makes that lan-
guage much safer, but unfortunately there are problems that suffer severely in terms of time and/or
memory usage. Always try hard to avoid the use of these primitives, but they can be a good alternative
to using dynamic predicates. See also section6.3, discussing the use of global variables.

setarg(+Arg, +Term, +Value)
Extra-logical predicate. Assigns theArg-th argument of the compound termTermwith the given
Value. The assignment is undone if backtracking brings the state back into a position before the
setarg/3 call. See alsonb setarg/3 .

This predicate may be used for destructive assignment to terms, using them as an extra-logical
storage bin. Always try hard to avoid the use ofsetarg/3 as it is not supported by many
Prolog systems and one has to be very careful about unexpected copying as well as unexpected
not copying of terms.

nb setarg(+Arg, +Term, +Value)
Assigns theArg-th argument of the compound termTermwith the givenValueassetarg/3 ,
but on backtracking the assignment isnot reversed. IfTerm is not atomic, it is duplicated us-
ing duplicate term/2 . This predicate uses the same technique asnb setval/2 . We
therefore refer to the description ofnb setval/2 for details on non-backtrackable assign-
ment of terms. This predicate is compatible to GNU-Prologsetarg (A,T,V,false), removing
the type-restriction onValue. See alsonb linkarg/3 . Below is an example for counting the
number of solutions of a goal. Note that this implementation is thread-safe, reentrant and capa-
ble of handling exceptions. Realising these features with a traditional implementation based on
assert/retract orflag/3 is much more complicated.

:- module_transparent succeeds_n_times/2.

succeeds_n_times(Goal, Times) :-
Counter = counter(0),
( Goal,

arg(1, Counter, N0),
N is N0 + 1,
nb_setarg(1, Counter, N),
fail

; arg(1, Counter, Times)
).

nb linkarg( +Arg, +Term, +Value)
As nb setarg/3 , but like nb linkval/2 it doesnot duplicateValue. Use with extreme
care and consult the documentation ofnb linkval/2 before use.

duplicate term(+In, -Out)
Version of copy term/2 that also copies ground terms and therefore ensures destruc-
tive modification usingsetarg/3 does not affect the copy. See alsonb setval/2 ,
nb linkval/2 , nb setarg/3 andnb linkarg/3 .

SWI-Prolog 5.5 Reference Manual



4.21. ANALYSING AND CONSTRUCTING ATOMS 111

4.21 Analysing and Constructing Atoms

These predicates convert between Prolog constants and lists of character codes. The predicates
atom codes/2 , number codes/2 andname/2 behave the same when converting from a con-
stant to a list of character codes. When converting the other way around,atom codes/2 will
generate an atom,number codes/2 will generate a number or exception andname/2 will return
a number if possible and an atom otherwise.

The ISO standard definesatom chars/2 to describe the ‘broken-up’ atom as a list of one-
character atoms instead of a list of codes. Upto version 3.2.x, SWI-Prolog’satom chars/2
behaved, compatible to Quintus and SICStus Prolog, like atomcodes. As of 3.3.x SWI-Prolog
atom codes/2 andatom chars/2 are compliant to the ISO standard.

To ease the pain of all variations in the Prolog community, all SWI-Prolog predicates behave as
flexible as possible. This implies the ‘list-side’ accepts either a code-list or a char-list and the ‘atom-
side’ accept all atomic types (atom, number and string).

atom codes(?Atom, ?String)
Convert between an atom and a list of character codes. IfAtomis instantiated, if will be trans-
lated into a list of character codes and the result is unified withString. If Atomis unbound and
String is a list of character codes, it willAtomwill be unified with an atom constructed from
this list.

atom chars(?Atom, ?CharList)
As atom codes/2 , butCharList is a list of one-character atoms rather than a list of character
codes29.

?- atom_chars(hello, X).

X = [h, e, l, l, o]

char code(?Atom, ?Code)
Convert between character and character code for a single character.30

number chars(?Number, ?CharList)
Similar to atom chars/2 , but converts between a number and its representation as a list
of one-character atoms. Fails with arepresentation error if Numberis unbound and
CharListdoes not describe a number.

number codes(?Number, ?CodeList)
As number chars/2 , but converts to a list of character codes rather than one-character
atoms. In the mode -, +, both predicates behave identically to improve handling of non-ISO
source.

atom number(?Atom, ?Number)
Realises the popular combination ofatom codes/2 andnumber codes/2 to convert be-
tween atom and number (integer or float) in one predicate, avoiding the intermediate list.

29Upto version 3.2.x,atom chars/2 behaved as the currentatom codes/2 . The current definition is compliant with
the ISO standard

30This is also calledatom char/2 in older versions of SWI-Prolog as well as some other Prolog implementations.
atom char/2 is available from the librarybackcomp.pl

SWI-Prolog 5.5 Reference Manual



112 CHAPTER 4. BUILT-IN PREDICATES

name(?AtomOrInt, ?String)
String is a list of character codes representing the same text asAtom. Each of the arguments
may be a variable, but not both. WhenString is bound to an character code list describing an
integer andAtom is a variableAtomwill be unified with the integer value described byString
(e.g. ‘name(N, "300"), 400 is N + 100 ’ succeeds).

int to atom(+Int, +Base, -Atom)
Convert Int to an textual representation using baseBaseand unify the result withAtom. If
Base6= 10 the base will be prepended toAtom. Base= 0 will try to interpretInt as an character
codes and return0’ 〈c〉. Otherwise2 ≤ Base≤ 36. Some examples are given below.

int to atom(45, 2, A) −→ A = 2′101101
int to atom(97, 0, A) −→ A = 0′a
int to atom(56, 10, A) −→ A = 56

int to atom(+Int, -Atom)
Equivalent toint to atom(Int, 10, Atom) .

term to atom(?Term, ?Atom)
Succeeds ifAtomdescribes a term that unifies withTerm. WhenAtom is instantiatedAtom is
converted and then unified withTerm. If Atomhas no valid syntax, asyntax error exception
is raised. OtherwiseTermis “written” on Atomusingwrite/1 .

atom to term(+Atom, -Term, -Bindings)
UseAtomas input toread term/2 using the optionvariable names and return the read
term inTermand the variable bindings inBindings. Bindingsis a list ofName= Var couples,
thus providing access to the actual variable names. See alsoread term/2 . If Atomhas no
valid syntax, asyntax error exception is raised.

atom concat(?Atom1, ?Atom2, ?Atom3)
Atom3forms the concatenation ofAtom1andAtom2. At least two of the arguments must be
instantiated to atoms, integers or floating point numbers. For ISO compliance, the instantiation-
pattern -, -, + is allowed too, non-deterministically splitting the 3-th argument into two parts (as
append/3 does for lists). See alsostring concat/3 .

concat atom(+List, -Atom)
List is a list of atoms, integers or floating point numbers. Succeeds ifAtom can be uni-
fied with the concatenated elements ofList. If List has exactly 2 elements it is equivalent to
atom concat/3 , allowing for variables in the list.

concat atom(?List, +Separator, ?Atom)
Creates an atom just likeconcat atom/2 , but insertsSeparatorbetween each pair of atoms.
For example:

?- concat_atom([gnu, gnat], ’, ’, A).

A = ’gnu, gnat’

This predicate can also be used to split atoms by instantiatingSeparatorandAtom:

SWI-Prolog 5.5 Reference Manual



4.22. CLASSIFYING CHARACTERS 113

?- concat_atom(L, -, ’gnu-gnat’).

L = [gnu, gnat]

atom length(+Atom, -Length)
Succeeds ifAtomis an atom ofLengthcharacters long. This predicate also works for strings (see
section4.23). If the prolog flagiso is notset, it also accepts integers and floats, expressing the
number of characters output when given towrite/1 as well as code-lists and character-lists,
expressing the length of the list.31

atom prefix(+Atom, +Prefix)
Succeeds ifAtom starts with the characters fromPrefix. Its behaviour is equivalent to
?- sub atom( Atom, 0, , , Prefix ) . Depreciated.

sub atom(+Atom, ?Before, ?Len, ?After, ?Sub)
ISO predicate for breaking atoms. It maintains the following relation:Subis a sub-atom ofAtom
that starts atBefore, hasLencharacters andAtomcontainsAftercharacters after the match.

?- sub_atom(abc, 1, 1, A, S).

A = 1, S = b

The implementation minimalises non-determinism and creation of atoms. This is a very flexible
predicate that can do search, prefix- and suffix-matching, etc.

4.22 Classifying characters

SWI-Prolog offers two comprehensive predicates for classifying characters and character-codes.
These predicates are defined as built-in predicates to exploit the C-character classification’s handling
of locale (handling of local character-sets). These predicates are fast, logical and deterministic if
applicable.

In addition, there is the libraryctype providing compatibility to some other Prolog systems. The
predicates of this library are defined in terms ofcode type/2 .

char type(?Char, ?Type)
Tests or generates alternativeTypes orChars. The character-types are inspired by the standard
C <ctype.h> primitives.

alnum
Char is a letter (upper- or lowercase) or digit.

alpha
Char is a letter (upper- or lowercase).

csym
Char is a letter (upper- or lowercase), digit or the underscore (_). These are valid C- and
Prolog symbol characters.

31BUG: Note that[] is both an atom an empty code/character list. The predicateatom length/2 returns 2 for this
atom.

SWI-Prolog 5.5 Reference Manual



114 CHAPTER 4. BUILT-IN PREDICATES

csymf
Char is a letter (upper- or lowercase) or the underscore (_). These are valid first characters
for C- and Prolog symbols

ascii
Char is a 7-bits ASCII character (0..127).

white
Char is a space or tab. E.i. white space inside a line.

cntrl
Char is an ASCII control-character (0..31).

digit
Char is a digit.

digit(Weigth)
Char is a digit with valueWeigth. I.e. char type(X, digit(6) yields X = ’6’ .
Useful for parsing numbers.

xdigit(Weigth)
Char is a haxe-decimal digit with valueWeigth. I.e. char type(a, xdigit(X)
yieldsX = ’10’ . Useful for parsing numbers.

graph
Charproduces a visible mark on a page when printed. Note that the space is not included!

lower
Char is a lower-case letter.

lower(Upper)
Char is a lower-case version ofUpper. Only true ifChar is lowercase andUpperupper-
case.

to lower(Upper)
Char is a lower-case version ofUpper. For non-letters, or letter without case,Char and
Lowerare the same. See alsoupcase atom/2 anddowncase atom/2 .

upper
Char is an upper-case letter.

upper(Lower)
Char is an upper-case version ofLower. Only true ifChar is uppercase andLower lower-
case.

to upper(Lower)
Char is an upper-case version ofLower. For non-letters, or letter without case,Char and
Lowerare the same. See alsoupcase atom/2 anddowncase atom/2 .

punct
Char is a punctuation character. This is agraph character that is not a letter or digit.

space
Char is some form of layout character (tab, vertical-tab, newline, etc.).

end of file
Char is -1.

end of line
Charends a line (ASCII: 10..13).

SWI-Prolog 5.5 Reference Manual



4.23. REPRESENTING TEXT IN STRINGS 115

newline
Char is a the newline character (10).

period
Charcounts as the end of a sentence (.,!,?).

quote
Char is a quote-character (" , ’ , ‘ ).

paren(Close)
Char is an open-parenthesis andCloseis the corresponding close-parenthesis.

code type(?Code, ?Type)
As char type/2 , but uses character-codes rather than one-character atoms. Please note that
both predicates are as flexible as possible. They handle either representation if the argument
is instantiated and only will instantiate with an integer code or one-character atom depend-
ing of the version used. See also the prolog-flagdouble quotes , atom chars/2 and
atom codes/2 .

4.22.1 Case conversion

There is nothing in the Prolog standard for converting case in textual data. The SWI-Prolog predicates
code type/2 andchar type/2 can be used to test and convert individual characters. We have
started some additional support:

downcaseatom(+AnyCase, -LowerCase)
Converts the characters ofAnyCaseinto lowercase aschar type/2 does (i.e. based on the de-
finedlocaleif Prolog provides locale support on the hosting platform) and unifies the lowercase
atom withLowerCase.

upcaseatom(+AnyCase, -UpperCase)
Converts, similar todowncase atom/2 , an atom to upper-case.

4.23 Representing text in strings

SWI-Prolog supports the data typestring. Strings are a time and space efficient mechanism to handle
text in Prolog. Strings are stored as a byte array on the global (term) stack and thus destroyed on
backtracking and reclaimed by the garbage collector.

Strings were added to SWI-Prolog based on an early draft of the ISO standard, offerring a mech-
anism to represent temporary character data efficiently. As SWI-Prolog strings can handle 0-bytes,
they are frequently used through the foreign language interface (section9) for storing arbitrary byte-
sequences.

Starting with version 3.3, SWI-Prolog offers garbage collection on the atom-space as well as
representing 0-bytes in atoms. Although strings and atoms still have different features, new code
should consider using atoms to avoid too many representations for text as well as for compatibility to
other Prolog implementations. Below are some of the differences:

• creation
Creating strings is fast, as the data is simply copied to the global stack. Atoms are unique and
therefore more expensive in terms of memory and time to create. On the other hand, if the same
text has to be represented multiple times, atoms are more efficient.

SWI-Prolog 5.5 Reference Manual



116 CHAPTER 4. BUILT-IN PREDICATES

• destruction
Backtracking destroys strings at no cost. They are cheap to handle by the garbage collector,
but it should be noted that extensive use of strings will cause many garbage collections. Atom
garbage collection is generally faster.

String objects by default have no lexical representation and thus can only be created using the
predicates below or through the foreign language interface (See chapter9. There are two ways to
makeread/1 read text into strings, both controlled through Prolog flags. One is by setting the
double quotes flag to string and the other is by setting thebackquoted string flag to
true . In latter case,‘Hello world‘ is read into a string andwrite term/2 prints strings
between backquotes ifquoted is true . This flag provides compatibility to LPA Prolog string
handling.

string to atom(?String, ?Atom)
Logical conversion between a string and an atom. At least one of the two arguments must be
instantiated.Atomcan also be an integer or floating point number.

string to list(?String, ?List)
Logical conversion between a string and a list of character codes characters. At least one of the
two arguments must be instantiated.

string length(+String, -Length)
Unify Lengthwith the number of characters inString. This predicate is functionally equivalent
to atom length/2 and also accepts atoms, integers and floats as its first argument.

string concat(?String1, ?String2, ?String3)
Similar to atom concat/3 , but the unbound argument will be unified with a string object
rather than an atom. Also, if bothString1andString2are unbound andString3is bound to text,
it breaksString3, unifying the start withString1and the end withString2as append does with
lists. Note that this is not particularly fast on long strings as for each redo the system has to
create two entirely new strings, while the list equivalent only creates a single new list-cell and
moves some pointers around.

sub string(+String, ?Start, ?Length, ?After, ?Sub)
Subis a substring ofStringstarting atStart, with lengthLengthandStringhasAfter characters
left after the match. See alsosub atom/5 .

4.24 Operators

Operators are defined to improve the readibility of source-code. For example, without operators, to
write 2*3+4*5 one would have to write+(*(2,3),*(4,5)) . In Prolog, a number of operators
have been predefined. All operators, except for the comma (,) can be redefined by the user.

Some care has to be taken before defining new operators. Defining too many operators might
make your source ‘natural’ looking, but at the same time lead to hard to understand the limits of your
syntax. To ease the pain, as of SWI-Prolog 3.3.0, operators are local to the module in which they are
defined. Operators can be exported from modules using a termop(Precedence, Type, Name) in the
export list as specified bymodule/2 . This is an extension specific to SWI-Prolog and the adviced
mechanism of portability is not an important concern.

SWI-Prolog 5.5 Reference Manual



4.25. CHARACTER CONVERSION 117

The module-table of the moduleuser acts as default table for all modules and can be modified
explictly from inside a module to achieve compatibility to other Prolog systems:

:- module(prove,
[ prove/1
]).

:- op(900, xfx, user:(=>)).

Unlike what many users think, operators and quoted atoms have no relation: defining an atom as an
operator doesnot influence parsing characters into atoms and quoting an atom doesnot stop it from
acting as an operator. To stop an atom acting as an operator, enclose it in braces like this: (myop).

op(+Precedence, +Type, :Name)
DeclareNameto be an operator of typeTypewith precedencePrecedence. Namecan also be
a list of names, in which case all elements of the list are declared to be identical operators.
Precedenceis an integer between 0 and 1200. Precedence 0 removes the declaration.Typeis
one of:xf , yf , xfx , xfy , yfx , yfy , fy or fx . The ‘f ’ indicates the position of the functor,
while x andy indicate the position of the arguments. ‘y ’ should be interpreted as “on this
position a term with precedence lower or equal to the precedence of the functor should occur”.
For ‘x ’ the precedence of the argument must be strictly lower. The precedence of a term is 0,
unless its principal functor is an operator, in which case the precedence is the precedence of this
operator. A term enclosed in brackets(...) has precedence 0.

The predefined operators are shown in table4.1. Note that all operators can be redefined by the
user.

current op(?Precedence, ?Type, ?:Name)
Succeeds whenNameis currently defined as an operator of typeTypewith precedencePrece-
dence. See alsoop/3 .

4.25 Character Conversion

Although I wouldn’t really know for what you would like to use these features, they are provided for
ISO complicancy.

char conversion(+CharIn, +CharOut)
Define that term-input (seeread term/3 ) maps each character read asCharInto the character
CharOut. Character conversion is only executed if the prolog-flagchar conversion is set
to true and not inside quoted atoms or strings. The initial table maps each character onto
itself. See alsocurrent char conversion/2 .

current char conversion(?CharIn, ?CharOut)
Queries the current character conversion-table. Seechar conversion/2 for details.

4.26 Arithmetic

Arithmetic can be divided into some special purpose integer predicates and a series of general pred-
icates for floating point and integer arithmetic as appropriate. The integer predicates are as “logical”

SWI-Prolog 5.5 Reference Manual



118 CHAPTER 4. BUILT-IN PREDICATES

1200 xfx --> , :-
1200 fx :- , ?-
1150 fx dynamic , discontiguous , initialization ,

module transparent , multifile , thread local ,
volatile

1100 xfy ; , |
1050 xfy -> , op*->
1000 xfy ,
954 xfy \
900 fy \+
900 fx ˜
700 xfx <, =, =.. , =@=, =:= , =<, ==, =\= , >, >=, @<, @=<, @>, @>=,

\= , \== , is
600 xfy :
500 yfx +, - , /\ , \/ , xor
500 fx +, - , ?, \
400 yfx * , / , // , <<, >>, mod, rem
200 xfx **
200 xfy ˆ

Table 4.1: System operators

as possible. Their usage is recommended whenever applicable, resulting in faster and more “logical”
programs.

The general arithmetic predicates are optionally compiled now (seeset prolog flag/2 and
the -O command line option). Compiled arithmetic reduces global stack requirements and improves
performance. Unfortunately compiled arithmetic cannot be traced, which is why it is optional.

The general arithmetic predicates all handleexpressions. An expression is either a simple number
or afunction. The arguments of a function are expressions. The functions are described in section4.27.

between(+Low, +High, ?Value)
Low andHigh are integers,High ≥ Low. If Valueis an integer,Low ≤ Value≤ High. When
Valueis a variable it is successively bound to all integers betweenLowandHigh. If High is inf
or infinite 32 between/3 is true iff Value≥ Low, a feature that is particularly interesting
for generating integers from a certain value.

succ(?Int1, ?Int2)
Succeeds ifInt2 = Int1 + 1 andInt1 ≥ 0. At least one of the arguments must be instantiated
to a natural number. This predicate raises the domain-errornot less than zero if called
with a negative integer. E.g.succ (X, 0) fails silently andsucc (X, -1) raises a domain-error.33

plus(?Int1, ?Int2, ?Int3)
Succeeds ifInt3 = Int1 + Int2. At least two of the three arguments must be instantiated to
integers.

32We preferinfinite , but some other Prolog systems already useinf for infinity we accept both for the time being.
33The behaviour to deal with natural numbers only was defined by Richard O’Keefe to support the common count-down-

to-zero in a natural way. Upto 5.1.8succ/2 also accepted negative integers.

SWI-Prolog 5.5 Reference Manual



4.27. ARITHMETIC FUNCTIONS 119

+Expr1 > +Expr2
Succeeds when expressionExpr1evaluates to a larger number thanExpr2.

+Expr1 < +Expr2
Succeeds when expressionExpr1evaluates to a smaller number thanExpr2.

+Expr1 =< +Expr2
Succeeds when expressionExpr1evaluates to a smaller or equal number toExpr2.

+Expr1 >= +Expr2
Succeeds when expressionExpr1evaluates to a larger or equal number toExpr2.

+Expr1 =\= +Expr2
Succeeds when expressionExpr1evaluates to a number non-equal toExpr2.

+Expr1 =:= +Expr2
Succeeds when expressionExpr1evaluates to a number equal toExpr2.

-Numberis +Expr
Succeeds whenNumberhas successfully been unified with the numberExpr evaluates to. If
Expr evaluates to a float that can be represented using an integer (i.e, the value is integer and
within the range that can be described by Prolog’s integer representation),Expr is unified with
the integer value.

Note that normally,is/2 will be used with unbound left operand. If equality is to be tested,
=:=/2 should be used. For example:

?- 1.0 is sin(pi/2). Fails!. sin(pi/2) evaluates to 1.0, but
is/2 will represent this as the integer 1,
after which unify will fail.

?- 1.0 is float(sin(pi/2)). Succeeds, as thefloat/1 function
forces the result to be float.

?- 1.0 =:= sin(pi/2). Succeeds as expected.

4.27 Arithmetic Functions

Arithmetic functions are terms which are evaluated by the arithmetic predicates described above.
SWI-Prolog tries to hide the difference between integer arithmetic and floating point arithmetic from
the Prolog user. Arithmetic is done as integer arithmetic as long as possible and converted to floating
point arithmetic whenever one of the arguments or the combination of them requires it. If a function
returns a floating point value which is whole it is automatically transformed into an integer. There are
three types of arguments to functions:

Expr Arbitrary expression, returning either a floating point value or an
integer.

IntExpr Arbitrary expression that must evaluate into an integer.
Int An integer.

SWI-Prolog 5.5 Reference Manual



120 CHAPTER 4. BUILT-IN PREDICATES

In case integer addition, subtraction and multiplication would lead to an integer overflow the
operands are automatically converted to floating point numbers. The floating point functions (sin/1 ,
exp/1 , etc.) form a direct interface to the corresponding C library functions used to compile SWI-
Prolog. Please refer to the C library documentation for details on precision, error handling, etc.

- +Expr
Result= −Expr

+Expr1 + +Expr2
Result= Expr1+ Expr2

+Expr1 - +Expr2
Result= Expr1− Expr2

+Expr1 * +Expr2
Result= Expr1× Expr2

+Expr1 / +Expr2

Result= Expr1
Expr2

+IntExpr1 mod +IntExpr2
Modulo: Result= IntExpr1- (IntExpr1// IntExpr2) × IntExpr2The functionmod/2 is imple-
mented using the C%operator. It’s behaviour with negtive values is illustrated in the table
below.

2 = 17 mod 5
2 = 17 mod -5

-2 = -17 mod 5
-2 = -17 mod -5

+IntExpr1 rem +IntExpr2
Remainder of division:Result= float fractionalpart(IntExpr1/IntExpr2)

+IntExpr1 // +IntExpr2
Integer division:Result= truncate(Expr1/Expr2)

abs(+Expr)
EvaluateExprand return the absolute value of it.

sign(+Expr)
Evaluate to -1 ifExpr < 0, 1 if Expr > 0 and 0 ifExpr = 0.

max(+Expr1, +Expr2)
Evaluates to the largest of bothExpr1andExpr2.

min(+Expr1, +Expr2)
Evaluates to the smallest of bothExpr1andExpr2.

SWI-Prolog 5.5 Reference Manual



4.27. ARITHMETIC FUNCTIONS 121

. (+Int, [] )
A list of one element evaluates to the element. This implies"a" evaluates to the character
code of the letter ‘a’ (97). This option is available for compatibility only. It will not work if
‘style check(+string) ’ is active as"a" will then be transformed into a string object.
The recommended way to specify the character code of the letter ‘a’ is0’a .

random(+Int)
Evaluates to a random integeri for which 0 ≤ i < Int. The seed of this random generator is
determined by the system clock when SWI-Prolog was started.

round(+Expr)
EvaluatesExprand rounds the result to the nearest integer.

integer(+Expr)
Same asround/1 (backward compatibility).

float(+Expr)
Translate the result to a floating point number. Normally, Prolog will use integers whenever
possible. When used around the 2nd argument ofis/2 , the result will be returned as a floating
point number. In other contexts, the operation has no effect.

float fractional part(+Expr)
Fractional part of a floating-point number. Negative ifExpr is negative, 0 ifExpr is integer.

float integer part(+Expr)
Integer part of floating-point number. Negative ifExpr is negative,Expr if Expr is integer.

truncate(+Expr)
TruncateExpr to an integer. Same asfloat integer part/1 .

floor(+Expr)
EvaluatesExprand returns the largest integer smaller or equal to the result of the evaluation.

ceiling(+Expr)
EvaluatesExprand returns the smallest integer larger or equal to the result of the evaluation.

ceil(+Expr)
Same asceiling/1 (backward compatibility).

+IntExpr >> +IntExpr
Bitwise shiftIntExpr1by IntExpr2bits to the right.

+IntExpr << +IntExpr
Bitwise shiftIntExpr1by IntExpr2bits to the left.

+IntExpr \/ +IntExpr
Bitwise ‘or’ IntExpr1andIntExpr2.

+IntExpr /\ +IntExpr
Bitwise ‘and’ IntExpr1andIntExpr2.

+IntExpr xor +IntExpr
Bitwise ‘exclusive or’IntExpr1andIntExpr2.

SWI-Prolog 5.5 Reference Manual



122 CHAPTER 4. BUILT-IN PREDICATES

\ +IntExpr
Bitwise negation.

msb(+IntExpr)
Position of the most significant bit in binary notation.IntExprmust evaluate to a positive integer.
The MSB of 1 is 0.34

sqrt(+Expr)
Result=

√
Expr

sin(+Expr)
Result= sin Expr. Expr is the angle in radians.

cos(+Expr)
Result= cos Expr. Expr is the angle in radians.

tan(+Expr)
Result= tan Expr. Expr is the angle in radians.

asin(+Expr)
Result= arcsin Expr. Resultis the angle in radians.

acos(+Expr)
Result= arccos Expr. Resultis the angle in radians.

atan(+Expr)
Result= arctan Expr. Resultis the angle in radians.

atan(+YExpr, +XExpr)

Result = arctan YExpr
XExpr. Result is the angle in radians. The return value is in the range

[−π . . . π]. Used to convert between rectangular and polar coordinate system.

log(+Expr)
Result= ln Expr

log10(+Expr)
Result= lg Expr

exp(+Expr)
Result= eExpr

+Expr1 ** +Expr2
Result= Expr1Expr2

+Expr1 ˆ +Expr2
Same as **/2. (backward compatibility).

pi
Evaluates to the mathematical constantπ (3.141593).

34msb/1 is compatible to hProlog

SWI-Prolog 5.5 Reference Manual



4.28. ADDING ARITHMETIC FUNCTIONS 123

e
Evaluates to the mathematical constante (2.718282).

cputime
Evaluates to a floating point number expressing theCPU time (in seconds) used by Prolog up
till now. See alsostatistics/2 andtime/1 .

4.28 Adding Arithmetic Functions

Prolog predicates can be given the role of arithmetic function. The last argument is used to return
the result, the arguments before the last are the inputs. Arithmetic functions are added using the
predicatearithmetic function/1 , which takes the head as its argument. Arithmetic functions
are module sensitive, that is they are only visible from the module in which the function is defined and
declared. Global arithmetic functions should be defined and registered from moduleuser . Global
definitions can be overruled locally in modules. The builtin functions described above can be redefined
as well.

arithmetic function(+Head)
Register a Prolog predicate as an arithmetic function (seeis/2 , >/2 , etc.). The Prolog predi-
cate should have one more argument than specified byHead, which it either a termName/Arity,
an atom or a complex term. This last argument is an unbound variable at call time and should
be instantiated to an integer or floating point number. The other arguments are the parameters.
This predicate is module sensitive and will declare the arithmetic function only for the context
module, unless declared from moduleuser . Example:

1 ?- [user].
:- arithmetic_function(mean/2).

mean(A, B, C) :-
C is (A+B)/2.

user compiled, 0.07 sec, 440 bytes.

Yes
2 ?- A is mean(4, 5).

A = 4.500000

current arithmetic function(?Head)
Successively unifies all arithmetic functions that are visible from the context module withHead.

4.29 Built-in list operations

Most list operations are defined in the librarylists described in sectionA.1. Some that are imple-
mented with more low-level primitives are built-in and described here.

SWI-Prolog 5.5 Reference Manual



124 CHAPTER 4. BUILT-IN PREDICATES

is list(+Term)
Succeeds ifTermis bound to the empty list ([] ) or a term with functor ‘. ’ and arity 2 and the
second argument is a list.35 This predicate acts as if defined by the following definition:

is_list(X) :-
var(X), !,
fail.

is_list([]).
is_list([_|T]) :-

is_list(T).

memberchk(?Elem, +List)
Equivalent tomember/2 , but leaves no choice point.

length(?List, ?Int)
Succeeds ifInt represents the number of elements of listList. Can be used to create a list holding
only variables.

sort(+List, -Sorted)
Succeeds ifSortedcan be unified with a list holding the elements ofList, sorted to the standard
order of terms (see section4.6). Duplicates are removed. The implementation is in C, using
natural merge sort36

msort(+List, -Sorted)
Equivalent tosort/2 , but does not remove duplicates.

keysort(+List, -Sorted)
List is a proper list whose elements areKey- Value , that is, terms whose principal functor is
(-)/2, whose first argument is the sorting key, and whose second argument is the satellite data
to be carried along with the key.keysort/2 sortsList like msort/2 , but only compares the
keys. It is used to sort terms not on standard order, but on any criterion that can be expressed on
a multi-dimensional scale. Sorting on more than one criterion can be done using terms as keys,
putting the first criterion as argument 1, the second as argument 2, etc. The order of multiple
elements that have the sameKey is not changed. The implementation is in C, usingnatural
merge sort.

predsort(+Pred, +List, -Sorted)
Sorts similar to sort/2 , but determines the order of two terms by calling
Pred(-Delta, +E1, +E2). This call must unifyDelta with one of<, const> or =. If built-in
predicatecompare/3 is used, the result is the same assort/2 . See alsokeysort/2 .37

merge(+List1, +List2, -List3)
List1 andList2 are lists, sorted to the standard order of terms (see section4.6). List3 will be
unified with an ordered list holding both the elements ofList1 andList2. Duplicates arenot
removed.

35In versions before 5.0.1,is list/1 just checked for[] or [ | ] andproper list/1 had the role of the current
is list/1 . The current definition is conform the de-facto standard. Assuming proper coding standards, there should only
be very few cases where a quick-and-dirtyis list/1 is a good choice. Richard O’Keefe pointed at this issue.

36Contributed by Richard O’Keefe.
37Please note that the semantics have changed between 3.1.1 and 3.1.2

SWI-Prolog 5.5 Reference Manual



4.30. FINDING ALL SOLUTIONS TO A GOAL 125

merge set(+Set1, +Set2, -Set3)
Set1andSet2are lists without duplicates, sorted to the standard order of terms.Set3is unified
with an ordered list without duplicates holding the union of the elements ofSet1andSet2.

4.30 Finding all Solutions to a Goal

findall(+Template, +Goal, -Bag)
Creates a list of the instantiationsTemplategets successively on backtracking overGoal and
unifies the result withBag. Succeeds with an empty list ifGoalhas no solutions.findall/3
is equivalent tobagof/3 with all free variables bound with the existence operator (ˆ ), except
thatbagof/3 fails when goal has no solutions.

bagof(+Template, +Goal, -Bag)
Unify Bagwith the alternatives ofTemplate, if Goal has free variables besides the one sharing
with Templatebagof will backtrack over the alternatives of these free variables, unifyingBag
with the corresponding alternatives ofTemplate. The construct+Var ˆ Goal tells bagof not to
bindVar in Goal. bagof/3 fails if Goalhas no solutions.

The example below illustratesbagof/3 and thê operator. The variable bindings are printed
together on one line to save paper.

2 ?- listing(foo).

foo(a, b, c).
foo(a, b, d).
foo(b, c, e).
foo(b, c, f).
foo(c, c, g).

Yes
3 ?- bagof(C, foo(A, B, C), Cs).

A = a, B = b, C = G308, Cs = [c, d] ;
A = b, B = c, C = G308, Cs = [e, f] ;
A = c, B = c, C = G308, Cs = [g] ;

No
4 ?- bagof(C, Aˆfoo(A, B, C), Cs).

A = G324, B = b, C = G326, Cs = [c, d] ;
A = G324, B = c, C = G326, Cs = [e, f, g] ;

No
5 ?-

setof(+Template, +Goal, -Set)
Equivalent tobagof/3 , but sorts the result usingsort/2 to get a sorted list of alternatives
without duplicates.

SWI-Prolog 5.5 Reference Manual



126 CHAPTER 4. BUILT-IN PREDICATES

4.31 Invoking Predicates on all Members of a List

All the predicates in this section call a predicate on all members of a list or until the predicate called
fails. The predicate is called via call/[2..], which implies common arguments can be put in front of
the arguments obtained from the list(s). For example:

?- maplist(plus(1), [0, 1, 2], X).

X = [1, 2, 3]

we will phrase this as “Predicateis applied on . . . ”

maplist(+Pred, +List)
Pred is applied successively on each element ofList until the end of the list orPredfails. In the
latter case themaplist/2 fails.38

maplist(+Pred, ?List1, ?List2)
Apply Predon all successive pairs of elements fromList1 andList2. Fails if Predcan not be
applied to a pair. See the example above.

maplist(+Pred, ?List1, ?List2, ?List3)
Apply Predon all successive triples of elements fromList1, List2 andList3. Fails if Predcan
not be applied to a triple. See the example above.

sublist(+Pred, +List1, ?List2)
Unify List2with a list of all elements ofList1 to whichPredapplies.

4.32 Forall

forall( +Cond, +Action)
For all alternative bindings ofCond Actioncan be proven. The example verifies that all arith-
metic statements in the listL are correct. It does not say which is wrong if one proves wrong.

?- forall(member(Result = Formula, [2 = 1 + 1, 4 = 2 * 2]),
Result =:= Formula).

4.33 Formatted Write

The current version of SWI-Prolog provides two formatted write predicates. The first is
writef/[1,2] , which is compatible with Edinburgh C-Prolog. The second isformat/[1,2] ,
which is compatible with Quintus Prolog. We hope the Prolog community will once define a standard
formatted write predicate. If you want performance useformat/[1,2] as this predicate is defined
in C. Otherwise compatibility reasons might tell you which predicate to use.

38Themaplist/2 predicate replaces the obsoletechecklist/2 predicate.

SWI-Prolog 5.5 Reference Manual



4.33. FORMATTED WRITE 127

4.33.1 Writef

writeln( +Term)
Equivalent towrite(Term), nl.

writef( +Atom)
Equivalent towritef(Atom, []).

writef( +Format, +Arguments)
Formatted write.Format is an atom whose characters will be printed.Format may contain
certain special character sequences which specify certain formatting and substitution actions.
Argumentsthen provides all the terms required to be output.

Escape sequences to generate a single special character:

\n Output a nemline character (see alsonl/[0,1] )
\l Output a line separator (same as\n )
\r Output a carriage-return character (ASCII 13)
\t Output the ASCII character TAB (9)
\\ The character\ is output
\% The character%is output
\nnn where〈nnn〉 is an integer (1-3 digits) the character with

character code〈nnn〉 is output (NB :〈nnn〉 is read asdec-
imal)

Note that\l , \nnn and\\ are interpreted differently when character-escapes are in effect. See
section2.15.1.

Escape sequences to include arguments fromArguments. Each time a % escape sequence is
found inFormatthe next argument fromArgumentsis formatted according to the specification.

SWI-Prolog 5.5 Reference Manual



128 CHAPTER 4. BUILT-IN PREDICATES

%t
print/1 the next item (mnemonic: term)

%w
write/1 the next item

%q
writeq/1 the next item

%d Write the term, ignoring operators. See also
write term/2 . Mnemonic: old Edinburgh
display/1 .

%p
print/1 the next item (identical to%t)

%n Put the next item as a character (i.e., it is a character code)
%r Write the next item N times where N is the second item

(an integer)
%s Write the next item as a String (so it must be a list of char-

acters)
%f Perform attyflush/0 (no items used)
%Nc Write the next item Centered inN columns.
%Nl Write the next item Left justified inN columns.
%Nr Write the next item Right justified inN columns.N is a

decimal number with at least one digit. The item must be
an atom, integer, float or string.

swritef(-String, +Format, +Arguments)
Equivalent towritef/2 , but “writes” the result onStringinstead of the current output stream.
Example:

?- swritef(S, ’%15L%w’, [’Hello’, ’World’]).

S = "Hello World"

swritef(-String, +Format)
Equivalent toswritef(String, Format, []).

4.33.2 Format

format(+Format)
Defined as ‘format(Format) :- format(Format, []). ’

format(+Format, +Arguments)
Formatis an atom, list of character codes, or a Prolog string.Argumentsprovides the arguments
required by the format specification. If only one argument is required and this is not a list of
character codes the argument need not be put in a list. Otherwise the arguments are put in a list.

Special sequences start with the tilde (˜ ), followed by an optional numeric argument, followed
by a character describing the action to be undertaken. A numeric argument is either a sequence
of digits, representing a positive decimal number, a sequence‘ 〈character〉, representing the
character code value of the character (only useful for˜t ) or a asterisk (* ), in when the numeric
argument is taken from the next argument of the argument list, which should be a positive
integer. Actions are:

SWI-Prolog 5.5 Reference Manual



4.33. FORMATTED WRITE 129

˜ Output the tilde itself.

a Output the next argument, which should be an atom. This option is equivalent tow.
Compatibility reasons only.

c Interpret the next argument as an character code and add it to the output. This argument
should be an integer in the range [0, . . . , 255] (including 0 and 255).

d Output next argument as a decimal number. It should be an integer. If a numeric argument
is specified a dot is insertedargumentpositions from the right (useful for doing fixed point
arithmetic with integers, such as handling amounts of money).

D Same asd, but makes large values easier to read by inserting a comma every three digits
left to the dot or right.

e Output next argument as a floating point number in exponential notation. The numeric
argument specifies the precision. Default is 6 digits. Exact representation depends on the
C library function printf(). This function is invoked with the format%.〈precision〉e.

E Equivalent toe, but outputs a capital E to indicate the exponent.

f Floating point in non-exponential notation. See C library function printf().

g Floating point ineor f notation, whichever is shorter.

G Floating point inE or f notation, whichever is shorter.

i Ignore next argument of the argument list. Produces no output.

k Give the next argument to (write canonical/1 ).

n Output a newline character.

N Only output a newline if the last character output on this stream was not a newline. Not
properly implemented yet.

p Give the next argument toprint/1 .

q Give the next argument towriteq/1 .

r Print integer in radix the numeric argument notation. Thus˜16r prints its argument
hexadecimal. The argument should be in the range[2, . . . , 36]. Lower case letters are
used for digits above 9.

R Same asr , but uses upper case letters for digits above 9.

s Output text from a list of character codes or a string (seestring/1 and section4.23)
from the next argument.

@ Interpret the next argument as a goal and execute it. Output written to the
current output stream is inserted at this place. Goal is called in the module calling
format/3 . This option is not present in the original definition by Quintus, but supported
by some other Prolog systems.

t All remaining space between 2 tab stops is distributed equally over˜t statements between
the tab stops. This space is padded with spaces by default. If an argument is supplied this
is taken to be the character code of the character used for padding. This can be used to do
left or right alignment, centering, distributing, etc. See also˜| and˜+ to set tab stops. A
tab stop is assumed at the start of each line.

| Set a tab stop on the current position. If an argument is supplied set a tab stop on the
position of that argument. This will cause all˜t ’s to be distributed between the previous
and this tab stop.

SWI-Prolog 5.5 Reference Manual



130 CHAPTER 4. BUILT-IN PREDICATES

+ Set a tab stop relative to the current position. Further the same as˜| .

w Give the next argument towrite/1 .

W Give the next two argument towrite term/2 . This option is SWI-Prolog specific.

Example:

simple_statistics :-
<obtain statistics> % left to the user
format(’˜tStatistics˜t˜72|˜n˜n’),
format(’Runtime: ˜‘.t ˜2f˜34| Inferences: ˜‘.t ˜D˜72|˜n’,

[RunT, Inf]),
....

Will output

Statistics

Runtime: .................. 3.45 Inferences: .......... 60,345

format(+Stream, +Format, +Arguments)
As format/2 , but write the output on the givenStream.

sformat(-String, +Format, +Arguments)
Equivalent toformat/2 , but “writes” the result onStringinstead of the current output stream.
Example:

?- sformat(S, ’˜w˜t˜15|˜w’, [’Hello’, ’World’]).

S = "Hello World"

sformat(-String, +Format)
Equivalent to ‘sformat(String, Format, []). ’

4.33.3 Programming Format

format predicate(+Char, +Head)
If a sequencẽc (tilde, followed by some character) is found, the format derivatives will first
check whether the user has defined a predicate to handle the format. If not, the built in format-
ting rules described above are used.Char is either anASCII value, or a one character atom,
specifying the letter to be (re)defined.Head is a term, whose name and arity are used to de-
termine the predicate to call for the redefined formatting character. The first argument to the
predicate is the numeric argument of the format command, or the atomdefault if no argu-
ment is specified. The remaining arguments are filled from the argument list. The example
below redefines̃n to produceArg times return followed by linefeed (so a (Grr.) DOS machine
is happy with the output).

SWI-Prolog 5.5 Reference Manual



4.34. TERMINAL CONTROL 131

:- format_predicate(n, dos_newline(_Arg)).

dos_newline(default) :- !,
dos_newline(1).

dos_newline(N) :-
( N > 0
-> write(’\r\n’),

N2 is N - 1,
dos_newline(N2)

; true
).

current format predicate(?Code, ?:Head)
Enumerates all user-defined format predicates.Codeis the character code of the format charac-
ter. Headis unified with a term with the same name and arity as the predicate. If the predicate
does not reside in moduleuser , Headis qualified with the definition module of the predicate.

4.34 Terminal Control

The following predicates form a simple access mechanism to the Unix termcap library to provide
terminal independent I/O for screen terminals. These predicates are only available on Unix machines.
The SWI-Prolog Windows consoles accepts the ANSI escape sequences.

tty get capability(+Name, +Type, -Result)
Get the capability namedNamefrom the termcap library. See termcap(5) for the capability
names. Typespecifies the type of the expected result, and is one ofstring , number or
bool . String results are returned as an atom, number result as an integer and bool results as the
atomon or off . If an option cannot be found this predicate fails silently. The results are only
computed once. Successive queries on the same capability are fast.

tty goto(+X, +Y)
Goto position (X, Y) on the screen. Note that the predicatesline count/2 and
line position/2 will not have a well defined behaviour while using this predicate.

tty put(+Atom, +Lines)
Put an atom via the termcap library function tputs(). This function decodes padding informa-
tion in the strings returned bytty get capability/3 and should be used to output these
strings. Lines is the number of lines affected by the operation, or 1 if not applicable (as in
almost all cases).

set tty( -OldStream, +NewStream)
Set the output stream, used bytty put/2 andtty goto/2 to a specific stream. Default is
useroutput.

tty size(-Rows, -Columns)
Determine the size of the terminal. Platforms:

SWI-Prolog 5.5 Reference Manual



132 CHAPTER 4. BUILT-IN PREDICATES

Unix If the system providesioctl calls for this, these are used andtty size/2 properly re-
flects the actual size after a user resize of the window. As a fallback, the system uses
tty get capability/2 usingli andco capabilities. In this case the reported size
reflects the size at the first call and is not updated after a user-initiated resize of the termi-
nal.

Windows Getting the size of the terminal is provided forplwin.exe . The requested value
reflects the current size. For the multi-threaded version the console that is associated with
theuser input stream is used.

4.35 Operating System Interaction

shell(+Command, -Status)
ExecuteCommandon the operating system.Commandis given to the Bourne shell (/bin/sh).
Statusis unified with the exit status of the command.

On Win32systems,shell/[1,2] executes the command using the CreateProcess() API and
waits for the command to terminate. If the command ends with a&sign, the command is handed
to the WinExec() API, which does not wait for the new task to terminate. See alsowin exec/2
andwin shell/2 . Please note that the CreateProcess() API doesnot imply the Windows
command interpreter (command.exe on Windows 95/98 andcmd.exe on Windows-NT) and
therefore commands built-in to the command-interpreter can only be activated using the com-
mand interpreter. For example:’command.exe /C copy file1.txt file2.txt’

shell(+Command)
Equivalent to ‘shell(Command, 0) ’.

shell
Start an interactive Unix shell. Default is/bin/sh , the environment variableSHELLoverrides
this default. Not available for Win32 platforms.

win exec(+Command, +Show)
Win32 systems only. Spawns a Windows task without waiting for its comple-
tion. Show is one of the Win32SW* constants written in lowercase without the
SW* : hide maximize minimize restore show showdefault showmaximized
showminimized showminnoactive showna shownoactive shownormal . In ad-
dition, iconic is a synonym forminimize andnormal for shownormal

win shell(+Operation, +File, +Show)
Win32 systems only. Opens the documentFile using the windows shell-rules for doing so.
Operationis one ofopen , print or explore or another operation registered with the shell
for the given document-type. On modern systems it is also possible to pass a URL asFile,
opening the URL in Windows default browser. This call interfaces to the Win32 API ShellEx-
ecute(). TheShowargument determines the initial state of the opened window (if any). See
win exec/2 for defined values.

win shell(+Operation, +File)
Same aswin shell (Operation, File, normal)

SWI-Prolog 5.5 Reference Manual



4.35. OPERATING SYSTEM INTERACTION 133

win registry get value(+Key, +Name, -Value)
Win32 systems only. Fetches the value of a Win32 registry key.Key is an atom formed as a
path-name describing the desired registry key.Nameis the desired attribute name of the key.
Value is unified with the value. If the value is of typeDWORD, the value is returned as an
integer. If the value is a string it is returned as a Prolog atom. Other types are currently not sup-
ported. The default ‘root’ isHKEYCURRENTUSER. Other roots can be specified explicitely as
HKEYCLASSESROOT, HKEYCURRENTUSER, HKEYLOCALMACHINEor HKEYUSERS.
The example below fetches the extension to use for Prolog files (seeREADME.TXTon the Win-
dows version):

?- win_registry_get_value(’HKEY_LOCAL_MACHINE/Software/SWI/Prolog’,
fileExtension,
Ext).

Ext = pl

getenv(+Name, -Value)
Get environment variable. Fails silently if the variable does not exist. Please note that environ-
ment variable names are case-sensitive on Unix systems and case-insensitive on Windows.

setenv(+Name, +Value)
Set environment variable.NameandValueshould be instantiated to atoms or integers. The
environment variable will be passed toshell/[0-2] and can be requested usinggetenv/2 .
They also influenceexpand file name/2 .

unsetenv(+Name)
Remove environment variable from the environment.

setlocale(+Category, -Old, +New)
Set/Query thelocalesetting which tells the C-library how to interpret text-files, write numbers,
dates, etc. Category is one ofall , collate , ctype , messages , monetary , numeric or
time . For details, please consult the C-library locale documentation. See also section2.17.1.

unix(+Command)
This predicate comes from the Quintus compatibility library and provides a partial implementa-
tion thereof. It provides access to some operating system features and unlike the name suggests,
is not operating system specific. DefinedCommand’s are below.

system(+Command)
Equivalent to callingshell/1 . Use for compatibility only.

shell(+Command)
Equivalent to callingshell/1 . Use for compatibility only.

shell
Equivalent to callingshell/0 . Use for compatibility only.

cd
Equivalent to calling working directory/2 to the expansion (see
expand file name/2 ) of ˜ . For compatibility only.

SWI-Prolog 5.5 Reference Manual



134 CHAPTER 4. BUILT-IN PREDICATES

cd(+Directory)
Equivalent to callingworking directory/2 . Use for compatibility only.

argv(-Argv)
Unify Argv with the list of commandline arguments provides to this Prolog run. Please
note that Prolog system-arguments and application arguments are separated by-- . Integer
arguments are passed as Prolog integers, float arguments and Prolog floating point num-
bers and all other arguments as Prolog atoms. New applications should use the prolog-flag
argv . See also prolog prolog-flagargv .
A stand-alone program could use the following skeleton to handle command-line argu-
ments. See also section2.10.2.

main :-
unix(argv(Argv)),
append(_PrologArgs, [--|AppArgs], Argv), !,
main(AppArgs).

4.35.1 Dealing with time and date

There is no standard for time-representation in the Prolog community. SWI-Prolog represents it as
a floating-point number using the same basic representation as the POSIX standard, seconds elapsed
since the January 1970, 0 hours. This format is also used for predicates accessing time-information
from files (seetime file/2 ).

get time(-Time)
Return the number of seconds that elapsed since the epoch of the POSIX, tim representation:
January 1970, 0 hours.Timeis a floating point number. The granularity is system dependent.

convert time(+Time, -Year, -Month, -Day, -Hour, -Minute, -Second, -MilliSeconds)
Convert a time stamp, provided byget time/1 , time file/2 , etc. Year is unified with
the year,Monthwith the month number (January is 1),Day with the day of the month (starting
with 1), Hour with the hour of the day (0–23),Minutewith the minute (0–59).Secondwith the
second (0–59) andMilliSecondwith the milliseconds (0–999). Note that the latter might not
be accurate or might always be 0, depending on the timing capabilities of the system. See also
convert time/2 .

convert time(+Time, -String)
Convert a time-stamp as obtained thoughget time/1 into a textual representation using the
C-library functionctime() . The value is returned as a SWI-Prolog string object (see sec-
tion 4.23). See alsoconvert time/8 .

4.35.2 Controlling thePLWIN.EXE console window

The Windows executablePLWIN.EXE console has a number of predicates to control the appearance
of the console. Being totally non-portable, we do not advice using it for your own application, but use
XPCE or another portable GUI platform instead. We give the predicates for reference here.

window title( -Old, +New)
Unify Old with the title displayed in the console and change the title toNew.39

39BUG: This predicate should have been calledwin window title for consistent naming.

SWI-Prolog 5.5 Reference Manual



4.36. FILE SYSTEM INTERACTION 135

win window pos(+ListOfOptions)
Interface to the MS-Windows SetWindowPos() function, controlling size, position and stacking
order of the window.ListOfOptionsis a list that may hold any number of the terms below.

size(W, H)
Change the size of the window.W andH are expressed in character-units.

position(X, Y)
Change the top-left corner of the window. The values are expressed in pixel units.

zorder(ZOrder)
Change the location in the window stacking order. Values arebottom , top , topmost
andnotopmost . Topmostwindows are displayed above all other windows.

show(Bool)
If true , show the window, iffalse hide the window.

activate
If present, activate the window.

win has menu
Suceeds ifwin insert menu/2 andwin insert menu item/4 are present.

win insert menu(+Label, +Before)
Insert a new entry (pulldown) in the menu. If the menu already contains this entry, nothing is
done. TheLabel is the label and using the Windows conventions, a letter prefixed with& is
underlined and defines the associated accelerator key.Beforeis the label before which this one
must be inserted. Using- adds the new entry at the end (right). For example, the call below
adds aApplication entry just before theHelp menu.

win_insert_menu(’&Application’, ’&Help’)

win insert menu item(+Pulldown, +Label, +Before, :Goal)
Add an item to the namedPulldown menu. Label and Before are handled as in
win insert menu/2 , but the label- inserts aseparator. Goal is called if the user selects
the item.

4.36 File System Interaction

accessfile(+File, +Mode)
Succeeds ifFile exists and can be accessed by this prolog process under modeMode. Mode
is one of the atomsread , write , append , exist , none or execute . File may also
be the name of a directory. Fails silently otherwise.access file(File, none) simply
succeeds without testing anything.

If ‘Mode’ is write or append , this predicate also succeeds if the file does not exist and the
user has write-access to the directory of the specified location.

existsfile(+File)
Succeeds whenFile exists and is a regular file. This does not imply the user has read and/or
write permission for the file.

SWI-Prolog 5.5 Reference Manual



136 CHAPTER 4. BUILT-IN PREDICATES

file directory name(+File, -Directory)
Extracts the directory-part ofFile. The returnedDirectory name does not end in/ . There are
two special cases. The directory-name of/ is / itself and the directory-name ifFile does not
contain any/ characters is. .

file basename(+File, -BaseName)
Extracts the filename part from a path specification. IfFile does not contain any directory
separators,File is returned.

samefile(+File1, +File2)
Succeeds if both filenames refer to the same physical file. That is, ifFile1 andFile2 are the
same string or both names exist and point to the same file (due to hard or symbolic links and/or
relative vs. absolute paths).

existsdirectory(+Directory)
Succeeds ifDirectory exists and is a directory. This does not imply the user has read, search
and or write permission for the directory.

deletefile(+File)
RemoveFile from the file system.

rename file(+File1, +File2)
RenameFile1 into File2. Currently files cannot be moved across devices.

sizefile(+File, -Size)
Unify Sizewith the size ofFile in characters.

time file(+File, -Time)
Unify the last modification time ofFile with Time. Timeis a floating point number expressing
the seconds elapsed since Jan 1, 1970. See alsoconvert time/[2,8] andget time/1 .

absolutefile name(+File, -Absolute)
Expand a local file-name into an absolute path. The absolute path is canonised: ref-
erences to. and .. are deleted. This predicate ensures that expanding a file-name
it returns the same absolute path regardless of how the file is addressed. SWI-Prolog
uses absolute file names to register source files independent of the current working di-
rectory. See alsoabsolute file name/3 . See alsoabsolute file name/3 and
expand file name/2 .

absolutefile name(+Spec, +Options, -Absolute)
Converts the given file specification into an absolute path.Option is a list of options to guide
the conversion:

extensions(ListOfExtensions)
List of file-extensions to try. Default is ’’ . For each extension,
absolute file name/3 will first add the extension and then verify the condi-
tions imposed by the other options. If the condition fails, the next extension of the list is
tried. Extensions may be specified both as..ext or plainext .

SWI-Prolog 5.5 Reference Manual



4.36. FILE SYSTEM INTERACTION 137

relative to(+FileOrDir )
Resolve the path relative to the given directory or directory the holding the given
file. Without this option, paths are resolved relative to the working directory (see
working directory/2 ) or, if Specis atomic andabsolute file name/[2,3]
is executed in a directive, it uses the current source-file as reference.

access(Mode)
Imposes the condition accessfile(File, Mode). Mode is on of read , write , append ,
exist or none . See alsoaccess file/2 .

file type(Type)
Defines extensions. Current mapping:txt implies [’’] , prolog implies [’.pl’,
’’] , executable implies [’.so’, ’’] , qlf implies [’.qlf’, ’’] and
directory implies [’’] . The file-typesource is an alias forprolog for com-
patibility to SICStus Prolog. See alsoprolog file type/2 .

file errors(fail/error)
If error (default), throw andexistence error exception if the file cannot be found.
If fail , stay silent.40

solutions(first/all)
If first (default), the predicates leaves no choice-point. Otherwise a choice-point will
be left and backtracking may yield more solutions.

expand(true/false)
If true (default isfalse ) andSpecis atomic, callexpand file name/2 followed
by member/2 onSpecbefore proceeding. This is a SWI-Prolog extension.

The prolog-flagverbose file search can be set totrue to help debugging Prolog’s
search for files.

Compatibility considerations to common argument-order in ISO as well as SICStus
absolute file name/3 forced us to be flexible here. If the last argument is a list and the
2nd not, the arguments are swapped, making the callabsolute file name(+Spec, -Path,
+Options) valid as well.

is absolutefile name(+File)
True if File specifies and absolute path-name. On Unix systems, this implies the path starts
with a ‘/’. For Microsoft based systems this implies the path starts with〈letter〉: . This
predicate is intended to provide platform-independent checking for absolute paths. See also
absolute file name/2 andprolog to os filename/2 .

file name extension(?Base, ?Extension, ?Name)
This predicate is used to add, remove or test filename extensions. The main reason for its
introduction is to deal with different filename properties in a portable manner. If the file system
is case-insensitive, testing for an extension will be done case-insensitive too.Extensionmay
be specified with or without a leading dot (. ). If an Extensionis generated, it will not have a
leading dot.

expand file name(+WildCard, -List)
Unify List with a sorted list of files or directories matchingWildCard. The normal Unix wild-
card constructs ‘?’, ‘ * ’, ‘ [...] ’ and ‘{... }’ are recognised. The interpretation of ‘{... }’

40Silent operation was the default up to version 3.2.6.

SWI-Prolog 5.5 Reference Manual



138 CHAPTER 4. BUILT-IN PREDICATES

is interpreted slightly different from the C shell (csh(1)). The comma separated argument can be
arbitrary patterns, including ‘{... }’ patterns. The empty pattern is legal as well: ‘\{.pl,\} ’
matches either ‘.pl ’ or the empty string.

If the pattern does contains wildcard characters, only existing files and directories are returned.
Expanding a ‘pattern’ without wildcard characters returns the argument, regardless on whether
or not it exists.

Before expanding wildchards, the construct$var is expanded to the value of the environment
variablevar and a possible leading̃character is expanded to the user’s home directory.41.

prolog to os filename(?PrologPath, ?OsPath)
Converts between the internal Prolog pathname conventions and the operating-system pathname
conventions. The internal conventions are Unix and this predicates is equivalent to =/2 (unify)
on Unix systems. On DOS systems it will change the directory-separator, limit the filename
length map dots, except for the last one, onto underscores.

read link( +File, -Link, -Target)
If File points to a symbolic link, unifyLink with the value of the link andTargetto the file the
link is pointing to.Targetpoints to a file, directory or non-existing entry in the file system, but
never to a link. Fails ifFile is not a link. Fails always on systems that do not support symbolic
links.

tmp file(+Base, -TmpName)
Create a name for a temporary file.Baseis an identifier for the category of file. TheTmpNameis
guaranteed to be unique. If the system halts, it will automatically remove all created temporary
files.

make directory(+Directory)
Create a new directory (folder) on the filesystem. Raises an exception on failure. On Unix
systems, the directory is created with default permissions (defined by the processumasksetting).

deletedirectory(+Directory)
Delete directory (folder) from the filesystem. Raises an exception on failure. Please note that
in general it will not be possible to delete a non-empty directory.

working directory( -Old, +New)
Unify Old with an absolute path to the current working directory and change working directory
to New. Use the patternworking directory (CWD, CWD) to get the current directory. See
alsoabsolute file name/2 andchdir/1 .42

chdir(+Path)
Compatibility predicate. New code should useworking directory/2 .

41On Windows, the home directory is determined as follows: if the environment variableHOMEexists, this is used. If
the variablesHOMEDRIVEandHOMEPATHexist (Windows-NT), these are used. At initialisation, the system will set the
environment variableHOMEto point to the SWI-Prolog home directory if neitherHOMEnor HOMEPATHandHOMEDRIVE
are defined

42BUG: Some of the file-I/O predicates use local filenames. Changing directory while file-bound streams are open causes
wrong results ontelling/1 , seeing/1 andcurrent stream/3

SWI-Prolog 5.5 Reference Manual



4.37. USER TOPLEVEL MANIPULATION 139

4.37 User Toplevel Manipulation

break
Recursively start a new Prolog top level. This Prolog top level has its own stacks, but shares
the heap with all break environments and the top level. Debugging is switched off on entering a
break and restored on leaving one. The break environment is terminated by typing the system’s
end-of-file character (control-D). If the-t toplevel command line option is given this goal
is started instead of entering the default interactive top level (prolog/0 ).

abort
Abort the Prolog execution and restart the top level. If the-t toplevel command line
options is given this goal is started instead of entering the default interactive top level.

There are two implementations ofabort/0 . The default one uses the exception mechanism
(see throw/1 ), throwing the exception$aborted . The other one uses the C-construct
longjmp() to discard the entire environment and rebuild a new one. Using exceptions allows
for proper recovery of predicates exploiting exceptions. Rebuilding the environment is safer if
the Prolog stacks are corrupt. Therefore the system will use the rebuild-strategy if the abort was
generated by an internal consistency check and the exception mechanism otherwise. Prolog
can be forced to use the rebuild-strategy setting the prolog flagabort with exception to
false .

halt
Terminate Prolog execution. Open files are closed and if the command line option-tty is not
active the terminal status (see Unix stty(1)) is restored. Hooks may be registered both in Prolog
and in foreign code. Prolog hooks are registered usingat halt/1 . halt/0 is equivalent to
halt(0) .43

halt(+Status)
Terminate Prolog execution with given status. Status is an integer. See alsohalt/0 .

prolog
This goal starts the default interactive top level. Queries are read from the streamuser input .
See also thehistory prolog flag (current prolog flag/2 ). Theprolog/0 predicate
is terminated (succeeds) by typing the end-of-file character (On most systems control-D).

The following two hooks allow for expanding queries and handling the result of a query. These
hooks are used by the toplevel variable expansion mechanism described in section2.8.

expand query(+Query, -Expanded, +Bindings, -ExpandedBindings)
Hook in moduleuser , normally not defined.QueryandBindingsrepresents the query read
from the user and the names of the free variables as obtained usingread term/3 . If this
predicate succeeds, it should bindExpandedandExpandedBindingsto the query and bindings
to be executed by the toplevel. This predicate is used by the toplevel (prolog/0 ). See also
expand answer/2 andterm expansion/2 .

expand answer(+Bindings, -ExpandedBindings)
Hook in moduleuser , normally not defined. Expand the result of a successfully executed

43BUG: In the multi-threaded version,halt/0 does not work when not called from themain thread. In the current
system apermission error exception is raised. Future versions may enablehalt/0 from any thread.

SWI-Prolog 5.5 Reference Manual



140 CHAPTER 4. BUILT-IN PREDICATES

toplevel query.Bindingsis the query〈Name〉 = 〈Value〉 binding list from the query.Expand-
edBindingsmust be unified with the bindings the toplevel should print.

4.38 Creating a Protocol of the User Interaction

SWI-Prolog offers the possibility to log the interaction with the user on a file.44 All Prolog interaction,
including warnings and tracer output, are written on the protocol file.

protocol(+File)
Start protocolling on fileFile. If there is already a protocol file open then close it first. IfFile
exists it is truncated.

protocola(+File)
Equivalent toprotocol/1 , but does not truncate theFile if it exists.

noprotocol
Stop making a protocol of the user interaction. Pending output is flushed on the file.

protocolling(-File)
Succeeds if a protocol was started withprotocol/1 or protocola/1 and unifiesFile with
the current protocol output file.

4.39 Debugging and Tracing Programs

This section is a reference to the debugger interaction predicates. A more use-oriented overview of
the debugger is in section2.9.

If you have installed XPCE, you can use the graphical frontend of the tracer. This frontend is
installed using the predicateguitracer/0 .

trace
Start the tracer.trace/0 itself cannot be seen in the tracer. Note that the Prolog toplevel treats
trace/0 special; it means ‘trace the next goal’.

tracing
Succeeds when the tracer is currently switched on.tracing/0 itself can not be seen in the
tracer.

notrace
Stop the tracer.notrace/0 itself cannot be seen in the tracer.

guitracer
Installs hooks (seeprolog trace interception/4 ) into the system that redirects trac-
ing information to a GUI frontend providing structured access to variable-bindings, graphical
overview of the stack and highlighting of relevant source-code.

noguitracer
Reverts back to the textual tracer.

44A similar facility was added to Edinburgh C-Prolog by Wouter Jansweijer.

SWI-Prolog 5.5 Reference Manual



4.39. DEBUGGING AND TRACING PROGRAMS 141

trace(+Pred)
Equivalent totrace( Pred , +all) .

trace(+Pred, +Ports)
Put a trace-point on all predicates satisfying the predicate specificationPred. Ports is a list
of portnames (call , redo , exit , fail ). The atomall refers to all ports. If the port is
preceded by a- sign the trace-point is cleared for the port. If it is preceded by a+ the trace-
point is set.

The predicatetrace/2 activates debug mode (seedebug/0 ). Each time a port (of the 4-
port model) is passed that has a trace-point set the goal is printed as withtrace/0 . Unlike
trace/0 however, the execution is continued without asking for further information. Exam-
ples:

?- trace(hello). Trace all ports of hello with any arity in any mod-
ule.

?- trace(foo/2, +fail). Trace failures of foo/2 in any module.
?- trace(bar/1, -all). Stop tracing bar/1.

The predicatedebugging/0 shows all currently defined trace-points.

notrace(+Goal)
Call Goal, but suspend the debugger whileGoal is executing. The current implementation cuts
the choicepoints ofGoal after successful completion. Seeonce/1 . Later implementations
may have the same semantics ascall/1 .

debug
Start debugger. In debug mode, Prolog stops at spy- and trace-points, disables tail-recursion
optimisation and aggressive destruction of choice-points to make debugging information acces-
sible. Implemented by the Prolog flagdebug .

nodebug
Stop debugger. Implementated by the prolog flagdebug . See alsodebug/0 .

debugging
Print debug status and spy points on current output stream. See also the prolog flagdebug .

spy(+Pred)
Put a spy point on all predicates meeting the predicate specificationPred. See section4.4.

nospy(+Pred)
Remove spy point from all predicates meeting the predicate specificationPred.

nospyall
Remove all spy points from the entire program.

leash(?Ports)
Set/query leashing (ports which allow for user interaction).Ports is one of+Name, -Name,
?Nameor a list of these.+Nameenables leashing on that port,-Namedisables it and?Name
succeeds or fails according to the current setting. Recognised ports are:call , redo , exit ,
fail andunify . The special shorthandall refers to all ports,full refers to all ports except
for the unify port (default).half refers to thecall , redo andfail port.

SWI-Prolog 5.5 Reference Manual



142 CHAPTER 4. BUILT-IN PREDICATES

visible(+Ports)
Set the ports shown by the debugger. Seeleash/1 for a description of the port specification.
Default isfull .

unknown(-Old, +New)
Edinburgh-prolog compatibility predicate, interfacing to the ISO prolog flagunknown . Val-
ues aretrace (meaningerror ) and fail . If the unknown flag is set towarning ,
unknown/2 reports the value astrace .

style check(+Spec)
Set style checking options.Specis either+〈option〉, - 〈option〉, ?( 〈option〉) 45 or a list of such
options.+〈option〉 sets a style checking option,- 〈option〉 clears it and?( 〈option〉) succeeds
or fails according to the current setting.consult/1 and derivatives resets the style checking
options to their value before loading the file. If—for example—a file containing long atoms
should be loaded the user can start the file with:

:- style_check(-atom).

Currently available options are:

Name Default Description
singleton on

read clause/1 (used byconsult/1 ) warns on vari-
ables only appearing once in a term (clause) which have a
name not starting with an underscore.

atom on
read/1 and derivatives will produce an error message on
quoted atoms or strings longer than 5 lines.

dollar off Accept dollar as a lower case character, thus avoiding the
need for quoting atoms with dollar signs. System mainte-
nance use only.

discontiguous on Warn if the clauses for a predicate are not together in the
same source file.

string off Backward compatibility. See the prolog-flag
double quotes (current prolog flag/2 ).

charset off Warn on atoms and variables holding non-ASCII charac-
ters that are not quoted. See also section2.15.1.

4.40 Obtaining Runtime Statistics

statistics(+Key, -Value)
Unify system statistics determined byKey with Value. The possible keys are given in the ta-
ble 4.2. The last part of the table contains keys for compatibility to other Prolog implementa-
tions (Quintus) for improved portability. Note that the ISO standard does not define methods to
collect system statistics.

45In older versions ‘?’ was a prefix operator. Inversions after 5.5.13, explicit brackets are needed.

SWI-Prolog 5.5 Reference Manual



4.40. OBTAINING RUNTIME STATISTICS 143

agc Number of atom garbage-collections performed
agcgained Number of atoms removed
agc time Time spent in atom garbage-collections
cputime (User)CPU time since Prolog was started in seconds
inferences Total number of passes via the call and redo ports since Prolog was

started.
heap Estimated total size of the heap (see section2.18.1)
heapused Bytes heap in use by Prolog.
heaplimit Maximum size of the heap (see section2.18.1)
local Allocated size of the local stack in bytes.
localused Number of bytes in use on the local stack.
locallimit Size to which the local stack is allowed to grow
global Allocated size of the global stack in bytes.
globalused Number of bytes in use on the global stack.
globallimit Size to which the global stack is allowed to grow
trail Allocated size of the trail stack in bytes.
trailused Number of bytes in use on the trail stack.
traillimit Size to which the trail stack is allowed to grow
atoms Total number of defined atoms.
functors Total number of defined name/arity pairs.
predicates Total number of predicate definitions.
modules Total number of module definitions.
codes Total amount of byte codes in all clauses.
threads MT-version: number of active threads
threadscreated MT-version: number of created threads
threadcputime MT-version: seconds CPU time used by finished threads. Sup-

ported on Windows-NT and later, Linux and possibly a few more.
Verify it gives plausible results before using.

Compatibility keys
runtime [ CPU time, CPU time since last ] (milliseconds)
systemtime [ System CPU time, System CPU time since last ] (milliseconds)
real time [ Wall time, Wall time since last ] (seconds since 1970)
memory [ Total unshared data, free memory ] (Uses getrusage() if available,

otherwise incomplete own statistics.
stacks [ global use, local use ]
program [ heap, 0 ]
global stack [ global use, global free ]
local stack [ local use, local free ]
trail [ trail use, 0 ]
garbagecollection [ number of GC, bytes gained, time spent ]
stackshifts [ global shifts, local shifts, time spent ] (fails if no shifter in this

version)
atoms [ number, memory use, 0 ]
atomgarbagecollection [ number of AGC, bytes gained, time spent ]
core Same as memory

Table 4.2: Keys forstatistics/2

SWI-Prolog 5.5 Reference Manual



144 CHAPTER 4. BUILT-IN PREDICATES

statistics
Display a table of system statistics on the current output stream.

time(+Goal)
ExecuteGoal just like once/1 (i.e., leaving no choice points), but print used time, number
of logical inferences and the average number oflips (logical inferences per second). Note that
SWI-Prolog counts the actual executed number of inferences rather than the number of passes
through the call- and redo ports of the theoretical 4-port model.

4.41 Execution profiling

This section describes the hierarchical execution profiler introduced in SWI-Prolog 5.1.10. This pro-
filer is based on ideas fromgprof described in [Grahamet al., 1982]. The profiler consists of two
parts: the information-gathering is built into the kernel,46 and a presentation component which is de-
fined in thestatistics library. The latter can be hooked, which is used by the XPCE module
swi/pce profile to provide an interactive graphical representation of results.

4.41.1 Profiling predicates

Currently, the interface is kept compatible with the old profiler. As experience grows, it is likely that
the old interface is replaced with one that better reflects the new capabilities. Feel free to examine the
internal interfaces and report useful application thereof.

profile(:Goal)
ExecuteGoal just like time/1 , collecting profiling statistics and callshow profile (plain,
25). With XPCE installed this opens a graphical interface to the collected profiling data.

profile(:Goal, +Style, +Number)
ExecuteGoal just like time/1 . Collect profiling statistics and show the topNumberproce-
dures on the current output stream (seeshow profile/1 ) usingStyle. The results are kept in
the database untilreset profiler/0 or profile/3 is called and can be displayed again
with show profile/1 . Theprofile/1 predicate is a backward compatibility interface to
profile/1 . The other predicates in this section are low-level predicates for special cases.

show profile(+Style, +Number)
Show the collected results of the profiler. It shows the topNumberpredicates according the
percentageCPU-time used. IfStyleis plain the time spent in the predicates itself is displayed.
If Styleis cumulative the time spent in its siblings (callees) is added to the predicate.

This predicate first callsprolog:show profile hook/2 . If XPCE is loaded this hook is
used to activate a GUI interface to visialise the profile results.

show profile(+Number)
Compatibility. Same asshow profile (plain, Number).

profiler( -Old, +New)
Query or change the status of the profiler. The status is a boolean (true or false ) stating

46There are two implementations; one based on setitimer() ising theSIGPROFsignal and one using Windows Multi
Media (MM) timers. On other systems the profiler is not provided.

SWI-Prolog 5.5 Reference Manual



4.41. EXECUTION PROFILING 145

Figure 4.1: Execution profiler showing the activity of the predicatechat:inv map list/5 .

whether or not the profiler is collecting data. It can be used to enable or disable profiling certain
parts of the program.

reset profiler
Switches the profiler tofalse and clears all collected statistics.

noprofile(+Name/+Arity, . . .)
Declares the predicateName/Arity to be invisible to the profiler. The time spend in the named
predicate is added to the caller and the callees are linked directly to the caller. This is particulary
useful for simple meta-predicates such ascall/1 , ignore/1 , catch/3 , etc.

4.41.2 Visualizing profiling data

Browsing the annotated call-tree as described in section4.41.3itself is not very attractive. Therefore,
the results are combined per predicate, collecting allcallersand andcalleesas well as the propagation
of time and activations in both directions. Figure4.1 illustrates this. The central yellowish line is
the ‘current’ predicate with counts for time spent in the predicate (‘Self’), time spent in its children
(‘Siblings’), activations through the call and redo ports. Above that are thecallers. Here, the two time
fields indicate how much time is spent serving each of the callers. The columns sum to the time in the
yellowish line. The caller<recursive> are the number of recursive calls. Below the yellowish lines
are the callees, with the time spent in the callee itself for serving the current predicate and the time
spent in the callees of the callee (’Siblings’), so the whole time-block adds up to the ‘Siblings’ field of
the current predicate. The ‘Access’ fields show how many times the current predicate accesses each
of the callees.

The predicates have a menu that allows changing the view of the detail window to the given caller
or callee, showing the documentation (if it is a built-in) and/or jumping to the source.

The statistics shown in the report-field of figure4.1show the following information:

• samples
Number of times the call-tree was sampled for collecting time statistics. On most hardware the
resolution ofSIGPROFis 1/100 second. This number must be sufficiently large to get reliable
timing figures. TheTime menu allows viewing time as samples, relative time or absolute time.

• sec
Total user CPU time with the profiler active.

SWI-Prolog 5.5 Reference Manual



146 CHAPTER 4. BUILT-IN PREDICATES

• predicates
Total count of predicates that have been called at least one time during the profile.

• nodes
Number of nodes in the call-tree.

• distortion
How much of the time is spend building the call-tree as a percentage of the total execution time.
Timing samples while the profiler is building the call-tree are not added to the call-tree.

4.41.3 Information gathering

While the program executes under the profiler, the system builds adynamiccall-tree. It does this using
three hooks from the kernel: one that starts a new goal (profCall), one the tells the system which goal
is resumed after anexit (profExit) and one that tells the system which goal is resumed after afail (i.e.
which goal is used toretry (profRedo)). The profCall() function finds or creates the subnode for the
argument predicate below the current node, increments the call-count of this link and returns the sub-
node which is recorded in the Prolog stack-frame. Choice-points are marked with the current profiling
node. profExit() and profRedo() pass the profiling node where execution resumes.

Just using the above algorithm would create a much too big tree due to recursion. For this reason
the system performs detection of recursion. In the simplest case, recursive procedures increment the
‘recursive’ count on the current node. Mutual recursion however is not easily detected. For example,
call/1 can call a predicate that usescall/1 itself. This can be viewed as a recursive invocation,
but this is generally not desirable. Recursion is currently assumed if the same predicatewith the same
parentappears higher in the call-graph. Early experience with a some arbirary non-trivial programs
are promising.

The last part of the profiler collects statistics on the CPU-time used in each node. On systems
providing setitimer() withSIGPROF, it ‘ticks’ the current node of the call-tree each time the timer
fires. On Windows a MM-timer in a seperate thread checks 100 times per second how much time is
spent in the profiled thread and adds this to the current node. See section4.41.3for details.

Profiling in the Windows Implementation

Profiling in the Windows version is similar but, especially on Windows 95/98/ME one should be
aware of the implementation.47 Windows does not provide timers that fire asynchronously, frequent
and proportional to the CPU time used by the process. Windows does provide multi-media timers that
can run at high frequency. Such timers however run in a seperate thread of execution and they are
fired on the wall-clock rather than the amount of CPU time used. The profiler installs such a timer
running, for saving CPU time, rather inaccurately at about 100 Hz. Each time it is fired, it determines
the millisecons CPU time used by Prolog since the last time it was fired. If this value is non-zero,
active predicates are incremented with this value.

On Windows 95/98/ME (DOS-based Windows), there is no possibility to get the CPU-time used
by a thread or process.Therefore, on these systems profiling results does not count CPU-time,
but elapsed time.For sensible results on these systems, ensure the system has no other active tasks
and be aware that I/O operations include the time Prolog is blocked waiting for data.

47We hereby acknowledge Lionel Fourquaux, who suggested the design described here after a newsnet enquiry.

SWI-Prolog 5.5 Reference Manual



4.42. MEMORY MANAGEMENT 147

4.42 Memory Management

Note: limit stack/2 andtrim stacks/0 have no effect on machines that do not offer dynamic
stack expansion. On these machines these predicates simply succeed to improve portability.

garbagecollect
Invoke the global- and trail stack garbage collector. Normally the garbage collector is in-
voked automatically if necessary. Explicit invocation might be useful to reduce the need
for garbage collections in time critical segments of the code. After the garbage collection
trim stacks/0 is invoked to release the collected memory resources.

garbagecollect atoms
Reclaim unused atoms. Normally invoked afteragc margin (a prolog flag) atoms have been
created. On multi-threaded versions the actual collection is delayed until there there are no
threads performing normal garbage collection. In this casegarbage collect atoms/0
returns immediately. Note this implies there is no guarantee it willeverhappen as there may
always be threads performing garbage collection.

limit stack(+Key, +Kbytes)
Limit one of the stack areas to the specified value.Key is one oflocal , global or trail .
The limit is an integer, expressing the desired stack limit in K bytes. If the desired limit is
smaller than the currently used value, the limit is set to the nearest legal value above the cur-
rently used value. If the desired value is larger than the maximum, the maximum is taken.
Finally, if the desired value is either 0 or the atomunlimited the limit is set to its maximum.
The maximum and initial limit is determined by the command line options-L , -G and-T .

trim stacks
Release stack memory resources that are not in use at this moment, returning them to the oper-
ating system. Trim stack is a relatively cheap call. It can be used to release memory resources in
a backtracking loop, where the iterations require typically seconds of execution time and very
different, potentially large, amounts of stack space. Such a loop should be written as follows:

loop :-
generator,

trim_stacks,
potentially_expensive_operation,

stop_condition, !.

The prolog top level loop is written this way, reclaiming memory resources after every user
query.

stack parameter(+Stack, +Key, -Old, +New)
Query/set a parameter for the runtime stacks.Stackis one of local , global , trail or
argument . The table below describes theKey/Valuepairs. Old is first unified with the current
value.

limit Maximum size of the stack in bytes
min free Minimum free space at entry of foreign predicate

SWI-Prolog 5.5 Reference Manual



148 CHAPTER 4. BUILT-IN PREDICATES

This predicate is currently only available on versions that use the stack-shifter to enlarge the
runtime stacks when necessary. It’s definition is subject to change.

4.43 Windows DDE interface

The predicates in this section deal with MS-Windows ‘Dynamic Data Exchange’ or DDE protocol.48

A Windows DDE conversation is a form of interprocess communication based on sending reserved
window-events between the communicating processes.

See also section9.4for loading Windows DLL’s into SWI-Prolog.

4.43.1 DDE client interface

The DDE client interface allows Prolog to talk to DDE server programs. We will demonstrate the use
of the DDE interface using the Windows PROGMAN (Program Manager) application:

1 ?- open_dde_conversation(progman, progman, C).

C = 0
2 ?- dde_request(0, groups, X)

--> Unifies X with description of groups

3 ?- dde_execute(0, ’[CreateGroup("DDE Demo")]’).

Yes

4 ?- close_dde_conversation(0).

Yes

For details on interacting withprogman , use the SDK online manual section on the Shell DDE
interface. See also the Prologlibrary(progman) , which may be used to write simple Windows
setup scripts in Prolog.

open dde conversation(+Service, +Topic, -Handle)
Open a conversation with a server supporting the given service name and topic (atoms). If
successful,Handlemay be used to send transactions to the server. If no willing server is found
this predicate fails silently.

closedde conversation(+Handle)
Close the conversation associated withHandle. All opened conversations should be closed
when they’re no longer needed, although the system will close any that remain open on process
termination.

dde request(+Handle, +Item, -Value)
Request a value from the server.Itemis an atom that identifies the requested data, andValuewill

48This interface is contributed by Don Dwiggins.

SWI-Prolog 5.5 Reference Manual



4.43. WINDOWS DDE INTERFACE 149

be a string (CF TEXTdata in DDE parlance) representing that data, if the request is successful.
If unsuccessful,Valuewill be unified with a term of formerror( 〈Reason〉) , identifying the
problem. This call uses SWI-Prolog string objects to return the value rather then atoms to
reduce the load on the atom-space. See section4.23for a discussion on this data type.

dde execute(+Handle, +Command)
Request the DDE server to execute the given command-string. Succeeds if the command could
be executed and fails with error message otherwise.

dde poke(+Handle, +Item, +Command)
Issue aPOKEcommand to the server on the specifiedItem. Command is passed as data of type
CF TEXT.

4.43.2 DDE server mode

The (autoload)library(dde) defines primitives to realise simple DDE server applications in SWI-
Prolog. These features are provided as of version 2.0.6 and should be regarded prototypes. The C-part
of the DDE server can handle some more primitives, so if you need features not provided by this
interface, please studylibrary(dde) .

dde register service(+Template, +Goal)
Register a server to handle DDE request or DDE execute requests from other applications. To
register a service for a DDE request,Templateis of the form:

+Service(+Topic, +Item, +Value)

Serviceis the name of the DDE service provided (likeprogman in the client example above).
Topic is either an atom, indicatingGoal only handles requests on this topic or a variable that
also appears inGoal. ItemandValueare variables that also appear inGoal. Itemrepresents the
request data as a Prolog atom.49

The example below registers the Prologcurrent prolog flag/2 predicate to be accessi-
ble from other applications. The request may be given from the same Prolog as well as from
another application.

?- dde_register_service(prolog(current_prolog_flag, F, V),
current_prolog_flag(F, V)).

?- open_dde_conversation(prolog, current_prolog_flag, Handle),
dde_request(Handle, home, Home),
close_dde_conversation(Handle).

Home = ’/usr/local/lib/pl-2.0.6/’

Handling DDEexecute requests is very similar. In this case the template is of the form:

+Service(+Topic, +Item)

49Upto version 3.4.5 this was a list of character codes. As recent versions have atom garbage collection there is no need
for this anymore.

SWI-Prolog 5.5 Reference Manual



150 CHAPTER 4. BUILT-IN PREDICATES

Passing aValueargument is not needed as execute requests either succeed or fail. IfGoal fails,
a ‘not processed’ is passed back to the caller of the DDE request.

dde unregister service(+Service)
Stop responding toService. If Prolog is halted, it will automatically call this on all open ser-
vices.

dde current service(-Service, -Topic)
Find currently registered services and the topics served on them.

dde current connection(-Service, -Topic)
Find currently open conversations.

4.44 Miscellaneous

dwim match(+Atom1, +Atom2)
Succeeds ifAtom1matchesAtom2in ‘Do What I Mean’ sense. BothAtom1andAtom2may
also be integers or floats. The two atoms match if:

• They are identical

• They differ by one character (spy≡ spu)

• One character is inserted/deleted (debug≡ deug)

• Two characters are transposed (trace≡ tarce)

• ‘Sub-words’ are glued differently (existsfile≡ existsFile≡ existsfile)

• Two adjacent sub words are transposed (existsFile≡ fileExists)

dwim match(+Atom1, +Atom2, -Difference)
Equivalent todwim match/2 , but unifiesDifferencewith an atom identifying the the dif-
ference betweenAtom1 and Atom2. The return values are (in the same order as above):
equal , mismatched char , inserted char , transposed char , separated and
transposed word .

wildcard match(+Pattern, +String)
Succeeds ifString matches the wildcard patternPattern. Pattern is very similar the the Unix
csh pattern matcher. The patterns are given below:

? Matches one arbitrary character.
* Matches any number of arbitrary characters.
[...] Matches one of the characters specified between the brackets.

〈char1〉- 〈char2〉 indicates a range.
{... } Matches any of the patterns of the comma separated list between the braces.

Example:

?- wildcard_match(’[a-z]*.{pro,pl}[%˜]’, ’a_hello.pl%’).

Yes

SWI-Prolog 5.5 Reference Manual



4.44. MISCELLANEOUS 151

sleep(+Time)
Suspend executionTimeseconds.Time is either a floating point number or an integer. Gran-
ularity is dependent on the system’s timer granularity. A negative time causes the timer to
return immediately. On most non-realtime operating systems we can only ensure execution is
suspended forat leastTimeseconds.

On Unix systems thesleep/1 predicate is realised —in order of preference— by nanosleep(),
usleep(), select() if the time is below 1 minute or sleep(). On Windows systems Sleep() is used.

SWI-Prolog 5.5 Reference Manual



Using Modules 5
5.1 Why Using Modules?

In traditional Prolog systems the predicate space was flat. This approach is not very suitable for
the development of large applications, certainly not if these applications are developed by more than
one programmer. In many cases, the definition of a Prolog predicate requires sub-predicates that are
intended only to complete the definition of the main predicate. With a flat and global predicate space
these support predicates will be visible from the entire program.

For this reason, it is desirable that each source module has its own predicate space. A module con-
sists of a declaration for its name, itspublic predicatesand the predicates themselves. This approach
allow the programmer to use short (local) names for support predicates without worrying about name
conflicts with the support predicates of other modules. The module declaration also makes explicit
which predicates are meant for public usage and which for private purposes. Finally, using the module
information, cross reference programs can indicate possible problems much better.

5.2 Name-based versus Predicate-based Modules

Two approaches to realize a module system are commonly used in Prolog and other languages. The
first one is thename basedmodule system. In these systems, each atom read is tagged (normally
prefixed) with the module name, with the exception of those atoms that are definedpublic. In the
second approach, each module actually implements its own predicate space.

A critical problem with using modules in Prolog is introduced by the meta-predicates that trans-
form between Prolog data and Prolog predicates. Consider the case where we write:

:- module(extend, [add_extension/3]).

add_extension(Extension, Plain, Extended) :-
maplist(extend_atom(Extension), Plain, Extended).

extend_atom(Extension, Plain, Extended) :-
atom_concat(Plain, Extension, Extended).

In this case we would like maplist to call extendatom/3 in the moduleextend . A name based
module system will do this correctly. It will tag the atomextend atom with the module and maplist
will use this to construct the tagged term extendatom/3. A name based module however, will not only
tag the atoms that will eventually be used to refer to a predicate, butall atoms that are not declared
public. So, with a name based module system also data is local to the module. This introduces another
serious problem:

SWI-Prolog 5.5 Reference Manual



5.3. DEFINING A MODULE 153

:- module(action, [action/3]).

action(Object, sleep, Arg) :- ....
action(Object, awake, Arg) :- ....

:- module(process, [awake_process/2]).

awake_process(Process, Arg) :-
action(Process, awake, Arg).

This code uses a simple object-oriented implementation technique were atoms are used as method
selectors. Using a name based module system, this code will not work, unless we declare the selectors
public atoms in all modules that use them. Predicate based module systems do not require particular
precautions for handling this case.

It appears we have to choose either to have local data, or to have trouble with meta-predicates.
Probably it is best to choose for the predicate based approach as novice users will not often write
generic meta-predicates that have to be used across multiple modules, but are likely to write programs
that pass data around across modules. Experienced Prolog programmers should be able to deal with
the complexities of meta-predicates in a predicate based module system.

5.3 Defining a Module

Modules normally are created by loading amodule file. A module file is a file holding amodule/2
directive as its first term. Themodule/2 directive declares the name and the public (i.e., externally
visible) predicates of the module. The rest of the file is loaded into the module. Below is an example
of a module file, definingreverse/2 .

:- module(reverse, [reverse/2]).

reverse(List1, List2) :-
rev(List1, [], List2).

rev([], List, List).
rev([Head|List1], List2, List3) :-

rev(List1, [Head|List2], List3).

5.4 Importing Predicates into a Module

As explained before, in the predicate based approach adapted by SWI-Prolog, each module has its own
predicate space. In SWI-Prolog, a module initially is completely empty. Predicates can be added to a
module by loading a module file as demonstrated in the previous section, using assert or byimporting
them from another module.

Two mechanisms for importing predicates explicitly from another module exist. The
use module/[1,2] predicates load a module file and import (part of the) public predicates of
the file. Theimport/1 predicate imports any predicate from any module.

SWI-Prolog 5.5 Reference Manual



154 CHAPTER 5. USING MODULES

usemodule(+File)
Load the file(s) specified withFile just likeensure loaded/1 . The files should all be mod-
ule files. All exported predicates from the loaded files are imported into the context module.
This predicate is equivalent toensure loaded/1 , except that it raises an error ifFile is not
a module file.

usemodule(+File, +ImportList)
Load the file specified withFile (only one file is accepted).File should be a module file.
ImportList is a list of name/arity pairs specifying the predicates that should be imported from
the loaded module. If a predicate is specified that is not exported from the loaded module a
warning will be printed. The predicate will nevertheless be imported to simplify debugging.

import( +Head)
Import predicateHeadinto the current context module.Headshould specify the source module
using the〈module〉:〈term〉 construct. Note that predicates are normally imported using one of
the directivesuse module/[1,2] . import/1 is meant for handling imports into dynami-
cally created modules.

It would be rather inconvenient to have to import each predicate referred to by the module, includ-
ing the system predicates. For this reason each module is assigned adefault module. All predicates
in the default module are available without extra declarations. Their definition however can be over-
ruled in the local module. This schedule is implemented by the exception handling mechanism of
SWI-Prolog: if an undefined predicate exception is raised for a predicate in some module, the excep-
tion handler first tries to import the predicate from one of the module’simport modules. On success,
normal execution is resumed.

5.4.1 Reserved Modules

SWI-Prolog contains two special modules. The first one is the modulesystem . This module contains
all built-in predicates described in this manual. Modulesystem has no default module assigned to
it. The second special module is the moduleuser . This module forms the initial working space of
the user. Initially it is empty. The import module of moduleuser is system , making all built-in
predicate definitions available as defaults. Built-in predicates thus can be overruled by defining them
in moduleuser before they are used.

All other modules import from the moduleuser . This implies they can use all predicates im-
ported intouser without explicitly importing them.

5.5 Using the Module System

The current structure of the module system has been designed with some specific organisations for
large programs in mind. Many large programs define a basic library layer on top of which the actual
program itself is defined. The moduleuser , acting as the default module for all other modules of
the program can be used to distribute these definitions over all program module without introducing
the need to import this common layer each time explicitly. It can also be used to redefine built-in
predicates if this is required to maintain compatibility to some other Prolog implementation. Typically,
the loadfile of a large application looks like this:

SWI-Prolog 5.5 Reference Manual



5.5. USING THE MODULE SYSTEM 155

:- use_module(compatibility). % load XYZ prolog compatibility

:- use_module( % load generic parts
[ error % errors and warnings
, goodies % general goodies (library extensions)
, debug % application specific debugging
, virtual_machine % virtual machine of application
, ... % more generic stuff
]).

:- ensure_loaded(
[ ... % the application itself
]).

The ‘usemodule’ declarations will import the public predicates from the generic modules into the
user module. The ‘ensureloaded’ directive loads the modules that constitute the actual application.
It is assumed these modules import predicates from each other usinguse module/[1,2] as far as
necessary.

In combination with the object-oriented schema described below it is possible to define a neat
modular architecture. The generic code defines general utilities and the message passing predicates
(invoke/3 in the example below). The application modules define classes that communicate using the
message passing predicates.

5.5.1 Object Oriented Programming

Another typical way to use the module system is for defining classes within an object oriented
paradigm. The class structure and the methods of a class can be defined in a module and the explicit
module-boundary overruling describes in section5.6.2can by used by the message passing code to
invoke the behaviour. An outline of this mechanism is given below.

% Define class point

:- module(point, []). % class point, no exports

% name type, default access
% value

variable(x, integer, 0, both).
variable(y, integer, 0, both).

% method name predicate name arguments

behaviour(mirror, mirror, []).

mirror(P) :-
fetch(P, x, X),
fetch(P, y, Y),

SWI-Prolog 5.5 Reference Manual



156 CHAPTER 5. USING MODULES

store(P, y, X),
store(P, x, Y).

The predicates fetch/3 and store/3 are predicates that change instance variables of instances. The
figure below indicates how message passing can easily be implemented:

% invoke(+Instance, +Selector, ?ArgumentList)
% send a message to an instance

invoke(I, S, Args) :-
class_of_instance(I, Class),
Class:behaviour(S, P, ArgCheck), !,
convert_arguments(ArgCheck, Args, ConvArgs),
Goal =.. [P|ConvArgs],
Class:Goal.

The construct〈Module〉:〈Goal〉 explicitly callsGoal in moduleModule. It is discussed in more detail
in section5.6.

5.6 Meta-Predicates in Modules

As indicated in the introduction, the problem with a predicate based module system lies in the dif-
ficulty to find the correct predicate from a Prolog term. The predicate ‘solution(Solution)’ can exist
in more than one module, but ‘assert(solution(4))’ in some module is supposed to refer to the correct
version of solution/1.

Various approaches are possible to solve this problem. One is to add an extra argument to all
predicates (e.g. ‘assert(Module, Term)’). Another is to tag the term somehow to indicate which mod-
ule is desired (e.g. ‘assert(Module:Term)’). Both approaches are not very attractive as they make the
user responsible for choosing the correct module, inviting unclear programming by asserting in other
modules. The predicateassert/1 is supposed to assert in the module it is called from and should
do so without being told explicitly. For this reason, the notioncontext modulehas been introduced.

5.6.1 Definition and Context Module

Each predicate of the program is assigned a module, called itsdefinition module. The definition
module of a predicate is always the module in which the predicate was originally defined. Each active
goal in the Prolog system has acontext moduleassigned to it.

The context module is used to find predicates from a Prolog term. By default, this module is the
definition module of the predicate running the goal. For meta-predicates however, this is the context
module of the goal that invoked them. We call thismoduletransparentin SWI-Prolog. In the ‘using
maplist’ example above, the predicatemaplist/3 is declared moduletransparent. This implies the
context module remainsextend , the context module of addextension/3. This waymaplist/3
can decide to call extendatom in moduleextend rather than in its own definition module.

All built-in predicates that refer to predicates via a Prolog term are declared moduletransparent.
Below is the code defining maplist.

SWI-Prolog 5.5 Reference Manual



5.7. DYNAMIC MODULES 157

:- module(maplist, maplist/3).

:- module_transparent maplist/3.

% maplist(+Goal, +List1, ?List2)
% True if Goal can successfully be applied to all successive pairs
% of elements of List1 and List2.

maplist(_, [], []).
maplist(Goal, [Elem1|Tail1], [Elem2|Tail2]) :-

apply(Goal, [Elem1, Elem2]),
maplist(Goal, Tail1, Tail2).

5.6.2 Overruling Module Boundaries

The mechanism above is sufficient to create an acceptable module system. There are however cases
in which we would like to be able to overrule this schema and explicitly call a predicate in some
module or assert explicitly in some module. The first is useful to invoke goals in some module from
the user’s toplevel or to implement a object-oriented system (see above). The latter is useful to create
and modifydynamic modules(see section5.7).

For this purpose, the reserved term:/2 has been introduced. All built-in predicates that transform
a term into a predicate reference will check whether this term is of the form ‘〈Module〉:〈Term〉’. If so,
the predicate is searched for inModuleinstead of the goal’s context module. The: operator may be
nested, in which case the inner-most module is used.

The special calling construct〈Module〉:〈Goal〉 pretendsGoal is called fromModuleinstead of the
context module. Examples:

?- assert(world:done). % asserts done/0 into module world
?- world:assert(done). % the same
?- world:done. % calls done/0 in module world

5.7 Dynamic Modules

So far, we discussed modules that were created by loading a module-file. These modules have been
introduced on facilitate the development of large applications. The modules are fully defined at load-
time of the application and normally will not change during execution. Having the notion of a set of
predicates as a self-contained world can be attractive for other purposes as well. For example, assume
an application that can reason about multiple worlds. It is attractive to store the data of a particular
world in a module, so we extract information from a world simply by invoking goals in this world.

Dynamic modules can easily be created. Any built-in predicate that tries to locate a predicate in a
specific module will create this module as a side-effect if it did not yet exist. Example:

?- assert(world_a:consistent),
world_a:unknown(_, fail).

SWI-Prolog 5.5 Reference Manual



158 CHAPTER 5. USING MODULES

These calls create a module called ‘worlda’ and make the call ‘worlda:consistent’ succeed. Unde-
fined predicates will not start the tracer or autoloader for this module (seeunknown/2 ).

Import and export from dynamically created world is arranged via the predicatesimport/1 and
export/1 :

?- world_b:export(solve(_,_)). % exports solve/2 from world_b
?- world_c:import(world_b:solve(_,_)). % and import it to world_c

5.8 Module Handling Predicates

This section gives the predicate definitions for the remaining built-in predicates that handle modules.

:- module(+Module, +PublicList)
This directive can only be used as the first term of a source file. It declares the file to be a
module file, definingModuleand exporting the predicates ofPublicList. PublicList is a list of
predicate indicators (name/arity pairs) or operator declarations using the formatop(Precedence,
Type, Name). Operators defined in the export list are available inside the module as well as to
modules importing this module. See also section4.24.

module transparent +Preds
Predsis a comma separated list of name/arity pairs (likedynamic/1 ). Each goal associated
with a transparent declared predicate will inherit thecontext modulefrom its parent goal.

meta predicate+Heads
This predicate is defined inquintus and provides a partial emulation of the Quintus predicate.
See section5.9.1for details.

current module(-Module)
Generates all currently known modules.

current module(?Module, ?File)
Is true if File is the file from whichModulewas loaded.File is the internal canonical filename.
See alsosource file/[1,2] .

context module(-Module)
Unify Module with the context module of the current goal.context module/1 itself is
transparent.

strip module(+Term, -Module, -Plain)
Used in module transparent or meta predicates to extract the referenced module and plain term.
If Term is a module-qualified term, i.e. of the formatModule:Plain, Module and Plain are
unified to these values. OtherwisePlain is unified toTermandModuleto the context module.

export(+Head)
Add a predicate to the public list of the context module. This implies the predicate will be
imported into another module if this module is imported withuse module/[1,2] . Note
that predicates are normally exported using the directivemodule/2 . export/1 is meant to
handle export from dynamically created modules.

SWI-Prolog 5.5 Reference Manual



5.9. COMPATIBILITY OF THE MODULE SYSTEM 159

export list(+Module, ?Exports)
Unifies Exports with a list of terms. Each term has the name and arity of a pub-
lic predicate ofModule. The order of the terms inExports is not defined. See also
predicate property/2 .

import module(+Module, -Import)
True if Import is defined as an import module forModule. All normal modules only import
from user , which imports fromsystem . The predicatesadd import module/3 and
delete import module/2 can be used to manipulate the import list.

add import module(+Module, +Import, +StartOrEnd)
If Import is not already an import module forModule, add it to this list at thestart or end
depending onStartOrEnd. See alsoimport module/2 anddelete import module/2 .

delete import module(+Module, +Import)
DeleteImport from the list of import modules forModule. Fails silently ifImport is not in the
list.

default module(+Module, -Default)
Succesively unifiesDefault with the module names from which a call inModuleattempts to
use the definition. For the moduleuser , this will generateuser andsystem . For any other
module, this will generate the module itself, followed byuser andsystem .

Backward compatibility. New code should useimport module/2 .

module(+Module)
The callmodule( Module ) may be used to switch the default working module for the inter-
active toplevel (seeprolog/0 ). This may be used to when debugging a module. The example
below lists the clauses of fileof label/2 in the moduletex .

1 ?- module(tex).

Yes
tex: 2 ?- listing(file_of_label/2).
...

5.9 Compatibility of the Module System

The principles behind the module system of SWI-Prolog differ in a number of aspects from the Quin-
tus Prolog module system.

• The SWI-Prolog module system allows the user to redefine system predicates.

• All predicates that are available in thesystem and user modules are visible in all other
modules as well.

• Quintus has the ‘meta predicate/1 ’ declaration were SWI-Prolog has the
module transparent/1 declaration.

SWI-Prolog 5.5 Reference Manual



160 CHAPTER 5. USING MODULES

• Operator declarations are local to a module and may be exported.

The meta predicate/1 declaration causes the compiler to tag arguments that pass module
sensitive information with the module using the:/2 operator. This approach has some disadvantages:

• Changing a metapredicate declaration implies all predicatescalling the predicate need to be
reloaded. This can cause serious consistency problems.

• It does not help for dynamically defined predicates calling module sensitive predicates.

• It slows down the compiler (at least in the SWI-Prolog architecture).

• At least within the SWI-Prolog architecture the run-time overhead is larger than the overhead
introduced by the transparent mechanism.

Unfortunately the transparent predicate approach also has some disadvantages. If a predicate
A passes module sensitive information to a predicateB, passing the same information to a module
sensitive system predicate bothA andB should be declared transparent. Using the Quintus approach
only A needs to be treated special (i.e., declared withmeta predicate/1 )1. A second problem
arises if the body of a transparent predicate uses module sensitive predicates for which it wants to refer
to its own module. Suppose we want to definefindall/3 usingassert/1 andretract/1 2.
The example in figure5.1gives the solution.

5.9.1 Emulatingmeta predicate/1

The Quintusmeta predicate/1 directive can in many cases be replaced by the transparent dec-
laration. Below is the definition ofmeta predicate/1 as available fromquintus .

:- op(1150, fx, (meta_predicate)).

meta_predicate((Head, More)) :- !,
meta_predicate1(Head),
meta_predicate(More).

meta_predicate(Head) :-
meta_predicate1(Head).

meta_predicate1(Head) :-
Head =.. [Name|Arguments],
member(Arg, Arguments),
module_expansion_argument(Arg), !,
functor(Head, Name, Arity),
module_transparent(Name/Arity).

meta_predicate1(_). % just a mode declaration

module_expansion_argument(:).
module_expansion_argument(N) :- integer(N).

The discussion above about the problems with the transparent mechanism show the two cases in which
this simple transformation does not work.

1Although this would make it impossible to callB directly.
2The system version usesrecordz/2 andrecorded/3 .

SWI-Prolog 5.5 Reference Manual



5.9. COMPATIBILITY OF THE MODULE SYSTEM 161

:- module(findall, [findall/3]).

:- dynamic
solution/1.

:- module_transparent
findall/3,
store/2.

findall(Var, Goal, Bag) :-
assert(findall:solution(’$mark’)),
store(Var, Goal),
collect(Bag).

store(Var, Goal) :-
Goal, % refers to context module of

% caller of findall/3
assert(findall:solution(Var)),
fail.

store(_, _).

collect(Bag) :-
...,

Figure 5.1:findall/3 using modules

SWI-Prolog 5.5 Reference Manual



Special Variables and
Coroutining 6
This chapter deals with extensions primarily designed to support constraint logic programming (CLP).

6.1 Attributed variables

Attributed variables provide a technique for extending the Prolog unification algorithm
[Holzbaur, 1990] by hooking the binding of attributed variables. There is little consensus in the Prolog
community on the exact definition and interface to attributed variables. The SWI-Prolog interface is
identical to the one realised by Bart Demoen for hProlog [Demoen, 2002].

Binding an attributed variable schedules a goal to be executed at the first possible opportunity.
In the current implementation the hooks are executed immediately after a successful unification of
the clause-head or successful completion of a foreign language (builtin) predicate. Each attribute
is associated to a module and the hook (attr unify hook/2 ) is executed in this module. The
example below realises a very simple and incomplete finite domain reasoner.

:- module(domain,
[ domain/2 % Var, ?Domain
]).

:- use_module(library(oset)).

domain(X, Dom) :-
var(Dom), !,
get_attr(X, domain, Dom).

domain(X, List) :-
sort(List, Domain),
put_attr(Y, domain, Domain),
X = Y.

% An attributed variable with attribute value Domain has been
% assigned the value Y

attr_unify_hook(Domain, Y) :-
( get_attr(Y, domain, Dom2)
-> oset_int(Domain, Dom2, NewDomain),

( NewDomain == []
-> fail
; NewDomain = [Value]
-> Y = Value
; put_attr(Y, domain, NewDomain)

SWI-Prolog 5.5 Reference Manual



6.1. ATTRIBUTED VARIABLES 163

)
; var(Y)
-> put_attr( Y, domain, Domain )
; memberchk(Y, Domain)
).

Before explaining the code we give some example queries:
?- domain(X, [a,b]), X = c no
?- domain(X, [a,b]), domain(X, [a,c]). X = a
?- domain(X, [a,b,c]), domain(X, [a,c]). X = G492att(domain, [a, c], [])

The predicatedomain/2 fetches (first clause) or assigns (second clause) the variable adomain,
a set of values it can be unified with. In the second clause first associates the domain with a fresh
variable and then unifies X to this variable to deal with the possibility that X already has a domain. The
predicateattr unify hook/2 is a hook called after a variable with a domain is assigned a value.
In the simple case where the variable is bound to a concrete value we simply check whether this value
is in the domain. Otherwise we take the intersection of the domains and either fail if the intersection
is empty (first example), simply assign the value if there is only one value in the intersection (second
example) or assign the intersection as the new domain of the variable (third example).

attvar(@Term)
Succeeds ifTerm is an attributed variable. Note thatvar/1 also succeeds on attributed vari-
ables. Attributed variables are created withput attr/3 .

put attr( +Var, +Module, +Value)
If Var is a variable or attributed variable, set the value for the attribute namedModuleto Value.
If an attribute with this name is already associated withVar, the old value is replaced. Back-
tracking will restore the old value (i.e. an attribute is a mutable term. See alsosetarg/3 ).
This predicate raises a type error ifVar is not a variable orModuleis not an atom.

get attr( +Var, +Module, -Value)
Request the currentvalue for the attribute namedModule. If Var is not an attributed variable
or the named attribute is not associated toVar this predicate fails silently. IfModule is not an
atom, a type error is raised.

del attr( +Var, +Module)
Delete the named attribute. IfVar looses its last attribute it is transformed back into a traditional
Prolog variable. IfModuleis not an atom, a type error is raised. In all other cases this predicate
succeeds regarless whether or not the named attribute is present.

attr unify hook(+AttValue, +VarValue)
Hook that must be defined in the module an attributed variable refers to. Is is calledafter the
attributed variable has been unified with a non-var term, possibly another attributed variable.
AttValueis the attribute that was associated to the variable in this module andVarValueis the
new value of the variable. Normally this predicate fails to veto binding the variable toVarValue,
forcing backtracking to undo the binding. IfVarValueis another attributed variable the hook
often combines the two attribute and associates the combined attribute withVarValueusing
put attr/3 .

SWI-Prolog 5.5 Reference Manual



164 CHAPTER 6. SPECIAL VARIABLES AND COROUTINING

attr portray hook(+AttValue, +Var)
Called bywrite term/2 and friends for each attribute if the optionattributes (portray)
is in effect. If the hook succeeds the attribute is considered printed. Otherwise
Module = ... is printed to indicate the existence of a variable.

6.1.1 Special purpose predicates for attributes

Normal user code should deal withput attr/3 , get attr/3 anddel attr/2 . The routines in
this section fetch or set the entire attribute list of a variables. Use of these predicates is anticipated to
be restricted to printing and other special purpose operations.

get attrs(+Var, -Attributes)
Get all attributes ofVar. Attributesis a term of the formatt (Module, Value, MoreAttributes),
whereMoreAttributesis [] for the last attribute.

put attrs(+Var, -Attributes)
Set all attributes ofVar. Seeget attrs/2 for a description ofAttributes.

copy term nat(+Term, -Copy)
As copy term/2 . Attributes however, arenot copied but replaced by fresh variables.

6.2 Coroutining

Coroutining deals with having Prolog goals scheduled for execution as soon as some conditions is
fullfilled. In Prolog the most commonly used conditions is the instantiation (binding) of a variable.
Scheduling a goal to execute immediately after a variable is bound allows may be used to avoid
instantiation errors for some built-in predicates (e.g. arithmetic), do worklazy, prevent the binding of
a variable to a particular value, etc. Usingfreeze/2 for example we can define a variable can only
be assigned an even number:

?- freeze(X, X mod 2 =:= 0), X = 3

No

freeze(+Var, :Goal)
Delay the execution ofGoal until Var is bound (i.e. is not a variable or attributed vari-
able). If Var is bound on entryfreeze/2 is equivalent tocall/1 . The freeze/2
predicate is realised using an attributed variable associated with the modulefreeze , so
get attr(Var, freeze, AttVal) can be used to find out whether and which goals
are delayed onVar.

frozen(@Var, -Goal)
Unify Goalwith the goal or conjunction of goals delayed onVar. If no goals are frozen onVar,
Goal is unified totrue .

when(@Condition, :Goal)
ExecuteGoal when Condition becomes true.Condition is one of ?=(X, Y), nonvar (X),

SWI-Prolog 5.5 Reference Manual



6.3. GLOBAL VARIABLES 165

ground (X), , (Cond1, Cond2) or ; (Cond1, Cond2). See alsofreeze/2 anddif/2 . The
implementation can deal with cyclic terms.

Thewhen/2 predicate is realised using attributed variable associated with the modulewhen.
It is defined in the autoload librarywhen.

dif(@A, @B)
The dif/2 predicate provides a constraint stating thatA and B are different terms. If
A and B can never unifydif/2 succeeds deterministically. IfA and B are iden-
tical it fails immediately and finally, ifA and B can unify, goals are delayed that
prevent A and B to become equal. Thedif/2 predicate behaves as if defined by
dif(X, Y) :- when(?=(X, Y), X \== Y) . See also?=/2 . The implementation
can deal with cyclic terms.

Thedif/2 predicate is realised using attributed variable associated with the moduledif . It is
defined in the autoload librarydif .

6.3 Global variables

Global variables are associations between names (atoms) and terms. They differ in various ways from
storing information usingassert/1 or recorda/3 .

• The value lives on the Prolog (global) stack. This implies that lookup time is independent from
the size of the term. This is particulary interesting for large data structures such as parsed XML
documents or the CHR global constraint store.

• They support both global assignment usingnb setval/2 and backtrackable assignment using
b setval/2 .

• Only one value (which can be an arbitrary complex Prolog term) can be associated to a variable
at a time.

• Their value cannot be shared among threads. Each thread has its own namespace and values for
global variables.

• Currently global variables are scoped globally. We may consider module scoping in future
versions.

Bothb setval/2 andnb setval/2 implicitely create a variable if the referenced name does
not already refer to a variable.

b setval(+Name, +Value)
Associate the termValuewith the atomNameor replaces the currently associated value with
Value. If Namedoes not refer to an existing global variable a variable with initial value[] is
created (the empty list). On backtracking the assignment is reversed.

b getval(+Name, -Value)
Get the value associated with the global variableNameand unify it withValue. Note that this
unification may further instantiate the value of the global variable. If this is undesirable the
normal precautions (double negation orcopy term/2 ) must be taken. Theb getval/2
predicate generates errors ifNameis not an atom or the requested variable does not exist.

SWI-Prolog 5.5 Reference Manual



166 CHAPTER 6. SPECIAL VARIABLES AND COROUTINING

nb setval(+Name, +Value)
Associates a copy ofValuecreated withduplicate term/2 with the atomName. Note that
this can be used to set an initial value other than[] prior to backtrackable assignment.

nb getval(+Name, -Value)
Thenb getval/2 predicate is a synonym forb getval/2 , introduced for compatibility and
symetry. As most scenarios will use a particular global variable either using non-backtracable
or backtrackable assignment, usingnb getval/2 can be used to document that the variable
is used non-backtracable.

nb linkval( +Name, +Value)
Associates the termValuewith the atomNamewithout copying it. This is a fast special-purpose
variation ofnb setval/2 intended for expert users only because the semantics on backtrack-
ing to a point before creating the link are poorly defined for compound terms. The principal
term is always left untouched, but backtracking behaviour on arguments is undone if the orginal
assignment wastrailed and left alone otherwise, which implies that the history that created the
term affects the behaviour on backtracking. Please consider the following example:

demo_nb_linkval :-
T = nice(N),
( N = world,

nb_linkval(myvar, T),
fail

; nb_getval(myvar, V),
writeln(V)

).

nb current(?Name, ?Value)
Enumerate all defined variables with their value. The order of enumeration is undefined.

nb delete(+Name)
Delete the named global variable.

6.3.1 Compatibility of SWI-Prolog Global Variables

Global variables have been introduced by various Prolog implementations recently. The implemen-
tation of them in SWI-Prolog is based on hProlog by Bart Demoen. In discussion with Bart it was
decided that the semantics if hProlognb setval/2 , which is equivalent tonb linkval/2 is not
acceptable for normal Prolog users as the behaviour is influenced by how builtin predicates construct-
ing terms (read/1 , =../2, etc.) are implemented.

GNU-Prolog provides a rich set of global variables, including arrays. Arrays can be implemented
easily in SWI-Prolog usingfunctor/3 andsetarg/3 due to the unrestricted arity of compound
terms.

SWI-Prolog 5.5 Reference Manual



CHR: Constraint Handling
Rules 7
This chapter is written by Tom Schrijvers, K.U. Leuven for the hProlog system. Adjusted by Jan
Wielemaker to fit the SWI-Prolog documentation infrastructure and remove hProlog specific refer-
ences.

The CHR system of SWI-Prolog is the K.U.Leuven CHR system. The runtime environment is
written by Christian Holzbaur and Tom Schrijvers while the compiler is written by Tom Schrijvers.
Both are integrated with SWI-Prolog and licenced under compatible conditions with permission from
the authors.

The main reference for SWI-Prolog’s CHR system is:

• T. Schrijvers, and B. Demoen,The K.U.Leuven CHR System: Implementation and Applica-
tion, First Workshop on Constraint Handling Rules: Selected Contributions (Frühwirth, T. and
Meister, M., eds.), pp. 1–5, 2004.

7.1 Introduction

Constraint Handling Rules (CHR) is a committed-choice bottom-up language embedded in Prolog. It
is designed for writing constraint solvers and is particularily useful for providing application-specific
constraints. It has been used in many kinds of applications, like scheduling, model checking, abduc-
tion, type checking among many others.

CHR has previously been implemented in other Prolog systems (SICStus, Eclipse, Yap), Haskell
and Java. This CHR system is based on the compilation scheme and runtime environment of CHR in
SICStus.

In this documentation we restrict ourselves to giving a short overview of CHR in general and
mainly focus on elements specific to this implementation. For a more thorough review of CHR we
refer the reader to [Frühwirth, 1998]. More background on CHR can be found at [Frühwirth, ].

In section7.2 we present the syntax of CHR in Prolog and explain informally its operational
semantics. Next, section7.3 deals with practical issues of writing and compiling hProlog programs
containing CHR. Section7.4explains the currently primitive CHR debugging facilities. Section7.4.3
provides a few useful predicates to inspect the constraint store and section7.5 illustrates CHR with
two example programs. In section7.6some compatibility issues with SICStus CHR are listed. Finally,
section7.7concludes with a few practical guidelines for using CHR.

7.2 Syntax and Semantics

7.2.1 Syntax

The syntax of CHR rules in hProlog is the following:

SWI-Prolog 5.5 Reference Manual



168 CHAPTER 7. CHR: CONSTRAINT HANDLING RULES

rules --> rule, rules.
rules --> [].

rule --> name, actual_rule, pragma, [atom(’.’)].

name --> atom, [atom(’@’)].
name --> [].

actual_rule --> simplification_rule.
actual_rule --> propagation_rule.
actual_rule --> simpagation_rule.

simplification_rule --> constraints, [atom(’<=>’)], guard, body.
propagation_rule --> constraints, [atom(’==>’)], guard, body.
simpagation_rule --> constraints, [atom(’\’)], constraints, [atom(’<=>’)],

guard, body.

constraints --> constraint, constraint_id.
constraints --> constraint, [atom(’,’)], constraints.

constraint --> compound_term.

constraint_id --> [].
constraint_id --> [atom(’#’)], variable.

guard --> [].
guard --> goal, [atom(’|’)].

body --> goal.

pragma --> [].
pragma --> [atom(’pragma’)], actual_pragmas.

actual_pragmas --> actual_pragma.
actual_pragmas --> actual_pragma, [atom(’,’)], actual_pragmas.

actual_pragma --> [atom(’passive(’)], variable, [atom(’)’)].

Additional syntax-related terminology:

• head: the constraints in anactual rule before the arrow (either<=> or−→)

7.2.2 Semantics

In this subsection the operational semantics of CHR in Prolog are presented informally. They do not
differ essentially from other CHR systems.

SWI-Prolog 5.5 Reference Manual



7.2. SYNTAX AND SEMANTICS 169

When a constraint is called, it is considered an active constraint and the system will try to apply
the rules to it. Rules are tried and executed sequentially in the order they are written.

A rule is conceptually tried for an active constraint in the following way. The active constraint
is matched with a constraint in the head of the rule. If more constraints appear in the head they are
looked for among the suspended constraints, which are called passive constraints in this context. If
the necessary passive constraints can be found and all match with the head of the rule and the guard of
the rule succeeds, then the rule is committed and the body of the rule executed. If not all the necessary
passive constraint can be found, the matching fails or the guard fails, then the body is not executed
and the process of trying and executing simply continues with the following rules. If for a rule, there
are multiple constraints in the head, the active constraint will try the rule sequentially multiple times,
each time trying to match with another constraint.

This process ends either when the active constraint disappears, i.e. it is removed by some rule, or
after the last rule has been processed. In the latter case the active constraint becomes suspended.

A suspended constraint is eligible as a passive constraint for an active constraint. The other way
it may interact again with the rules, is when a variable appearing in the constraint becomes bound to
either a nonvariable or another variable involved in one or more constraints. In that case the constraint
is triggered, i.e. it becomes an active constraint and all the rules are tried.

Rule Types There are three different kinds of rules, each with their specific semantics:

• simplification
The simplification rule removes the constraints in its head and calls its body.

• propagation
The propagation rule calls its body exactly once for the constraints in its head.

• simpagation
The simpagation rule removes the constraints in its head after the\ and then calls its body. It is
an optimization of simplification rules of the form:

constraints1, constraints2 <=> constraints1, body

Namely, in the simpagation form:

constraints1\constraints2 <=> body

Theconstraints1 constraints are not called in the body.

Rule Names Naming a rule is optional and has no semantical meaning. It only functions as docu-
mentation for the programmer.

Pragmas The semantics of the pragmas are:

passive(Identifier)
The constraint in the head of a ruleIdentifiercan only act as a passive constraint in that rule.

Additional pragmas may be released in the future.

SWI-Prolog 5.5 Reference Manual



170 CHAPTER 7. CHR: CONSTRAINT HANDLING RULES

Options It is possible to specify options that apply to all the CHR rules in the module. Options are
specified with theoption/2 declaration:

option(Option,Value).

Available options are:

check guard bindings
This option controls whether guards should be checked for illegal variable bindings or not.
Possible values for this option areon , to enable the checks, andoff , to disable the checks.

optimize
This is an experimental option controlling the degree of optimization. Possible values arefull ,
to enable all available optimizations, andoff (default), to disable all optimizations. The default
is derived from the SWI-Prolog flagoptimise , wheretrue is mapped tofull . Therefore
the commandline option-O provides full CHR optimization. If optimization is enabled, debug-
ging should be disabled.

debug
This options enables or disables the possibility to debug the CHR code. Possible values are
on (default) andoff . See section7.4 for more details on debugging. The default is derived
from the prolog flaggenerate debug info , which is true by default. See-nodebug .
If debugging is enabled, optimization should be disabled.

mode
This option specifies the mode for a particular constraint. The value is a term with functor and
arity equal to that of a constraint. The arguments can be one of- , + or ?. The latter is the
default. The meaning is the following:

-
The corresponding argument of every occurrence of the constraint is always unbound.

+
The corresponding argument of every occurrence of the constraint is always ground.

?
The corresponding argument of every occurrence of the constraint can have any instantia-
tion, which may change over time. This is the default value.

The declaration is used by the compiler for various optimizations. Note that it is up to the user
the ensure that the mode declaration is correct with respect to the use of the constraint. This
option may occur once for each constraint.

type declaration
This option specifies the argument types for a particular constraint. The value is a term with
functor and arity equal to that of a constraint. The arguments can be a user-defined type or one
of the built-in types:

int
The corresponding argument of every occurrence of the constraint is an integer number.

float
. . . a floating point number.

SWI-Prolog 5.5 Reference Manual



7.3. CHR IN SWI-PROLOG PROGRAMS 171

number
. . . a number.

natural
. . . a positive integer.

any
The corresponding argument of every occurrence of the constraint can have any type. This
is the default value.

Currently, type declarations are only used to improve certain optimizations (guard simplifica-
tion, occurrence subsumption, . . . ).

type definition
This option defines a new user-defined type which can be used in type declarations. The value is
a term of the formtype( name , list ) , wherename is a term andlist is a list of alternatives.
Variables can be used to define generic types. Recursive definitions are allowed. Examples are

type(bool,[true,false]).
type(complex_number,[float + float * i]).
type(binary_tree(T),[ leaf(T) | node(binary_tree(T),binary_tree(T)) ]).
type(list(T),[ [] | [T | list(T)]).

The mode, typedeclaration and typedefinition options are provided for backward compatibility.
The new syntax is described below.

7.3 CHR in SWI-Prolog Programs

7.3.1 Embedding in Prolog Programs

The CHR constraints defined in a particulary.chr file are associated with a module. The default
module isuser . One should never load different.chr files with the same CHR module name.

7.3.2 Constraint declaration

Every constraint used in CHR rules has to be declared. There are two ways to do this. The old style is
as follows:

option(type_definition,type(list(T),[ [] , [T|list(T)] ]).
option(mode,foo(+,?)).
option(type_declaration,foo(list(int),float)).
:- constraints foo/2, bar/0.

The new style is as follows:

:- chr_type list(T) ---> [] ; [T|list(T)].
:- constraints foo(+list(int),?float), bar.

SWI-Prolog 5.5 Reference Manual



172 CHAPTER 7. CHR: CONSTRAINT HANDLING RULES

7.3.3 Compilation

The SWI-Prolog CHR compiler exploitsterm expansion/2 rules to translate the constraint han-
dling rules to plain Prolog. These rules are loaded from the librarychr . They are activated if the
compiled file has the.chr extension or after finding a declaration of the format below.

:- constraints ...

It is adviced to define CHR rules in a module file, where the module declaration is immediately
followed by including thechr library as examplified below:

:- module(zebra, [ zebra/0 ]).
:- use_module(library(chr)).

:- constraints ...

Using this style CHR rules can be defined in ordinary Prolog.pl files and the operator definitions
required by CHR do not leak into modules where they might cause conflicts.

7.4 Debugging

The CHR debugging facilities are currently rather limited. Only tracing is currently available. To use
the CHR debugging facilities for a CHR file it must be compiled for debugging. Generating debug
info is controlled by the CHR optiondebug , whose default is derived from the SWI-Prolog flag
generate debug info . Therefore debug info is provided unless the-nodebug is used.

7.4.1 Ports

For CHR constraints the four standard ports are defined:

• call
A new constraint is called and becomes active.

• exit
An active constraint exits: it has either been inserted in the store after trying all rules or has
been removed from the constraint store.

• fail
An active constraint fails.

• redo
An active constraint starts looking for an alternative solution.

In addition to the above ports, CHR constraints have five additional ports:

• wake
A suspended constraint is woken and becomes active.

• insert
An active constraint has tried all rules and is suspended in the constraint store.

SWI-Prolog 5.5 Reference Manual



7.4. DEBUGGING 173

• remove
An active or passive constraint is removed from the constraint store, if it had been inserted.

• try
An active constraints tries a rule with possibly some passive constraints. The try port is entered
just before committing to the rule.

• apply
An active constraints commits to a rule with possibly some passive constraints. The apply port
is entered just after committing to the rule.

7.4.2 Tracing

Tracing is enabled with thechr trace/0 predicate and disabled with thechr notrace/0 pred-
icate.

When enabled the tracer will step through thecall , exit , fail , wake and apply ports,
accepting debug commands, and simply write out the other ports.

The following debug commans are currently supported:

CHR debug options:

<cr> creep c creep
s skip
g ancestors
n nodebug
b break
a abort
f fail
? help h help

Their meaning is:

• creep
Step to the next port.

• skip
Skip to exit port of this call or wake port.

• ancestors
Print list of ancestor call and wake ports.

• nodebug
Disable the tracer.

• break
Enter a recursive Prolog toplevel. Seebreak/0 .

• abort
Exit to the toplevel. Seeabort/0 .

SWI-Prolog 5.5 Reference Manual



174 CHAPTER 7. CHR: CONSTRAINT HANDLING RULES

• fail
Insert failure in execution.

• help
Print the above available debug options.

7.4.3 CHR Debugging Predicates

The chr module contains several predicates that allow inspecting and printing the content of the
constraint store.

chr trace
Activate the CHR tracer. By default the CHR tracer is activated and deactivated automatically
by the Prolog predicatestrace/0 andnotrace/0 .

chr notrace
De-activate the CHR tracer. By default the CHR tracer is activated and deactivated automati-
cally by the Prolog predicatestrace/0 andnotrace/0 .

chr leash(+Spec)
Define the set of CHR ports on which the CHR tracer asks for user intervention (i.e. stops).
Specis either a list of ports as defined in section7.4.1or a predefined ‘alias’. Defined aliases
are: full to stop at all ports,none or off to never stop, anddefault to stop at thecall ,
exit , fail , wake andapply ports. See alsoleash/1 .

chr show store(+Mod)
Prints all suspended constraints of moduleMod to the standard output. This predicate is auto-
matically called by the SWI-Prolog toplevel at the end of each query for every CHR module cur-
rently loaded. The prolog-flagchr toplevel show store controls whether the toplevel
shows the constraint stores. The valuetrue enables it. Any other value disables it.

7.5 Examples

Here are two example constraint solvers written in CHR.

• The program below defines a solver with one constraint,leq/2 , which is a less-than-or-equal
constraint.

:- module(leq,[cycle/3, leq/2]).
:- use_module(library(chr)).

:- constraints leq/2.
reflexivity @ leq(X,X) <=> true.
antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y.
idempotence @ leq(X,Y) \ leq(X,Y) <=> true.
transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

cycle(X,Y,Z):-

SWI-Prolog 5.5 Reference Manual



7.6. COMPATIBILITY WITH SICSTUS CHR 175

leq(X,Y),
leq(Y,Z),
leq(Z,X).

• The program below implements a simple finite domain constraint solver.

:- module(dom,[dom/2]).
:- use_module(library(chr)).

:- constraints dom/2.

dom(X,[]) <=> fail.
dom(X,[Y]) <=> X = Y.
dom(X,L1), dom(X,L2) <=> intersection(L1,L2,L3), dom(X,L3).

intersection([],_,[]).
intersection([H|T],L2,[H|L3]) :-

member(H,L2), !,
intersection(T,L2,L3).

intersection([_|T],L2,L3) :-
intersection(T,L2,L3).

7.6 Compatibility with SICStus CHR

There are small differences between CHR in SWI-Prolog and SICStus. Besides differences in avail-
able options and pragmas, the following differences should be noted:

• Thehandler/1 declaration
In SICStus every CHR module requires ahandler/1 declaration declaring a unique handler
name. This declaration is valid syntax in SWI-Prolog, but will have no effect. A warning will
be given during compilation.

• Therules/1 declaration
In SICStus, for every CHR module it is possible to only enable a subset of the available rules
through therules/1 declaration. The declaration is valid syntax in SWI-Prolog, but has no
effect. A warning is given during compilation.

• Sourcefile naming
SICStus uses a two-step compiler, where.chr files are first translated into.pl files. For
SWI-Prolog CHR rules may be defined in a file with any extension.

7.7 Guidelines

In this section we cover several guidelines on how to use CHR to write constraint solvers and how to
do so efficiently.

SWI-Prolog 5.5 Reference Manual



176 CHAPTER 7. CHR: CONSTRAINT HANDLING RULES

• Set semantics
The CHR system allows the presence of identical constraints, i.e. multiple constraints with the
same functor, arity and arguments. For most constraint solvers, this is not desirable: it affects
efficiency and possibly termination. Hence appropriate simpagation rules should be added of
the form:

constraint\constraint <=> true

• Multi-headed rules
Multi-headed rules are executed more efficiently when the constraints share one or more vari-
ables.

• Mode and type declarations
Provide mode and type declarations to get more efficient program execution. Make sure to
disable debug (-nodebug) and enable optimization (-O).

SWI-Prolog 5.5 Reference Manual



Multi-threaded applications 8
SWI-Prolog multithreading is based on standard C-language multithreading support. It is not like
ParLogor other paralel implementations of the Prolog language. Prolog threads have their own stacks
and only share the Prologheap: predicates, records, flags and other global non-backtrackable data.
SWI-Prolog thread support is designed with the following goals in mind.

• Multi-threaded server applications
Todays computing services often focus on (internet) server applications. Such applications of-
ten have need for communication between services and/or fast non-blocking service to multiple
concurrent clients. The shared heap provides fast communication and thread creation is rela-
tively cheap.1

• Interactive applications
Interactive applications often need to perform extensive computation. If such computations are
executed in a new thread, the main thread can process events and allow the user to cancel the
ongoing computation. User interfaces can also use multiple threads, each thread dealing with
input from a distinct group of windows. See also section8.7.

• Natural integration with foreign code
Each Prolog thread runs in a native thread of the operating system, automatically making them
cooperate withMT-safeforeign-code. In addition, any foreign thread can create its own Prolog
engine for dealing with calling Prolog from C-code.

SWI-Prolog multi-threading is based on the POSIX thread standard [Butenhof, 1997] used on
most popular systems except for MS-Windows. On Windows it uses the pthread-win32 emulation of
POSIX threads mixed with the Windows native API for smoother and faster operation.

8.1 Creating and destroying Prolog threads

thread create(:Goal, -Id, +Options)
Create a new Prolog thread (and underlying C-thread) and start it by executingGoal. If the
thread is created succesfully, the thread-identifier of the created thread is unified toId. Options
is a list of options. The currently defined options are below. Stack size options can also take
the valueinf or infinite , which is mapped to the maximum stack size supported by the
platform.

local(K-Bytes)
Set the limit to which the local stack of this thread may grow. If omited, the limit of the
calling thread is used. See also the-L commandline option.

1On an dual AMD-Athlon 1600, SWI-Prolog 5.1.0 creates and joins 4,957 threads per second elapsed time.

SWI-Prolog 5.5 Reference Manual



178 CHAPTER 8. MULTI-THREADED APPLICATIONS

global(K-Bytes)
Set the limit to which the global stack of this thread may grow. If omited, the limit of the
calling thread is used. See also the-G commandline option.

trail( K-Bytes)
Set the limit to which the trail stack of this thread may grow. If omited, the limit of the
calling thread is used. See also the-T commandline option.

argument(K-Bytes)
Set the limit to which the argument stack of this thread may grow. If omited, the limit of
the calling thread is used. See also the-A commandline option.

stack(K-Bytes)
Set the limit to which the system stack of this thread may grow. The default, mimimum
and maximum values are system-dependant.

alias(AliasName)
Associate an ‘alias-name’ with the thread. This named may be used to refer to the thread
and remains valid until the thread is joined (seethread join/2 ).

detached(Bool)
If false (default), the thread can be waited for usingthread join/2 .
thread join/2 must be called on this thread to reclaim the all resources associated
to the thread. Iftrue , the system will reclaim all associated resources automatically
after the thread finishes. Please note that thread identifiers are freed for reuse after a de-
tached thread finishes or a normal thread has been joined. See alsothread join/2 and
thread detach/1 .

If a detached thread dies due to failure or exception of the initial goal the thread prints a
message usingprint message/2 . If such termination is considered normal the code
must be wrapped usingignore/1 and/orcatch/3 to ensure successful completion.

The Goal argument iscopiedto the new Prolog engine. This implies further instantiation of
this term in either thread does not have consequences for the other thread: Prolog threads do
not share data from their stacks.

thread self(-Id)
Get the Prolog thread identifier of the running thread. If the thread has an alias, the alias-name
is returned.

thread join(+Id, -Status)
Wait for the termination of thread with givenId. Then unify the result-status of the thread
with Status. After this call,Id becomes invalid and all resources associated with the thread are
reclaimed. Note that threads with the attributedetached (true) cannot be joined. See also
current thread/2 .

A thread that has been completed withoutthread join/2 being called on it is partly re-
claimed: the Prolog stacks are released and the C-thread is destroyed. A small data-structure
representing the exit-status of the thread is retained untilthread join/2 is called on the
thread. Defined values forStatusare:

true
The goal has been proven successfully.

SWI-Prolog 5.5 Reference Manual



8.2. MONITORING THREADS 179

false
The goal has failed.

exception(Term)
The thread is terminated on an exception. Seeprint message/2 to turn system ex-
ceptions into readable messages.

exited(Term)
The thread is terminated onthread exit/1 using the argumentTerm.

thread detach(+Id)
Switch thread into detached-state (seedetached (Bool) option at thread create/3 ) at
runtime. Id is the identifier of the thread placed in detached state. This may be the result of
PL thread self/1 .

One of the possible applications is to simplify debugging. Threads that are created asde-
tachedleave no traces if they crash. For not-detached threads the status can be inspected using
current thread/2 . Threads nobody is waiting for may be created normally and detach
themselves just before completion. This way they leave no traces on normal completion and
their reason for failure can be inspected.

thread exit(+Term)
Terminates the thread immediately, leavingexited (Term) as result-state for
thread join/2 . If the thread has the attributedetached (true) it terminates, but its
exit status cannot be retrieved usingthread join/2 making the value ofTerm irrelevant.
The Prolog stacks and C-thread are reclaimed.

thread at exit(:Goal)
Run Goal just before releasing the thread resources. This is to be compared toat halt/1 ,
but only for the current thread. These hooks are ran regardless of why the execution of the
thread has been completed. As these hooks are run, the return-code is already available through
current thread/2 using the result ofthread self/1 as thread-identifier.

thread setconcurrency(-Old, +New)
Determine the concurrency of the process, which is defined as the maximum number of con-
currently active threads. ‘Active’ here means they are using CPU time. This option is provided
if the thread-implementation provides pthreadsetconcurrency(). Solaris is a typical example of
this family. On other systems this predicate unifiesOld to 0 (zero) and succeeds silently.

8.2 Monitoring threads

Normal multi-threaded applications should not need these the predicates from this section because
almost any usage of these predicates is unsafe. For example checking the existence of a thread before
signalling it is of no use as it may vanish between the two calls. Catching exceptions usingcatch/3
is the only safe way to deal with thread-existence errors.

These predicates are provided for diagnosis and monitoring tasks. See also section8.5, describing
more high-level primitives.

current thread(?Id, ?Status)
Enumerates identifiers and status of all currently known threads. Calling

SWI-Prolog 5.5 Reference Manual



180 CHAPTER 8. MULTI-THREADED APPLICATIONS

current thread/2 does not influence any thread. See alsothread join/2 . For
threads that have an alias-name, this name is returned inId instead of the numerical thread
identifier.Statusis one of:

running
The thread is running. This is the initial status of a thread. Please note that threads waiting
for something are considered running too.

false
TheGoalof the thread has been completed and failed.

true
TheGoalof the thread has been completed and succeeded.

exited(Term)
TheGoal of the thread has been terminated usingthread exit/1 with Termas argu-
ment. If the underlying native thread has exited (using pthreadexit()) Termis unbound.

exception(Term)
TheGoal of the thread has been terminated due to an uncaught exception (seethrow/1
andcatch/3 ).

thread statistics(+Id, +Key, -Value)
Obtains statistical information on threadId asstatistics/2 does in single-threaded ap-
plications. This call returns all keys ofstatistics/2 , although only information statistics
about the stacks and CPU time yield different values for each thread.2

mutex statistics
Print usage statistics on internal mutexes and mutexes associated with dynamic predicates. For
each mutex two numbers are printed: the number of times the mutex was acquired and the num-
ber ofcollisions: the number times the calling thread has to wait for the mutex. The collistion-
count is not available on Windows as this would break portability to Windows-95/98/ME or
significantly harm performance. Generally collision count is close to zero on single-CPU hard-
ware.

8.2.1 Linux: linuxthreads vs. NPTL

Linux has introduces POSIX threads (pthread) using an implementation calledlinuxthreads, where
each thread was ‘almost’ a process. This approach has various disadvantages, such as poor perfor-
mance and non-compliance with several aspects of POSIX. However, there is one advantage. Where
pthread does not provide a way to get statistics per thread, we could get this info from the process-
oriented times() function. Since the 2.6.x kernels, Linux by default now uses theNPTL implementa-
tion which is POSIX compliant. Unfortunately it does not (yet) provide extensions to get per-thread
CPU usage statistics.

This affects the predicatesstatistics/2 and thread statistics/3 . On linuxthreads
both report per-thread values, while on NPTL both report overall process values. On Linux systems,
the prolog flaggnu libpthread version indicates the thread model used.

2Getting the CPU-time of a different thread is not supported on all platforms. For Microsoft, it does not work in
95/98/ME. For POSIX systems it requires times() to return values specific for the calling thread. See also section8.2.1.

SWI-Prolog 5.5 Reference Manual



8.3. THREAD COMMUNICATION 181

SWI-Prolog is setup to run with the default thread model. Unfortunately there is no way to modify
this at runtime, but there is a way to select the old thread model on modern machines atlink time. This
is achieved using the environment variableLD ASSUMEKERNELwhich must be set to a pre-nptl
kernel version for linking the main executable. The value2.4.21 is appropriate. When building
from source, this flag can be set during the build process. When using a binary distribution one could
create a minimal C program and relink the system using the plld utility.

8.3 Thread communication

8.3.1 Message queues

Prolog threads can exchange data using dynamic predicates, database records, and other globally
shared data. These provide no suitable means to wait for data or a condition as they can only be
checked in an expensive polling loop.Message queuesprovide a means for threads to wait for data or
conditions without using the CPU.

Each thread has a message-queue attached to it that is identified by the thread. Additional queues
are created usingmessage queue create/1 .

thread sendmessage(+QueueOrThreadId, +Term)
PlaceTermin the given queue or default queue of the indicated thread (which can even be the
message queue of itself (seethread self/1 ). Any term can be placed in a message queue,
but note that the term is copied to the receiving thread and variable-bindings are thus lost. This
call returns immediately.

If more than one thread is waiting for messages on the given queue and at least one of these
is waiting with a partially instantiatedTerm, the waiting threads areall sent a wakeup signal,
starting a rush for the available messages in the queue. This behaviour can seriously harm
performance with many threads waiting on the same queue as all-but-the-winner perform a
useless scan of the queue. If there is only one waiting thread or all waiting threads wait with an
unbound variable an arbitrary thread is restarted to scan the queue.3

thread get message(?Term)
Examines the thread message-queue and if necessary blocks execution until a term that unifies
to Termarrives in the queue. After a term from the queue has been unified unified toTerm, the
term is deleted from the queue and this predicate returns.

Please note that not-unifying messages remain in the queue. After the following has been
executed, thread 1 has the termb(gnu) in its queue and continues execution usingA is gnat .

<thread 1>
thread_get_message(a(A)),

<thread 2>
thread_send_message(b(gnu)),
thread_send_message(a(gnat)),

3See the documentation for the POSIX thread functions pthreadcondsignal() v.s. pthreadcondbroadcastt() for back-
ground information.

SWI-Prolog 5.5 Reference Manual



182 CHAPTER 8. MULTI-THREADED APPLICATIONS

See alsothread peek message/1 .

thread peek message(?Term)
Examines the thread message-queue and compares the queued terms withTermuntil one unifies
or the end of the queue has been reached. In the first case the call succeeds (possibly instantiat-
ing Term. If no term from the queue unifies this call fails.

messagequeuecreate(?Queue)
If Queue is an atom, create a named queue. To avoid ambiguity of
thread send message/2 , the name of a queue may not be in use as a thread-name.
If Queueis unbound an anonymous queue is created andQueueis unified to its identifier.

messagequeuedestroy(+Queue)
Destroy a message queue created withmessage queue create/1 . It is not allows to de-
stroy the queue of a thread. Neither is it allowed to destroy a queue other threads are waiting
for or, for anynymous message queues, may try to wait for later.4

thread get message(+Queue, ?Term)
As thread get message/1 , operating on a given queue. It is allowed (but not advised) to
get messages from the queue of other threads.

thread peek message(+Queue, ?Term)
As thread peek message/1 , operating on a given queue. It is allowed to peek into another
thread’s message queue, an operation that can be used to check whether a thread has swallowed
a message sent to it.

Explicit message queues are designed with theworker-poolmodel in mind, where multiple threads
wait on a single queue and pick up the first goal to execute. Below is a simple implementation where
the workers execute arbitrary Prolog goals. Note that this example provides no means to tell when all
work is done. This must be realised using additional synchronisation.

% create_workers(+Id, +N)
%
% Create a pool with given Id and number of workers.

create_workers(Id, N) :-
message_queue_create(Id),
forall(between(1, N, _),

thread_create(do_work(Id), _, [])).

do_work(Id) :-
repeat,

thread_get_message(Id, Goal),
( catch(Goal, E, print_message(error, E))
-> true
; print_message(error, goal_failed(Goal, worker(Id)))

4BUG: None of these constraints are properly enforced by the system in the current implementation. It is therefore
advised not to delete queues unless you are absolutely sure it is safe.

SWI-Prolog 5.5 Reference Manual



8.3. THREAD COMMUNICATION 183

),
fail.

% work(+Id, +Goal)
%
% Post work to be done by the pool

work(Id, Goal) :-
thread_send_message(Id, Goal).

8.3.2 Signalling threads

These predicates provide a mechanism to make another thread execute some goal as aninterrupt.
Signalling threads is safe as these interrupts are only checked at safe points in the virtual machine.
Nevertheless, signalling in multi-threaded environments should be handled with care as the receiving
thread may hold amutex(see withmutex). Signalling probably only makes sense to start debugging
threads and to cancel no-longer-needed threads withthrow/1 , where the receiving thread should be
designed carefully do handle exceptions at any point.

thread signal(+ThreadId, :Goal)
Make threadThreadIdexecuteGoalat the first opportunity. In the current implementation, this
implies at the first pass through theCall-port. The predicatethread signal/2 itself places
Goal into the signalled-thread’s signal queue and returns immediately.

Signals (interrupts) do not cooperate well with the world of multi-threading, mainly because
the status of mutexes cannot be guaranteed easily. At the call-port, the Prolog virtual machine
holds no locks and therefore the asynchronous execution is safe.

Goal can be any valid Prolog goal, includingthrow/1 to make the receiving thread generate
an exception andtrace/0 to start tracing the receiving thread.

In the Windows version, the receiving thread immediately executes the signal if it reaches a
Windows GetMessage() call, which generally happens of the thread is waiting for (user-)input.

8.3.3 Threads and dynamic predicates

Besides queues (section8.3.1) threads can share and exchange data using dynamic predicates. The
multi-threaded version knows about two types of dynamic predicates. By default, a predicate declared
dynamic(seedynamic/1 ) is shared by all threads. Each thread may assert, retract and run the dy-
namic predicate. Synchronisation inside Prolog guarantees the consistency of the predicate. Updates
arelogical: visible clauses are not affected by assert/retract after a query started on the predicate. In
many cases primitive from section8.4should be used to ensure application invariants on the predicate
are maintained.

Besides shared predicates, dynamic predicates can be declared with thethread local/1 di-
rective. Such predicates share their attributes, but the clause-list is different in each thread.

thread local +Functor/+Arity, . . .
This directive is related to thedynamic/1 directive. It tells the system that the predicate may
be modified usingassert/1 , retract/1 , etc. during execution of the program. Unlike

SWI-Prolog 5.5 Reference Manual



184 CHAPTER 8. MULTI-THREADED APPLICATIONS

normal shared dynamic data however each thread has its own clause-list for the predicate. As
a thread starts, this clause list is empty. If there are still clauses as the thread terminates these
are automatically reclaimed by the system (see alsovolatile/1 ). The threadlocal property
implies the properties dynamic and volatile.

Thread-local dynamic predicates are intended for maintaining thread-specific state or interme-
diate results of a computation.

It is not recommended to put clauses for a thread-local predicate into a file as in the example
below as the clause is only visible from the thread that loaded the source-file. All other threads
start with an empty clause-list.

:- thread_local
foo/1.

foo(gnat).

DISCLAIMER Whether or not this declaration is apropriate in the sense of the proper mech-
anism to reach the goal is still debated. If you have strong feeling in favour or against, please
share them in the SWI-Prolog mailing list.

8.4 Thread synchronisation

All internal Prolog operations are thread-safe. This implies two Prolog threads can operate on the
same dynamic predicate without corrupting the consistency of the predicate. This section deals with
user-levelmutexes(calledmonitorsin ADA or critical-sectionsby Microsoft). A mutex is aMUT ual
EXclusive device, which implies at most one thread canholda mutex.

Mutexes are used to realise related updates to the Prolog database. With ‘related’, we refer to
the situation where a ‘transaction’ implies two or more changes to the Prolog database. For example,
we have a predicateaddress/2 , representing the address of a person and we want to change the
address by retracting the old and asserting the new address. Between these two operations the database
is invalid: this person has either no address or two addresses, depending on the assert/retract order.

Here is how to realise a correct update:

:- initialization
mutex_create(addressbook).

change_address(Id, Address) :-
mutex_lock(addressbook),
retractall(address(Id, _)),
asserta(address(Id, Address)),
mutex_unlock(addressbook).

mutex create(?MutexId)
Create a mutex. ifMutexIdis an atom, anamedmutex is created. If it is a variable, an anony-
mous mutex reference is returned. There is no limit to the number of mutexes that can be
created.

SWI-Prolog 5.5 Reference Manual



8.5. THREAD-SUPPORT LIBRARY(THREADUTIL) 185

mutex destroy(+MutexId)
Destroy a mutex. After this call,MutexId becomes invalid and further references yield an
existence error exception.

with mutex(+MutexId, :Goal)
ExecuteGoal while holdingMutexId. If Goal leaves choicepointes, these are destroyed (as
in once/1 ). The mutex is unlocked regardless of whetherGoal succeeds, fails or raises an
exception. An exception thrown byGoal is re-thrown after the mutex has been successfully
unlocked. See alsomutex create/1 andcall cleanup/3 .

Although described in the thread-section, this predicate is also available in the single-threaded
version, where it behaves simply asonce/1 .

mutex lock(+MutexId)
Lock the mutex. Prolog mutexes arerecursivemutexes: they can be locked multiple times by
the same thread. Only after unlocking it as many times as it is locked, the mutex becomes
available for locking by other threads. If another thread has locked the mutex the calling thread
is suspended until to mutex is unlocked.

If MutexId is an atom, and there is no current mutex with that name, the mutex is created
automatically usingmutex create/1 . This implies named mutexes need not be declared
explicitly.

Please note that locking and unlocking mutexes should be paired carefully. Especially make
sure to unlock mutexes even if the protected code fails or raises an exception. For most common
cases usewith mutex/2 , wich provides a safer way for handling prolog-level mutexes. The
predicatecall cleanup/[2-3] is another way to guarantee that the mutex is unlocked
while retaining non-determinism.

mutex trylock( +MutexId)
As mutex lock/1 , but if the mutex is held by another thread, this predicates fails immedi-
ately.

mutex unlock(+MutexId)
Unlock the mutex. This can only be called if the mutex is held by the calling thread. If this is
not the case, apermission error exception is raised.

mutex unlock all
Unlock all mutexes held by the current thread. This call is especially useful to handle thread-
termination usingabort/0 or exceptions. See alsothread signal/2 .

current mutex(?MutexId, ?ThreadId, ?Count)
Enumerates all existing mutexes. If the mutex is held by some thread,ThreadIdis unified with
the identifier of te holding thread andCountwith the recursive count of the mutex. Otherwise,
ThreadIdis [] andCountis 0.

8.5 Thread-support library(threadutil)

This library defines a couple of useful predicates for demonstrating and debugging multi-threaded
applications. This library is certainly not complete.

SWI-Prolog 5.5 Reference Manual



186 CHAPTER 8. MULTI-THREADED APPLICATIONS

threads
Lists all current threads and their status. In addition, all ‘zombie’ threads (finished threads that
are not detached, nor waited for) are joined to reclaim their resources.

interactor
Create a new console and run the Prolog toplevel in this new console. See also
attach console/0 . In the Windows version a new interactor can also be created from
theRun/New thread menu.

attach console
If the current thread has no console attached yet, attach one and redirect the user streams (input,
output, and error) to the new console window. On Unix systems the console is anxterm
application. On Windows systems this requires the GUI versionplwin.exe rather than the
console basedplcon.exe .

This predicate has a couple of useful applications. One is to separate (debugging) I/O of differ-
ent threads. Another is to start debugging a thread that is running in the background. If thread
10 is running, the following sequence starts the tracer on this thread:

?- thread_signal(10, (attach_console, trace)).

8.6 Multi-threaded mixed C and Prolog applications

All foreign-code linked to the multi-threading version of SWI-Prolog should be thread-safe (reen-
trant) or guarded in Prolog usingwith mutex/2 from simultaneous access from multiple Prolog
threads. If you want to write mixed multi-threaded C and Prolog application you should first famil-
iarise yourself with writing multi-threaded applications in C (C++).

If you are using SWI-Prolog as an embedded engine in a multi-threaded application you can
access the Prolog engine from multiple threads by creating anenginein each thread from which you
call Prolog. Without creating an engine, a thread can only use functions that donot use theterm t
type (for examplePL new atom() ).

The system supports two models. Section8.6.1describes the orginal one-to-one mapping. In this
schema a native thread attaches a Prolog thread if it needs to call Prolog and detaches is when finished,
as opposed to the model from section8.6.2where threads temporary use a Prolog engine.

Please note that the interface below will only work if threading in your application is based
on the same thread-library as used to compile SWI-Prolog.

8.6.1 A Prolog thread for each native thread (one-to-one)

In the one-to-one model, the thread that calledPL initialise() has a Prolog engine at-
tached. If another C-thread in the system wishes to call Prolog it must first attach an engine us-
ing PL thread attach engine() and callPL thread destroy engine() after all Prolog
work is finished. This model is especially suitable with long running threads that need to do Prolog
work regulary. See section8.6.2for the alternative many-to-many model.

int PL thread self()
Returns the integer Prolog identifier of the engine or -1 if the calling thread has no Prolog

SWI-Prolog 5.5 Reference Manual



8.6. MULTI-THREADED MIXED C AND PROLOG APPLICATIONS 187

engine. This function is also provided in the single-threaded version of SWI-Prolog, where it
returns -2.

int PL thread attach engine(const PLthreadattr t *attr )
Creates a new Prolog engine in the calling thread. If the calling thread already has an engine the
reference count of the engine is incremented. Theattr argument can beNULLto create a thread
with default attributes. Otherwise it is a pointer to a structure with the definition below. For
any field with value ‘0’, the default is used. Thecancel field may be filled with a pointer to
a function that is called whenPL cleanup() terminates the running Prolog engines. If this
function is not present or returnsFALSEpthreadcancel() is used.

typedef struct
{ unsigned long local_size; /* Stack sizes (K-bytes) */

unsigned long global_size;
unsigned long trail_size;
unsigned long argument_size;
char * alias; /* alias name */
int (*cancel)(int thread);

} PL_thread_attr_t;

The structure may be destroyed afterPL thread attach engine() has returned. On suc-
cess it returns the Prolog identifier for the thread (as returned byPL thread self() ). If an
error occurs, -1 is returned. If this Prolog is not compiled for multi-threading, -2 is returned.

int PL thread destroy engine()
Destroy the Prolog engine in the calling thread. Only takes ef-
fect if PL thread destroy engine() is called as many times as
PL thread attach engine() in this thread. ReturnsTRUE on success andFALSE
if the calling thread has no engine or this Prolog does not support threads.

Please note that construction and destruction of engines are relatively expensive operations.
Only destroy an engine if performance is not critical and memory is a critical resource.

int PL thread at exit(void (*function)(void *), void *closure, int global)
Register a handle to be called as the Prolog engine is destroyed. The handler function is called
with onevoid * argument holdingclosure. If global is TRUE, the handler is installedfor all
threads. Globally installed handlers are executed after the thread-local handlers. If the handler
is installed local for the current thread only (global == FALSE) it is stored in the same FIFO
queue as used bythread at exit/1 .

8.6.2 Pooling Prolog engines (many-to-many)

In this model Prolog engines live as entities that are independent from threads. If a thread needs to
call Prolog it takes one of the engines from the pool and returns the engine when done. This model is
suitable in the following identified cases:

• Compatibility with the single-threaded version
In the single-threaded version, foreign threads must serialise access the the one and only thread
engine. Functions from this section allow sharing one engine among multiple threads.

SWI-Prolog 5.5 Reference Manual



188 CHAPTER 8. MULTI-THREADED APPLICATIONS

• Many native threads with infrequent Prolog work
Prolog threads are expensive in terms of memory and time to create and destroy them. Systems
that use a large number of threads that only infrequently need to call Prolog are better take an
engine from a pool and return it there.

• Prolog status must be handed to another thread
This situation has been identified by Uwe Lesta when creating a .NET interface for SWI-Prolog.
.NET distributes work for active internet connection over a pool of threads. If a Prolog engine
contains state for a connection, it must be possible to detach the engine from a thread and
re-attach it to another thread handling the same connection.

PL engine t PL create engine(PL threadattr t *attributes)
Create a new Prolog engine.attributesis described withPL thread attach engine() .
Any thread can make this call afterPL initialise() returned success. The returned engine
is not attached to any thread and lives untilPL destroy engine() is used on the returned
handle.

In the single-threaded version this call always returnsNULL, indicating failure.

int PL destroy engine(PL enginet e)
Destroy the given engine. Destroying an engine is only allowed if the engine is not attached to
any thread or attached to the calling thread. On success this function returnsTRUE, on failure
the return value isFALSE.

int PL set engine(PL enginet engine, PLenginet *old)
Make the calling thread ready to useengine. If old is non-NULL the current engine associated
with the calling thread is stored at the given location. IfengineequalsPL ENGINEMAIN the
initial engine is attached to the calling thread. Ifengineis PL ENGINECURRENTthe engine is
not changed. This can be used to query the current engine. This call returnsPL ENGINESET
if the engine was switched successfully,PL ENGINEINVAL if engineis not a valid engine
handle andPL ENGINEINUSE if the engine is currently in use by another thread.

Engines can be changed at any time. For example, it is allowed to select an engine to initiate a
Prolog goal, detach it and at a later moment execute the goal from another thread. Note however
that theterm t , qid t andfid t types are interpreted relative to the engine for which they
are created. Behaviour when passing one of these types from one engine to another is undefined.

In the single-threaded version this call only succeeds ifenginerefers to the main engine.

Engines in single-threaded SWI-Prolog

In theory it is possible to port the API of section8.6.2to the single-threaded version of SWI-Prolog.
This allows C-programs to control multiple Prolog engines concurrently. This has not yet been re-
alised.

8.7 Multithreading and the XPCE graphics system

GUI applications written in XPCE can benefit from the multi-threaded version of XPCE/SWI-Prolog
if they need to do expensive computations that block to UI in the single-threaded version.

SWI-Prolog 5.5 Reference Manual



8.7. MULTITHREADING AND THE XPCE GRAPHICS SYSTEM 189

Due to various technical problems on both Windows and Unix/X11 threading is best exploited by
handing long computations to their own thread.

The XPCE message passing system is guarded with a singlemutex, which synchronises both
access from Prolog and activation through the GUI. In MS-Windows, GUI events are processed by the
thread that created the window in which the event occurred, whereas in Unix/X11 they are processed
by the thread that dispatches messages.

Some tentative work is underway to improve the integration between XPCE and multi-threaded
SWI-Prolog.

pce dispatch(+Options)
Create a Prolog thread with the alias-namepce for XPCE event-handling. In the X11 version
this call creates a thread that executes the X11 event-dispatch loop. In MS-Windows it creates
a thread that executes a windows event-dispatch loop. The XPCE event-handling thread has the
aliaspce . Optionsspecifies the thread-attributes asthread create/3 .

pce call(:Goal)
Post Goal to the pce thread, executing it synchronous with the thread’s event-loop. The
pce call/1 predicate returns immediately without waiting. Note thatGoal is copiedto the
pce thread.

For further information about XPCE in threaded applications, please visit
http://gollem.swi.psy.uva.nl/twiki/pl/bin/view/Development/MultiThreadsXPCE

SWI-Prolog 5.5 Reference Manual



Foreign Language Interface 9
SWI-Prolog offers a powerful interface to C [Kernighan & Ritchie, 1978]. The main design objectives
of the foreign language interface are flexibility and performance. A foreign predicate is a C-function
that has the same number of arguments as the predicate represented. C-functions are provided to
analyse the passed terms, convert them to basic C-types as well as to instantiate arguments using
unification. Non-deterministic foreign predicates are supported, providing the foreign function with a
handle to control backtracking.

C can call Prolog predicates, providing both an query interface and an interface to extract multiple
solutions from an non-deterministic Prolog predicate. There is no limit to the nesting of Prolog calling
C, calling Prolog, etc. It is also possible to write the ‘main’ in C and use Prolog as an embedded logical
engine.

9.1 Overview of the Interface

A special include file calledSWI-Prolog.h should be included with each C-source file that is to be
loaded via the foreign interface. The installation process installs this file in the directoryinclude in
the SWI-Prolog home directory (?- current prolog flag(home, Home). ). This C-header
file defines various data types, macros and functions that can be used to communicate with SWI-
Prolog. Functions and macros can be divided into the following categories:

• Analysing Prolog terms

• Constructing new terms

• Unifying terms

• Returning control information to Prolog

• Registering foreign predicates with Prolog

• Calling Prolog from C

• Recorded database interactions

• Global actions on Prolog (halt, break, abort, etc.)

9.2 Linking Foreign Modules

Foreign modules may be linked to Prolog in two ways. Usingstatic linking, the extensions, a (short)
file defining main() which attaches the extensions calls Prolog and the SWI-Prolog kernel distributed
as a C-library are linked together to form a new executable. Usingdynamic linking, the extensions

SWI-Prolog 5.5 Reference Manual



9.3. DYNAMIC LINKING OF SHARED LIBRARIES 191

are linked to a shared library (.so file on most Unix systems) or dynamic-link library (.DLL file on
Microsoft platforms) and loaded into the the running Prolog process.1.

9.2.1 What linking is provided?

The static linking schema can be used on all versions of SWI-Prolog. Whether or not dy-
namic linking is supported can be deduced from the prolog-flagopen shared object (see
current prolog flag/2 ). If this prolog-flag yields true,open shared object/2 and re-
lated predicates are defined. See section9.4for a suitable high-level interface to these predicates.

9.2.2 What kind of loading should I be using?

All described approaches have their advantages and disadvantages. Static linking is portable and
allows for debugging on all platforms. It is relatively cumbersome and the libraries you need to
pass to the linker may vary from system to system, though the utility programplld described in
section9.7often hides these problems from the user.

Loading shared objects (DLL files on Windows) provides sharing and protection and is
generally the best choice. If a saved-state is created usingqsave program/[1,2] , an
initialization/1 directive may be used to load the appropriate library at startup.

Note that the definition of the foreign predicates is the same, regardless of the linking type used.

9.3 Dynamic Linking of shared libraries

The interface defined in this section allows the user to load shared libraries (.so files on most Unix
systems,.dll files on Windows). This interface is portable to Windows as well as to Unix machines
providingdlopen( 2) (Solaris, Linux, FreeBSD, Irix and many more) orshl open( 2) (HP/UX).
It is advised to use the predicates from section9.4 in your application.

open shared object(+File, -Handle)
File is the name of a shared object file (called dynamic load library in MS-Windows).
This file is attached to the current process andHandle is unified with a handle to
the library. Equivalent toopen shared object(File, [], Handle) . See also
load foreign library/[1,2] .

On errors, an exceptionshared object (Action, Message) is raised.Messageis the return
value fromdlerror() .

open shared object(+File, -Handle, +Options)
As open shared object/2 , but allows for additional flags to be passed.Optionsis a list of
atoms.now implies the symbols are resolved immediately rather than lazy (default).global
implies symbols of the loaded object are visible while loading other shared objects (by default
they are local). Note that these flags may not be supported by your operating system. Check
the documentation of dlopen() or equivalent on your operating system. Unsupported flags are
silently ignored.

1The system also contains code to load.o files directly for some operating systems, notably Unix systems using the
BSD a.out executable format. As the number of Unix platforms supporting this gets quickly smaller and this interface is
difficult to port and slow, it is no longer described in this manual. The best alternatively would be to use the dld package on
machines do not have shared libraries

SWI-Prolog 5.5 Reference Manual



192 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

closeshared object(+Handle)
Detach the shared object identified byHandle.

call shared object function(+Handle, +Function)
Call the named function in the loaded shared library. The function is called without arguments
and the return-value is ignored. Normally this function installs foreign language predicates
using calls toPL register foreign() .

9.4 Using the library shlib for .DLL and .so files

This section discusses the functionality of the (autoload) libraryshlib.pl , providing an interface to
shared libraries. This library can only be used if the prolog-flagopen shared object is enabled.

load foreign library( +Lib, +Entry)
Search for the given foreign library and link it to the current SWI-Prolog instance. The library
may be specified with or without the extension. First,absolute file name/3 is used to lo-
cate the file. If this succeeds, the full path is passed to the low-level function to open the library.
Otherwise, the plain library name is passed, exploiting the operating-system defined search
mechanism for the shared library. Thefile search path/2 alias mechanism defines the
aliasforeign , which refers to the directories〈plhome〉/lib/ 〈arch〉 and〈plhome〉/lib , in
this order.

If the library can be loaded, the function calledEntry will be called without arguments. The
return value of the function is ignored.

TheEntry function will normally callPL register foreign() to declare functions in the
library as foreign predicates.

load foreign library( +Lib)
Equivalent toload foreign library/2 . For the entry-point, this function first identifies
the ‘base-name’ of the library, which is defined to be the file-name with path nor extension.
It will then try the entry-pointinstall- 〈base〉. On failure it will try to function install().
Otherwise no install function will be called.

unload foreign library( +Lib)
If the foreign library defines the function uninstall〈base〉() or uninstall(), this function will be
called without arguments and its return value is ignored. Next,abolish/2 is used to remove
all known foreign predicates defined in the library. Finally the library itself is detached from
the process.

current foreign library( -Lib, -Predicates)
Query the currently loaded foreign libraries and their predicates.Predicates is a
list with elements of the formModule:Head, indicating the predicates installed with
PL register foreign() when the entry-point of the library was called.

Figure9.1 connects a Windows message-box using a foreign function. This example was tested
using Windows NT and Microsoft Visual C++ 2.0.

SWI-Prolog 5.5 Reference Manual



9.4. USING THE LIBRARY SHLIB FOR .DLL AND .SO FILES 193

#include <windows.h>
#include <SWI-Prolog.h>

static foreign_t
pl_say_hello(term_t to)
{ char *a;

if ( PL_get_atom_chars(to, &a) )
{ MessageBox(NULL, a, "DLL test", MB_OK|MB_TASKMODAL);

PL_succeed;
}

PL_fail;
}

install_t
install()
{ PL_register_foreign("say_hello", 1, pl_say_hello, 0);
}

Figure 9.1: MessageBox() example in Windows NT

9.4.1 Static Linking

Below is an outline of the files structure required for statically linking SWI-Prolog with foreign ex-
tensions.\ldots/pl refers to the SWI-Prolog home directory (seecurrent prolog flag/2 ).
〈arch〉 refers to the architecture identifier that may be obtained usingcurrent prolog flag/2 .

.../pl/runtime/ 〈arch〉/libpl.a SWI-Library
\ldots/pl/include/SWI-Prolog.h Include file
\ldots/pl/include/SWI-Stream.h Stream I/O include file
\ldots/pl/include/SWI-Exports Export declarations (AIX only)
\ldots/pl/include/stub.c Extension stub

The definition of the foreign predicates is the same as for dynamic linking. Unlike with dynamic
linking however, there is no initialisation function. Instead, the file\ldots/pl/include/stub.
c may be copied to your project and modified to define the foreign extensions. Below is stub.c,
modified to link the lowercase example described later in this chapter:

#include <stdio.h>
#include <SWI-Prolog.h>

extern foreign_t pl_lowercase(term, term);

PL_extension predicates[] =
{

SWI-Prolog 5.5 Reference Manual



194 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

/*{ "name", arity, function, PL_FA_<flags> },*/

{ "lowercase", 2 pl_lowercase, 0 },
{ NULL, 0, NULL, 0 } /* terminating line */

};

int
main(int argc, char **argv)
{ PL_register_extensions(predicates);

if ( !PL_initialise(argc, argv) )
PL_halt(1);

PL_install_readline(); /* delete if not required */

PL_halt(PL_toplevel() ? 0 : 1);
}

Now, a new executable may be created by compiling this file and linking it tolibpl.a from the
runtime directory and the libraries required by both the extensions and the SWI-Prolog kernel. This
may be done by hand, or using theplld utility described in secrefplld. If the linking is preformed
‘by hand’, the commandline option-dump-runtime-variables (see section2.4) can be used
to obtain the required paths, libraries and linking options to link the new executable.

9.5 Interface Data types

9.5.1 Typeterm t : a reference to a Prolog term

The principal data-type isterm t . Type term t is what Quintus callsQPterm ref . This name
indicates better what the type represents: it is ahandlefor a term rather than the term itself. Terms
can only be represented and manipulated using this type, as this is the only safe way to ensure the
Prolog kernel is aware of all terms referenced by foreign code and thus allows the kernel to perform
garbage-collection and/or stack-shifts while foreign code is active, for example during a callback from
C.

A term reference is a C unsigned long, representing the offset of a variable on the
Prolog environment-stack. A foreign function is passed term references for the predicate-
arguments, one for each argument. If references for intermediate results are needed,
such references may be created usingPL new term ref() or PL new term refs() .
These references normally live till the foreign function returns control back to Pro-
log. Their scope can be explicitly limited usingPL open foreign frame() and
PL close foreign frame() /PL discard foreign frame() .

A term t always refers to a valid Prolog term (variable, atom, integer, float or compound term). A
term lives either until backtracking takes us back to a point before the term was created, the garbage
collector has collected the term or the term was created after aPL open foreign frame() and
PL discard foreign frame() has been called.

SWI-Prolog 5.5 Reference Manual



9.5. INTERFACE DATA TYPES 195

The foreign-interface functions can eitherread, unify or write to term-references. In the this
document we use the following notation for arguments of type termt:

term t +t Accessed in read-mode. The ‘+’ indicates the argument is
‘input’.

term t -t Accessed in write-mode.
term t ?t Accessed in unify-mode.

Term references are obtained in any of the following ways.

• Passed as argument
The C-functions implementing foreign predicates are passed their arguments as term-references.
These references may be read or unified. Writing to these variables causes undefined behaviour.

• Created byPL new term ref()
A term created byPL new term ref() is normally used to build temporary terms or be
written by one of the interface functions. For example,PL get arg() writes a reference to
the term-argument in its last argument.

• Created byPL new term refs( int n)
This function returns a set of term refs with the same characteristics asPL new term ref() .
SeePL open query() .

• Created byPL copy term ref( term t t)
Creates a new term-reference to the same term as the argument. The term may be written to.
See figure9.3.

Term-references can safely be copied to other C-variables of type termt, but all copies will always
refer to the same term.

term t PL new term ref()
Return a fresh reference to a term. The reference is allocated on thelocal stack. Allocating a
term-reference may trigger a stack-shift on machines that cannot use sparse-memory manage-
ment for allocation the Prolog stacks. The returned reference describes a variable.

term t PL new term refs(int n)
Returnn new term references. The first term-reference is returned. The others aret + 1, t + 2,
etc. There are two reasons for using this function.PL open query() expects the arguments
as a set of consecutive term references andvery time-critical code requiring a number of term-
references can be written as:

pl_mypredicate(term_t a0, term_t a1)
{ term_t t0 = PL_new_term_refs(2);

term_t t1 = t0+1;

...
}

SWI-Prolog 5.5 Reference Manual



196 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

term t PL copy term ref(term t from)
Create a new term reference and make it point initially to the same term asfrom. This function
is commonly used to copy a predicate argument to a term reference that may be written.

void PL reset term refs(term t after)
Destroy all term references that have been created afterafter, includingafter itself. Any refer-
ence to the invalidated term references after this call results in undefined behaviour.

Note that returning from the foreign context to Prolog will reclaim all references used in the
foreign context. This call is only necessary if references are created inside a loop that never exits
back to Prolog. See alsoPL open foreign frame() , PL close foreign frame()
andPL discard foreign frame() .

Interaction with the garbage collector and stack-shifter

Prolog implements two mechanisms for avoiding stack overflow: garbage collection and stack ex-
pansion. On machines that allow for it, Prolog will use virtual memory management to detect stack
overflow and expand the runtime stacks. On other machines Prolog will reallocate the stacks and up-
date all pointers to them. To do so, Prolog needs to know which data is referenced by C-code. As all
Prolog data known by C is referenced through term references (term t ), Prolog has all information
necessary to perform its memory management without special precautions from the C-programmer.

9.5.2 Other foreign interface types

atom t An atom in Prologs internal representation. Atoms are pointers to an opaque structure. They
are a unique representation for represented text, which implies that atomA represents the same
text as atomB if-and-only-if A andB are the same pointer.

Atoms are the central representation for textual constants in Prolog The transformation of C a
character string to an atom implies a hash-table lookup. If the same atom is needed often, it is
advised to store its reference in a global variable to avoid repeated lookup.

functor t A functor is the internal representation of a name/arity pair. They are used to find the name
and arity of a compound term as well as to construct new compound terms. Like atoms they
live for the whole Prolog session and are unique.

predicate t Handle to a Prolog predicate. Predicate handles live forever (although they can loose
their definition).

qid t Query Identifier. Used byPL open query() /PL next solution() /PL close query()
to handle backtracking from C.

fid t Frame Identifier. Used byPL open foreign frame() /PL close foreign frame() .

module t A module is a unique handle to a Prolog module. Modules are used only to call predicates
in a specific module.

foreign t Return type for a C-function implementing a Prolog predicate.

control t Passed as additional argument to non-deterministic foreign functions. See PLretry*() and
PL foreign context*().

SWI-Prolog 5.5 Reference Manual



9.6. THE FOREIGN INCLUDE FILE 197

install t Type for the install() and uninstall() functions of shared or dynamic link libraries. See se-
crefshlib.

int64 t Actually part of the C99 standard rather than Prolog. As of version 5.5.6, Prolog integers
are 64-bit on all hardware. The C99 type int64t is defined in thestdint.h standard header
and provides platform independent 64-bit integers. Portable code accessing Prolog should use
this type to exchange integer values. Please note thatPL get long() can returnFALSEon
Prolog integers outside the long domain. Robust code should not assume any of the integer
fetching functions to succeed if the Prolog term is know to be an integer.

9.6 The Foreign Include File

9.6.1 Argument Passing and Control

If Prolog encounters a foreign predicate at run time it will call a function specified in the predicate
definition of the foreign predicate. The arguments1, . . . , 〈arity〉 pass the Prolog arguments to the goal
as Prolog terms. Foreign functions should be declared of typeforeign t . Deterministic foreign
functions have two alternatives to return control back to Prolog:

(return) foreignt PL succeed()
Succeed deterministically. PLsucceed is defined asreturn TRUE .

(return) foreignt PL fail()
Fail and start Prolog backtracking. PLfail is defined asreturn FALSE .

Non-deterministic Foreign Predicates

By default foreign predicates are deterministic. Using thePL FA NONDETERMINISTICattribute
(seePL register foreign() ) it is possible to register a predicate as a non-deterministic predi-
cate. Writing non-deterministic foreign predicates is slightly more complicated as the foreign function
needs context information for generating the next solution. Note that the same foreign function should
be prepared to be simultaneously active in more than one goal. Suppose the naturalnumberbelow n/2
is a non-deterministic foreign predicate, backtracking over all natural numbers lower than the first ar-
gument. Now consider the following predicate:

quotient_below_n(Q, N) :-
natural_number_below_n(N, N1),
natural_number_below_n(N, N2),
Q =:= N1 / N2, !.

In this predicate the function naturalnumberbelow n/2 simultaneously generates solutions for both
its invocations.

Non-deterministic foreign functions should be prepared to handle three different calls from Prolog:

• Initial call (PL FIRST CALL)
Prolog has just created a frame for the foreign function and asks it to produce the first answer.

• Redo call (PL REDO)
The previous invocation of the foreign function associated with the current goal indicated it was
possible to backtrack. The foreign function should produce the next solution.

SWI-Prolog 5.5 Reference Manual



198 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

• Terminate call (PL CUTTED)
The choice point left by the foreign function has been destroyed by a cut. The foreign function
is given the opportunity to clean the environment.

Both the context information and the type of call is provided by an argument of type
control t appended to the argument list for deterministic foreign functions. The macro
PL foreign control() extracts the type of call from the control argument. The foreign func-
tion can pass a context handle using thePL retry*() macros and extract the handle from the extra
argument using thePL foreign context*() macro.

(return) foreignt PL retry( long)
The foreign function succeeds while leaving a choice point. On backtracking over this goal
the foreign function will be called again, but the control argument now indicates it is a ‘Redo’
call and the macroPL foreign context() returns the handle passed viaPL retry() .
This handle is a 30 bits signed value (two bits are used for status indication). Defined as
return PL retry( n) . See alsoPL succeed() .

(return) foreignt PL retry address(void *)
As PL retry() , but ensures an address as returned by malloc() is correctly recovered by
PL foreign context address() . Defined asreturn PL retry address( n) .
See alsoPL succeed() .

int PL foreign control(control t)
Extracts the type of call from the control argument. The return values are described above. Note
that the function should be prepared to handle thePL CUTTEDcase and should be aware that
the other arguments are not valid in this case.

longPL foreign context(control t)
Extracts the context from the context argument. In the call type isPL FIRST CALL the context
value is 0L. Otherwise it is the value returned by the lastPL retry() associated with this goal
(both if the call type isPL REDOasPL CUTTED).

void * PL foreign context address(control t)
Extracts an address as passed in byPL retry address() .

Note: If a non-deterministic foreign function returns using PLsucceed or PLfail, Prolog assumes
the foreign function has cleaned its environment.No call with control argumentPL CUTTEDwill
follow.

The code of figure9.2shows a skeleton for a non-deterministic foreign predicate definition.

9.6.2 Atoms and functors

The following functions provide for communication using atoms and functors.

atom t PL new atom(const char *)
Return an atom handle for the given C-string. This function always succeeds. The returned
handle is valid as long as the atom is referenced (see section9.6.2).

SWI-Prolog 5.5 Reference Manual



9.6. THE FOREIGN INCLUDE FILE 199

typedef struct /* define a context structure */
{ ...
} context;

foreign_t
my_function(term_t a0, term_t a1, control_t handle)
{ struct context * ctxt;

switch( PL_foreign_control(handle) )
{ case PL_FIRST_CALL:

ctxt = malloc(sizeof(struct context));
...
PL_retry_address(ctxt);

case PL_REDO:
ctxt = PL_foreign_context_address(handle);
...
PL_retry_address(ctxt);

case PL_CUTTED:
ctxt = PL_foreign_context_address(handle);
...
free(ctxt);
PL_succeed;

}
}

Figure 9.2: Skeleton for non-deterministic foreign functions

SWI-Prolog 5.5 Reference Manual



200 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

const char* PL atom chars(atomt atom)
Return a C-string for the text represented by the given atom. The returned text will not be
changed by Prolog. It is not allowed to modify the contents, not even ‘temporary’ as the string
may reside in read-only memory. The returned string becomes invalid if the atom is garbage-
collected (see section9.6.2). Foreign functions that require the text from an atom passed in a
term t normally usePL get atom chars() or PL get atom nchars() .

functor t PL new functor (atomt name, int arity)
Returns afunctor identifier, a handle for the name/arity pair. The returned handle is valid for
the entire Prolog session.

atom t PL functor name(functor t f)
Return an atom representing the name of the given functor.

int PL functor arity (functor t f)
Return the arity of the given functor.

Atoms and atom-garbage collection

With the introduction of atom-garbage collection in version 3.3.0, atoms no longer live as long as the
process. Instead, their lifetime is guaranteed only as long as they are referenced. In the single-threaded
version, atom garbage collections are only invoked at thecall-port. In the multi-threaded version (see
section8, they appear asynchronously, except for the invoking thread.

For dealing with atom garbage collection, two additional functions are provided:

void PL register atom(atomt atom)
Increment the reference count of the atom by one.PL new atom() performs this automati-
cally, returning an atom with a reference count of at least one.2

void PL unregister atom(atomt atom)
Decrement the reference count of the atom. If the reference-count drops below zero, an assertion
error is raised.

Please note that the following two calls are different with respect to atom garbage collection:

PL_unify_atom_chars(t, "text");
PL_unify_atom(t, PL_new_atom("text"));

The latter increments the reference count of the atomtext , which effectively ensures the atom will
never be collected. It is advised to use the *chars() or *nchars() functions whenever applicable.

9.6.3 Analysing Terms via the Foreign Interface

Each argument of a foreign function (except for the control argument) is of typeterm t , an opaque
handle to a Prolog term. Three groups of functions are available for the analysis of terms. The first
just validates the type, like the Prolog predicatesvar/1 , atom/1 , etc and are calledPL is *() .
The second group attempts to translate the argument into a C primitive type. These predicates take a
term t and a pointer to the appropriate C-type and returnTRUEor FALSEdepending on successful
or unsuccessful translation. If the translation fails, the pointed-to data is never modified.

2Otherwise asynchronous atom garbage collection might destroy the atom before it is used.

SWI-Prolog 5.5 Reference Manual



9.6. THE FOREIGN INCLUDE FILE 201

Testing the type of a term

int PL term type(term t)
Obtain the type of a term, which should be a term returned by one of the other interface pred-
icates or passed as an argument. The function returns the type of the Prolog term. The type
identifiers are listed below. Note that the extraction functionsPL ge t*() also validate the
type and thus the two sections below are equivalent.

if ( PL_is_atom(t) )
{ char *s;

PL_get_atom_chars(t, &s);
...;

}

or

char *s;
if ( PL_get_atom_chars(t, &s) )
{ ...;
}

PL VARIABLE An unbound variable. The value of term as such is a
unique identifier for the variable.

PL ATOM A Prolog atom.
PL STRING A Prolog string.
PL INTEGER A Prolog integer.
PL FLOAT A Prolog floating point number.
PL TERM A compound term. Note that a list is a compound term

./2 .

The functions PLis 〈type〉 are an alternative to PL term type() . The test
PL is variable( term) is equivalent to PL term type( term) == PL VARIABLE, but
the first is considerably faster. On the other hand, using a switch overPL term type() is faster
and more readable then using an if-then-else using the functions below. All these functions return
eitherTRUEor FALSE.

int PL is variable(term t)
Returns non-zero ifterm is a variable.

int PL is ground(term t)
Returns non-zero ifterm is a ground term. See alsoground/1 . This function is cycle-safe.

int PL is atom(term t)
Returns non-zero ifterm is an atom.

int PL is string(term t)
Returns non-zero ifterm is a string.

SWI-Prolog 5.5 Reference Manual



202 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

int PL is integer(term t)
Returns non-zero ifterm is an integer.

int PL is float(term t)
Returns non-zero ifterm is a float.

int PL is compound(term t)
Returns non-zero ifterm is a compound term.

int PL is functor (term t, functor t)
Returns non-zero ifterm is compound and its functor isfunctor. This test is equivalent to
PL get functor() , followed by testing the functor, but easier to write and faster.

int PL is list(term t)
Returns non-zero ifterm is a compound term with functor ./2 or the atom[] .

int PL is atomic(term t)
Returns non-zero ifterm is atomic (not variable or compound).

int PL is number(term t)
Returns non-zero ifterm is an integer or float.

Reading data from a term

The functionsPL get *() read information from a Prolog term. Most of them take two arguments.
The first is the input term and the second is a pointer to the output value or a term-reference.

int PL get atom(term t +t, atom t *a)
If t is an atom, store the unique atom identifier overa. See alsoPL atom chars() and
PL new atom() . If there is no need to access the data (characters) of an atom, it is ad-
vised to manipulate atoms using their handle. As the atom is referenced byt, it will live
at least as long ast does. If longer live-time is required, the atom should be locked using
PL register atom() .

int PL get atom chars(term t +t, char **s)
If t is an atom, store a pointer to a 0-terminated C-string ins. It is explicitly not allowed to
modify the contents of this string. Some built-in atoms may have the string allocated in read-
only memory, so ‘temporary manipulation’ can cause an error.

int PL get string chars(term t +t, char **s, int *len)
If t is a string object, store a pointer to a 0-terminated C-string ins and the length of the string
in len. Note that this pointer is invalidated by backtracking, garbage-collection and stack-shifts,
so generally the only save operations are to pass it immediately to a C-function that doesn’t
involve Prolog.

int PL get chars(term t +t, char **s, unsigned flags)
Convert the argument termt to a 0-terminated C-string.flagsis a bitwise disjunction from two
groups of constants. The first specifies which term-types should converted and the second how
the argument is stored. Below is a specification of these constants.BUF RING implies, if the
data is not static (as from an atom), the data is copied to the next buffer from a ring of 16 buffers.

SWI-Prolog 5.5 Reference Manual



9.6. THE FOREIGN INCLUDE FILE 203

This is a convenient way of converting multiple arguments passed to a foreign predicate to C-
strings. If BUFMALLOC is used, the data must be freed usingPL free() when not needed
any longer.

With the introduction of wide-characters (see section2.17.1), not all atoms can be converted into
achar* . This function fails ift is of the wrong type, but also if the text cannot be represented.
See theREP* flags below for details.

CVT ATOM Convert if term is an atom
CVT STRING Convert if term is a string
CVT LIST Convert if term is a list of integers between 1 and 255
CVT INTEGER Convert if term is an integer (using%d)
CVT FLOAT Convert if term is a float (using%f)
CVT NUMBER Convert if term is a integer or float
CVT ATOMIC Convert if term is atomic
CVT VARIABLE Convert variable to print-name
CVT WRITE Convert any term that is not converted by any of the

other flags usingwrite/1 . If no BUF * is provided,
BUF RING is implied.

CVT ALL Convert if term is any of the above, except for
CVT VARIABLE andCVT WRITE

CVT EXCEPTION If conversion fails due to a type error, raise a Prolog type
error exception in addition to failure

BUF DISCARDABLE Data must copied immediately
BUF RING Data is stored in a ring of buffers
BUF MALLOC Data is copied to a new buffer returned by

PL malloc( 3) . When no longer needed the user
must callPL free() on the data.

REPISO LATIN 1 (0, default). Text is in ISO Latin-1 encoding and the call
fails if text cannot be represented.

REPUTF8 Convert the text to a UTF-8 string. This works for all text.
REPMB Convert to default locale-defined 8-bit string. Success de-

pends on the locale. Conversion is done using the wcr-
tomb() C-library function.

int PL get list chars(+term t l, char **s, unsigned flags)
Same asPL get chars( l, s, CVT LIST—flags) , providedflags contains no of theCVT *
flags.

int PL get integer(+term t t, int *i )
If t is a Prolog integer, assign its value overi. On 32-bit machines, this is the same as
PL get long() , but avoids a warning from the compiler. See alsoPL get long() .

int PL get long(term t +t, long *i )
If t is a Prolog integer that can be represented as a long, assign its value overi. If t is an
integer that cannot be represented by a C long, this function returnsFALSE. If t is a float-
ing point number that can be represented as a long, this function succeeds as well. See also
PL get int64()

SWI-Prolog 5.5 Reference Manual



204 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

int PL get int64(term t +t, int64 t *i )
If t is a Prolog integer or float that can be represented as aint64 t , assign its value over
i. Currently all Prolog integers can be represented using this type, but this might change if
SWI-Prolog introduces unbounded integers.

int PL get bool(term t +t, int *val )
If t has the valuetrue or false , setval to the C constantTRUEor FALSEand return success.
otherwise return failure.

int PL get pointer(term t +t, void **ptr )
In the current system, pointers are represented by Prolog integers, but need some manip-
ulation to make sure they do not get truncated due to the limited Prolog integer range.
PL put pointer() /PL get pointer() guarantees pointers in the range of malloc() are
handled without truncating.

int PL get float(term t +t, double *f)
If t is a float or integer, its value is assigned overf.

int PL get functor (term t +t, functor t *f )
If t is compound or an atom, the Prolog representation of the name-arity pair will be assigned
overf. See alsoPL get name arity() andPL is functor() .

int PL get name arity (term t +t, atom t *name, int *arity)
If t is compound or an atom, the functor-name will be assigned overnameand the arity over
arity. See alsoPL get functor() andPL is functor() .

int PL get module(term t +t, modulet *module)
If t is an atom, the system will lookup or create the corresponding module and assign an opaque
pointer to it overmodule,.

int PL get arg(int index, termt +t, term t -a)
If t is compound and index is between 1 and arity (including), assigna with a term-reference to
the argument.

int PL get arg(int index, termt +t, term t -a)
Same asPL get arg() , but no checking is performed, nor whethert is actually a term, nor
whetherindexis a valid argument-index.

Exchanging text using length and string

All internal text-representation of SWI-Prolog is represented usingchar * plus length and allow
for 0-bytesin them. The foreign library supports this by implementing a *nchars() function for each
applicable *chars() function. Below we briefly present the signatures of these functions. For full
documentation consult the *chars() function.

int PL get atom nchars(term t t, unsigned int *len, char **s)
SeePL get atom chars() .

int PL get list nchars(term t t, unsigned int *len, char **s)
SeePL get list chars() .

SWI-Prolog 5.5 Reference Manual



9.6. THE FOREIGN INCLUDE FILE 205

int PL get nchars(term t t, unsigned int *len, char **s, unsigned int flags)
SeePL get chars() .

int PL put atom nchars(term t t, unsigned int len, const char *s)
SeePL put atom chars() .

int PL put string nchars(term t t, unsigned int len, const char *s)
SeePL put string chars() .

int PL put list ncodes(term t t, unsigned int len, const char *s)
SeePL put list codes() .

int PL put list nchars(term t t, unsigned int len, const char *s)
SeePL put list chars() .

int PL unify atom nchars(term t t, unsigned int len, const char *s)
SeePL unify atom chars() .

int PL unify string nchars(term t t, unsigned int len, const char *s)
SeePL unify string chars() .

int PL unify list ncodes(term t t, unsigned int len, const char *s)
SeePL unify codes() .

int PL unify list nchars(term t t, unsigned int len, const char *s)
SeePL unify list chars() .

In addition, the following functions are available for creating and inspecting atoms:

atom t PL new atom nchars(unsigned int len, const char *s)
Create a new atom asPL new atom() , but from length and characters.

const char * PL atom nchars(atomt a, unsigned int *len)
Extract text and length of an atom.

Wide character versions

Support for exchange of wide character strings is still under considerations. The functions dealing
with 8-bit character strings return failure when operating on a wide character atom or Prolog string
object. The functions below can extract and unify bith 8-bit and wide atoms and string objects. Wide
character strings are represented as C arrays of objects of the typepl wchar t , which is guaranteed
to be the same aswchar t on platforms supporting this type. For example, on MS-Windows, this
represents 16-bit UCS2 characters, while using the GNU C library (glibc) this represents 32-bit UCS4
characters.

atom t PL new atom wchars(int len, const plwchar t *s)
Create atom from wide-character string asPL new atom nchars() does for ISO-Latin-1
strings. Its only contains ISO-Latin-1 characters a normal byte-array atom is created.

SWI-Prolog 5.5 Reference Manual



206 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

pl wchar t* PL atom wchars(atomt atom, int *len)
Extract characters from a wide-character atom. Fails (returnsNULL) if atom is not a wide-
character atom. This is the wide-character version ofPL atom nchars() . Note that only
one of these functions succeeds on a particular atom. Especially, after creating an atom with
PL new atom wchars() , extracting the text usingPL atom wchars() will fail of the
atom only contains ISO-Latin-1 characters.

int PL get wchars(term t t, unsigned int *len, plwchar t **s, unsigned flags)
Wide-character version ofPL get chars() . The flags argument is the same as for
PL get chars() .

int PL unify wchars(term t t, int type, unsigned int len, const plwchar t *s)
Unify t with a textual representation of the C wide character arrays. The argtype argument
defines the Prolog representation and is one ofPL ATOM, PL STRING, PL CODELIST or
PL CHARLIST .

Reading a list

The functions from this section are intended to read a Prolog list from C. Suppose we expect a list of
atoms, the following code will print the atoms, each on a line:

foreign_t
pl_write_atoms(term_t l)
{ term_t head = PL_new_term_ref(); /* variable for the elements */

term_t list = PL_copy_term_ref(l); /* copy as we need to write */

while( PL_get_list(list, head, list) )
{ char *s;

if ( PL_get_atom_chars(head, &s) )
Sprintf("%s\n", s);

else
PL_fail;

}

return PL_get_nil(list); /* test end for [] */
}

int PL get list(term t +l, term t -h, termt -t)
If l is a list and not[] assign a term-reference to the head toh and to the tail tot.

int PL get head(term t +l, term t -h)
If l is a list and not[] assign a term-reference to the head toh.

int PL get tail (term t +l, term t -t)
If l is a list and not[] assign a term-reference to the tail tot.

int PL get nil (term t +l )
Succeeds if represents the atom[] .

SWI-Prolog 5.5 Reference Manual



9.6. THE FOREIGN INCLUDE FILE 207

An example: definingwrite/1 in C

Figure9.3shows a simplified definition ofwrite/1 to illustrate the described functions. This sim-
plified version does not deal with operators. It is calleddisplay/1 , because it mimics closely the
behaviour of this Edinburgh predicate.

9.6.4 Constructing Terms

Terms can be constructed using functions from thePL put *() andPL cons *() families. This
approach builds the term ‘inside-out’, starting at the leaves and subsequently creating compound
terms. Alternatively, terms may be created ‘top-down’, first creating a compound holding only vari-
ables and subsequently unifying the arguments. This section discusses functions for the first approach.
This approach is generally used for creating arguments forPL call() and PLopenquery.

void PL put variable(term t -t)
Put a fresh variable in the term. The new variable lives on the global stack. Note that the initial
variable lives on the local stack and is lost after a write to the term-references. After using this
function, the variable will continue to live.

void PL put atom(term t -t, atomt a)
Put an atom in the term reference from a handle. See alsoPL new atom() and
PL atom chars() .

void PL put atom chars(term t -t, const char *chars)
Put an atom in the term-reference constructed from the 0-terminated string. The string itself
will never be references by Prolog after this function.

void PL put string chars(term t -t, const char *chars)
Put a zero-terminated string in the term-reference. The data will be copied. See also
PL put string nchars() .

void PL put string nchars(term t -t, unsigned int len, const char *chars)

Put a string, represented by a length/start pointer pair in the term-reference. The data will be
copied. This interface can deal with 0-bytes in the string. See also section9.6.18.

void PL put list chars(term t -t, const char *chars)
Put a list of ASCII values in the term-reference.

void PL put integer(term t -t, long i)
Put a Prolog integer in the term reference.

void PL put int64(term t -t, int64 t i)
Put a Prolog integer in the term reference.

void PL put pointer(term t -t, void *ptr)
Put a Prolog integer in the term-reference. Provided ptr is in the ‘malloc()-area’,
PL get pointer() will get the pointer back.

void PL put float(term t -t, double f)
Put a floating-point value in the term-reference.

SWI-Prolog 5.5 Reference Manual



208 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

foreign_t
pl_display(term_t t)
{ functor_t functor;

int arity, len, n;
char *s;

switch( PL_term_type(t) )
{ case PL_VARIABLE:

case PL_ATOM:
case PL_INTEGER:
case PL_FLOAT:

PL_get_chars(t, &s, CVT_ALL);
Sprintf("%s", s);
break;

case PL_STRING:
PL_get_string_chars(t, &s, &len);
Sprintf("\"%s\"", s);
break;

case PL_TERM:
{ term_t a = PL_new_term_ref();

PL_get_name_arity(t, &name, &arity);
Sprintf("%s(", PL_atom_chars(name));
for(n=1; n<=arity; n++)
{ PL_get_arg(n, t, a);

if ( n > 1 )
Sprintf(", ");

pl_display(a);
}
Sprintf(")");
break;

default:
PL_fail; /* should not happen */

}

PL_succeed;
}

Figure 9.3: A Foreign definition ofdisplay/1

SWI-Prolog 5.5 Reference Manual



9.6. THE FOREIGN INCLUDE FILE 209

void PL put functor (term t -t, functor t functor)
Create a new compound term fromfunctorand bindt to this term. All arguments of the term
will be variables. To create a term with instantiated arguments, either instantiate the arguments
using thePL unify *() functions or usePL cons functor() .

void PL put list(term t -l)
Same asPL put functor( l, PL newfunctor(PLnewatom(”.” ), 2)) .

void PL put nil (term t -l)
Same asPL put atom chars( ”[]” ) .

void PL put term(term t -t1, termt +t2)
Maket1 point to the same term ast2.

void PL cons functor (term t -h, functor t f, . . .)
Create a term, whose arguments are filled from variable argument list holding the same number
of term t objects as the arity of the functor. To create the termanimal(gnu, 50) , use:

{ term_t a1 = PL_new_term_ref();
term_t a2 = PL_new_term_ref();
term_t t = PL_new_term_ref();
functor_t animal2;

/* animal2 is a constant that may be bound to a global
variable and re-used

*/
animal2 = PL_new_functor(PL_new_atom("animal"), 2);

PL_put_atom_chars(a1, "gnu");
PL_put_integer(a2, 50);
PL_cons_functor(t, animal2, a1, a2);

}

After this sequence, the term-referencesa1anda2may be used for other purposes.

void PL cons functor v(term t -h, functor t f, term t a0)
Creates a compound term likePL cons functor() , but a0 is an array of term references
as returned byPL new term refs() . The length of this array should match the number of
arguments required by the functor.

void PL cons list(term t -l, term t +h, term t +t)
Create a list (cons-) cell inl from the head and tail. The code below creates a list of atoms from
a char ** . The list is built tail-to-head. ThePL unify *() functions can be used to build
a list head-to-tail.

void
put_list(term_t l, int n, char **words)
{ term_t a = PL_new_term_ref();

SWI-Prolog 5.5 Reference Manual



210 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

PL_put_nil(l);
while( --n >= 0 )
{ PL_put_atom_chars(a, words[n]);

PL_cons_list(l, a, l);
}

}

Note thatl can be redefined within aPL cons list call as shown here because operationally
its old value is consumed before its new value is set.

9.6.5 Unifying data

The functions of this sectionsunify terms with other terms or translated C-data structures. Except for
PL unify() , the functions of this section are specific to SWI-Prolog. They have been introduced
to make translation of old code easier, but also because they provide for a faster mechanism for
returning data to Prolog that requires less term-references. Consider the case where we want a foreign
function to return the host name of the machine Prolog is running on. Using thePL get *() and
PL put *() functions, the code becomes:

foreign_t
pl_hostname(term_t name)
{ char buf[100];

if ( gethostname(buf, sizeof(buf)) )
{ term_t tmp = PL_new_term_ref();

PL_put_atom_chars(tmp, buf);
return PL_unify(name, tmp);

}

PL_fail;
}

UsingPL unify atom chars() , this becomes:

foreign_t
pl_hostname(term_t name)
{ char buf[100];

if ( gethostname(buf, sizeof(buf)) )
return PL_unify_atom_chars(name, buf);

PL_fail;
}

int PL unify (term t ?t1, termt ?t2)
Unify two Prolog terms and return non-zero on success.

SWI-Prolog 5.5 Reference Manual



9.6. THE FOREIGN INCLUDE FILE 211

int PL unify atom(term t ?t, atomt a)
Unify t with the atoma and return non-zero on success.

int PL unify chars(term t ?t, int flags, unsigned int len, const char *chars)
New function do deal with unification ofchar* with various encodings to a Prolog rep-
resentation. Theflags argument is a bitwiseor specifying the Prolog target type and the
encoding ofchars. Prolog types is one ofPL ATOM, PL STRING, PL CODELIST or
PL CHARLIST . Representations is one ofREPISO LATIN T, REPUTF8 or REPMB. See
PL get chars() for a definition of the representation types. Iflen is -1 , charsis assumed
to be nul-terminated.

int PL unify atom chars(term t ?t, const char *chars)
Unify t with an atom created fromcharsand return non-zero on success.

int PL unify list chars(term t ?t, const char *chars)
Unify t with a list of ASCII characters constructed fromchars.

void PL unify string chars(term t ?t, const char *chars)
Unify t with a Prolog string object created from the zero-terminated stringchars. The data will
be copied. See alsoPL unify string nchars() .

void PL unify string nchars(term t ?t, unsigned int len, const char *chars)
Unify t with a Prolog string object created from the string created from thelen/charspair. The
data will be copied. This interface can deal with 0-bytes in the string. See also section9.6.18.

int PL unify integer(term t ?t, long n)
Unify t with a Prolog integer fromn.

int PL unify int64(term t ?t, int64 t n)
Unify t with a Prolog integer fromn.

int PL unify float(term t ?t, double f)
Unify t with a Prolog float fromf.

int PL unify pointer(term t ?t, void *ptr)
Unify t with a Prolog integer describing the pointer. See alsoPL put pointer() and
PL get pointer() .

int PL unify functor (term t ?t, functor t f)
If t is a compound term with the given functor, just succeed. If it is unbound, create a term
and bind the variable, else fails. Not that this function does not create a term if the argument is
already instantiated.

int PL unify list(term t ?l, term t -h, termt -t)
Unify l with a list-cell (./2 ). If successful, write a reference to the head of the list toh and
a reference to the tail of the list int. This reference may be used for subsequent calls to this
function. Suppose we want to return a list of atoms from achar ** . We could use the
example described byPL put list() , followed by a call toPL unify() , or we can use
the code below. If the predicate argument is unbound, the difference is minimal (the code based
on PL put list() is probably slightly faster). If the argument is bound, the code below
may fail before reaching the end of the word-list, but even if the unification succeeds, this code
avoids a duplicate (garbage) list and a deep unification.

SWI-Prolog 5.5 Reference Manual



212 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

foreign_t
pl_get_environ(term_t env)
{ term_t l = PL_copy_term_ref(env);

term_t a = PL_new_term_ref();
extern char **environ;
char **e;

for(e = environ; *e; e++)
{ if ( !PL_unify_list(l, a, l) ||

!PL_unify_atom_chars(a, *e) )
PL_fail;

}

return PL_unify_nil(l);
}

int PL unify nil (term t ?l)
Unify l with the atom[] .

int PL unify arg(int index, termt ?t, termt ?a)
Unifies theindex-thargument (1-based) oft with a.

int PL unify term(term t ?t, . . .)
Unify t with a (normally) compound term. The remaining arguments is a sequence of a type
identifier, followed by the required arguments. This predicate is an extension to the Quintus
and SICStus foreign interface from which the SWI-Prolog foreign interface has been derived,
but has proved to be a powerful and comfortable way to create compound terms from C. Due to
the vararg packing/unpacking and the required type-switching this interface is slightly slower
than using the primitives. Please note that some bad C-compilers have fairly low limits on the
number of arguments that may be passed to a function.

Special attention is required when passing numbers. C ‘promotes’ any integral smaller than
int to int . I.e. the typeschar , short andint are all passed asint . In addition, on most
32-bit platformsint andlong are the same. Upto version 4.0.5, onlyPL INTEGERcould be
specified which was taken from the stack aslong . Such code fails when passing small integral
types on machines whereint is smaller thanlong . It is advised to usePL SHORT, PL INT
or PL LONGas appropriate. Similar, C compilers promotefloat to double and therefore
PL FLOATandPL DOUBLEare synonyms.

The type identifiers are:

PL VARIABLE none
No op. Used in arguments ofPL FUNCTOR.

PL BOOLint
Unify the argument withtrue or false .

PL ATOMatom t
Unify the argument with an atom, as inPL unify atom() .

SWI-Prolog 5.5 Reference Manual



9.6. THE FOREIGN INCLUDE FILE 213

PL CHARSconst char *
Unify the argument with an atom created from a 0-terminated string.

PL NCHARSunsigned int, const char *
Unify the argument with an atom created from the given number of characters starting at
the given address. See alsoPL unify atom nchars() ;

PL SHORTshort
Unify the argument with an integer, as inPL unify integer() . As short is pro-
moted toint , PL SHORTis a synonym forPL INT .

PL INT int
Unify the argument with an integer, as inPL unify integer() .

PL LONGlong
Unify the argument with an integer, as inPL unify integer() .

PL INTEGERlong
Unify the argument with an integer, as inPL unify integer() .

PL DOUBLEdouble
Unify the argument with a float, as inPL unify float() . Note that, as the argument
is passed using the C vararg conventions, a float must be casted to a double explicitly.

PL FLOATdouble
Unify the argument with a float, as inPL unify float() .

PL POINTERvoid *
Unify the argument with a pointer, as inPL unify pointer() .

PL STRINGconst char *
Unify the argument with a string object, as inPL unify string chars() .

PL TERMterm t
Unify a subterm. Note this may the return value of aPL new term ref() call to get
access to a variable.

PL CHARSconst char *
Unify the argument with an atom, constructed from the Cchar * , as in
PL unify atom chars() .

PL FUNCTORfunctor t, . . .
Unify the argument with a compound term. This specification should be followed by
exactly as many specifications as the number of arguments of the compound term.

PL FUNCTORCHARSconst char *name, int arity, . . .
Create a functor from the given name and arity and then behave asPL FUNCTOR.

PL LIST int length, . . .
Create a list of the indicated length. The following arguments contain the elements of the
list.

For example, to unify an argument with the termlanguage(dutch) , the following skeleton
may be used:

static functor_t FUNCTOR_language1;

SWI-Prolog 5.5 Reference Manual



214 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

static void
init_constants()
{ FUNCTOR_language1 = PL_new_functor(PL_new_atom("language"), 1);
}

foreign_t
pl_get_lang(term_t r)
{ return PL_unify_term(r,

PL_FUNCTOR, FUNCTOR_language1,
PL_CHARS, "dutch");

}

install_t
install()
{ PL_register_foreign("get_lang", 1, pl_get_lang, 0);

init_constants();
}

int PL chars to term(const char *chars, termt -t)
Parse the stringcharsand put the resulting Prolog term intot. charsmay or may not be closed
using a Prolog full-stop (i.e., a dot followed by a blank). ReturnsFALSE if a syntax error
was encountered andTRUEafter successful completion. In addition to returningFALSE, the
exception-term is returned int on a syntax error. See alsoterm to atom/2 .

The following example build a goal-term from a string and calls it.

int
call_chars(const char *goal)
{ fid_t fid = PL_open_foreign_frame();

term_t g = PL_new_term_ref();
BOOL rval;

if ( PL_string_to_term(goal, g) )
rval = PL_call(goal, NULL);

else
rval = FALSE;

PL_discard_foreign_frame(fid);
return rval;

}

...
call_chars("consult(load)");
...

char * PL quote(int chr, const char *string)
Return a quoted version ofstring. If chr is ’\’’ , the result is a quoted atom. Ifchr is ’"’ ,

SWI-Prolog 5.5 Reference Manual



9.6. THE FOREIGN INCLUDE FILE 215

the result is a string. The result string is stored in the same ring of buffers as described with the
BUF RING argument ofPL get chars() ;

In the current implementation, the string is surrounded bychr and any occurence ofchr is
doubled. In the future the behaviour will depend on thecharacter escape prolog-flag.
Seecurrent prolog flag/2 .

9.6.6 BLOBS: Using atoms to store arbitrary binary data

SWI-Prolog atoms as well as strings can represent arbitrary binary data of arbitrary length. This
facility is attractive for storing foreign data such as images in an atom. An atom is a unique handle to
this data and the atom garbage collector is able to destroy atoms that are no longer referenced by the
Prolog engine. This property of atoms makes them attractive as a handle to foreign resources, such as
Java atoms, Microsoft’s COM objects, etc., providing safe combined garbage collection.

To exploit these features safely and in an organised manner the SWI-Prolog foreign interface
allows for creating ‘atoms’ with additional type information. The type is represented by a structure
holding C function pointers that tell Prolog how to handle releasing the atom, writing it, sorting it,
etc. Two atoms created with different types can represent the same sequence of bytes. Atoms are first
ordered on the rank number of the type and then on the result of thecompare() function. Rank
numbers are assigned when the type is registered.

Defining a BLOB type

The typePL blob t represents a structure with the layout displayed above. The structure contains
additional fields at the . . . for internal bookkeeping as well as future extension.

typedef struct PL_blob_t
{ unsigned long magic; /* PL_BLOB_MAGIC */

unsigned long flags; /* Bitwise or of PL_BLOB_* */
char * name; /* name of the type */
int (*release)(atom_t a);
int (*compare)(atom_t a, atom_t b);
int (*write)(IOSTREAM *s, atom_t a, int flags);
...

} PL_blob_t;

For each type exactly one such structure should be allocated. Its first field must be initialised to
PL BLOBMAGIC. Theflagsis a bitwise or of the following constants:

PL BLOB TEXT
If specified the blob is assumed to contain text and is considered a normal Prolog atom.

PL BLOB UNIQUE
If specified the system ensures that the blob-handle is a unique reference for a blob with the
given type, length and content. If this flag is not specified each lookup creates a new blob.

PL BLOB NOCOPY
By default the content of the blob is copied. Using this flag the blob references the external
data directly. The user must ensure the provided pointer is valid as long as the atom lives. If

SWI-Prolog 5.5 Reference Manual



216 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

PL BLOBUNIQUEis also specified uniqueness is determined by comparing the pointer rather
than the data pointed at.

The namefield represents the type name as available to Prolog. See alsocurrent blob/2 .
The other field are function pointers that must be initialised to proper functions orNULL to get the
default behaviour of builtin atoms. Below are the defined member functions:

void acquire(atomt a)
Called if a new blob of this type is created throughPL put blob() or PL unify blob() .
This callback may be used together with the release hook to deal with reference counted external
objects.

int release(atomt a)
The blob (atom)a is about to be released. This function can retrieve the data of the blob using
PL blob data() . If it returnsFALSEthe atom garbage collector willnot reclaim the atom.

int compare(atomt a, atomt b)
Compare the blobsa andb, both of which are of the type associated to this blob-type. Return
values are, as memcmp(),< 0 if a is less thenb, = 0 if both are equal and> 0 otherwise.

int write (IOSTREAM *s, atomt a, int flags)
Write the content of the bloba to the streamsand respecting theflags. Theflagsare a bitwise or
of zero or more of thePL WRT* flags defined inSWI-Prolog.h . This prototype is available
if the undocumentedSWI-Stream.h is includedbeforeSWI-Prolog.h .

If this function is not provided,write/1 emits the content of the blob for blobs of type
PL BLOBTEXTor a string of the format<#hex data> for binary blobs.

If a blob type is registered from a loadable object (shared object or DLL) the blob-type must be
deregistered before the object may be released.

int PL unregister blob type(PL blob t *type)
Unlink the blob type from the registered type and transform the type of possible living blobs
to unregistered , avoiding further reference to the type structure, functions referred by it
as well as the data. This function returnsTRUEif no blobs of this type existed andFALSE
otherwise.PL unregister blob type() is intended for the uninstall() hook of foreign
modules, avoiding further references to the module.

Accessing blobs

The blob access functions are similar to the atom accessing functions. Blobs being atoms, the atom
functions operate on blobs and visa versa. For clarity and possible future compatibility issues however
it is not advised to rely on this.

int PL is blob(term t t, PL blob t **type)
Succeeds ift refers to a blob, in which casetypeis filled with the type of the blob.

int PL unify blob(term t t, void *blob, unsigned int len, PLblob t *type)
Unify t to a new blob constructed from the given data and associated to the given type. See also
PL unify atom nchars() .

SWI-Prolog 5.5 Reference Manual



9.6. THE FOREIGN INCLUDE FILE 217

int PL put blob(term t t, void *blob, unsigned int len, PLblob t *type)
Store the described blob int. The return value indicates whether a new blob was allocated
(FALSE) or the blob is a reference to an existing blob (TRUE). Reporting new/existing can be
used to deal with external objects having their own reference counts. If the return isTRUEthis
reference count must be incremented and it must be decremented on blob destruction callback.
See alsoPL put atom nchars() .

int PL get blob(term t t, void **blob, unsigned int *len, PLblob t **type)
If t holds a blob or atom get the data and type and returnTRUE. Otherwise returnFALSE. Each
result pointer may beNULL, in which case the requested information is ignored.

void * PL blob data(atomt a, unsigned int *len, PLblob t **type)
Get the data and type associated to a blob. This function is mainly used from the callback
functions described in section9.6.6.

9.6.7 Calling Prolog from C

The Prolog engine can be called from C. There are two interfaces for this. For the first, a term is
created that could be used as an argument tocall/1 and nextPL call() is used to call Prolog.
This system is simple, but does not allow to inspect the different answers to a non-deterministic goal
and is relatively slow as the runtime system needs to find the predicate. The other interface is based on
PL open query() , PL next solution() andPL cut query() or PL close query() .
This mechanism is more powerful, but also more complicated to use.

Predicate references

This section discusses the functions used to communicate about predicates. Though a Prolog predicate
may defined or not, redefined, etc., a Prolog predicate has a handle that is not destroyed, nor moved.
This handle is known by the typepredicate t .

predicate t PL pred(functor t f, modulet m)
Return a handle to a predicate for the specified name/arity in the given module. This function
always succeeds, creating a handle for an undefined predicate if no handle was available.

predicate t PL predicate(const char *name, int arity, const char* module)
Same aPL pred() , but provides a more convenient interface to the C-programmer.

void PL predicate info(predicatet p, atomt *n, int *a, modulet *m)
Return information on the predicatep. The name is stored overn, the arity overa, while
m receives the definition module. Note that the latter need not be the same as speci-
fied with PL predicate() . If the predicate was imported into the module given to
PL predicate() , this function will return the module where the predicate was defined.

Initiating a query from C

This section discusses the functions for creating and manipulating queries from C. Note that a foreign
context can have at most one active query. This implies it is allowed to make strictly nested calls
between C and Prolog (Prolog calls C, calls Prolog, calls C, etc., but it isnot allowed to open multiple
queries and start generating solutions for each of them by callingPL next solution() . Be sure

SWI-Prolog 5.5 Reference Manual



218 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

to call PL cut query() or PL close query() on any query you opened before opening the
next or returning control back to Prolog.

qid t PL open query(modulet ctx, int flags, predicatet p, termt +t0)

Opens a query and returns an identifier for it. This function always succeeds, regardless whether
the predicate is defined or not.ctx is thecontext moduleof the goal. WhenNULL, the context
module of the calling context will be used, oruser if there is no calling context (as may happen
in embedded systems). Note that the context module only matters formoduletransparentpred-
icates. Seecontext module/1 andmodule transparent/1 . Thep argument specifies
the predicate, and should be the result of a call toPL pred() or PL predicate() . Note
that it is allowed to store this handle as global data and reuse it for future queries. The term-
referencet0 is the first of a vector of term-references as returned byPL new term refs( n) .

The flags arguments provides some additional options concerning debugging and exception
handling. It is a bitwise or of the following values:

PL Q NORMAL
Normal operation. The debugger inherits its settings from the environment. If an excep-
tion occurs that is not handled in Prolog, a message is printed and the tracer is started to
debug the error.3

PL Q NODEBUG
Switch off the debugger while executing the goal. This option is used by many
calls to hook-predicates to avoid tracing the hooks. An example isprint/1 calling
portray/1 from foreign code.

PL Q CATCHEXCEPTION
If an exception is raised while executing the goal, do not report it, but make it available
for PL exception() .

PL Q PASSEXCEPTION
As PL Q CATCHEXCEPTION, but do not invalidate the exception-term while calling
PL close query() . This option is experimental.

The example below opens a query to the predicate isa/2 to find the ancestor of for some name.

char *
ancestor(const char *me)
{ term_t a0 = PL_new_term_refs(2);

static predicate_t p;

if ( !p )
p = PL_predicate("is_a", 2, "database");

PL_put_atom_chars(a0, me);
PL_open_query(NULL, PL_Q_NORMAL, p, a0);

3Do not pass the integer 0 for normal operation, as this is interpreted asPL Q NODEBUGfor backward compatibility
reasons.

SWI-Prolog 5.5 Reference Manual



9.6. THE FOREIGN INCLUDE FILE 219

...
}

int PL next solution(qid t qid)
Generate the first (next) solution for the given query. The return value isTRUEif a solution
was found, orFALSE to indicate the query could not be proven. This function may be called
repeatedly until it fails to generate all solutions to the query.

void PL cut query(qid)
Discards the query, but does not delete any of the data created by the query. It just invalidate
qid, allowing for a new call toPL open query() in this context.

void PL closequery(qid)
As PL cut query() , but all data and bindings created by the query are destroyed.

int PL call predicate(modulet m, int flags, predicatet pred, termt +t0)
Shorthand forPL open query() , PL next solution() , PL cut query() , generat-
ing a single solution. The arguments are the same as forPL open query() , the return value
is the same asPL next solution() .

int PL call(term t, modulet)
Call term just like the Prolog predicateonce/1 . Termis called in the specified module, or in
the context module if modulet = NULL. ReturnsTRUEif the call succeeds,FALSEotherwise.
Figure9.4shows an example to obtain the number of defined atoms. All checks are omitted to
improve readability.

9.6.8 Discarding Data

The Prolog data created and term-references needed to setup the call and/or analyse the result can in
most cases be discarded right after the call.PL close query() allows for destructing the data,
while leaving the term-references. The calls below may be used to destroy term-references and data.
See figure9.4for an example.

fid t PL open foreign frame()
Created a foreign frame, holding a mark that allows the system to undo bindings and destroy
data created after it as well as providing the environment for creating term-references. This
function is called by the kernel before calling a foreign predicate.

void PL closeforeign frame(fid t id)
Discard all term-references created after the frame was opened. All other Prolog data is retained.
This function is called by the kernel whenever a foreign function returns control back to Prolog.

void PL discard foreign frame(fid t id)
Same asPL close foreign frame() , but also undo all bindings made since the open and
destroy all Prolog data.

void PL rewind foreign frame(fid t id)
Undo all bindings and discard all term-references created since the frame was created, but does
not pop the frame. I.e. the same frame can be rewinded multiple times, and must eventually be
closed or discarded.

SWI-Prolog 5.5 Reference Manual



220 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

int
count_atoms()
{ fid_t fid = PL_open_foreign_frame();

term_t goal = PL_new_term_ref();
term_t a1 = PL_new_term_ref();
term_t a2 = PL_new_term_ref();
functor_t s2 = PL_new_functor(PL_new_atom("statistics"), 2);
int atoms;

PL_put_atom_chars(a1, "atoms");
PL_cons_functor(goal, s2, a1, a2);
PL_call(goal, NULL); /* call it in current module */

PL_get_integer(a2, &atoms);
PL_discard_foreign_frame(fid);

return atoms;
}

Figure 9.4: Calling Prolog

It is obligatory to call either of the two closing functions to discard a foreign frame. Foreign
frames may be nested.

9.6.9 Foreign Code and Modules

Modules are identified via a unique handle. The following functions are available to query and ma-
nipulate modules.

module t PL context()
Return the module identifier of the context module of the currently active foreign predicate.

int PL strip module(term t +raw, modulet *m, term t -plain)
Utility function. If raw is a term, possibly holding the module construct〈module〉: 〈rest〉 this
function will makeplain a reference to〈rest〉 and fill module * with 〈module〉. For further
nested module constructs the inner most module is returned viamodule *. If raw is not a
module constructarg will simply be put inplain. If module * is NULL it will be set to the
context module. Otherwise it will be left untouched. The following example shows how to
obtain the plain term and module if the default module is the user module:

{ module m = PL_new_module(PL_new_atom("user"));
term_t plain = PL_new_term_ref();

PL_strip_module(term, &m, plain);
...

SWI-Prolog 5.5 Reference Manual



9.6. THE FOREIGN INCLUDE FILE 221

atom t PL module name(modulet)
Return the name ofmoduleas an atom.

module t PL new module(atomt name)
Find an existing or create a new module with name specified by the atomname.

9.6.10 Prolog exceptions in foreign code

This section discussesPL exception() , PL throw() and PL raise exception() , the
interface functions to detect and generate Prolog exceptions from C-code.PL throw()
and PL raise exception() from the C-interface to raise an exception from foreign
code. PL throw() exploits the C-function longjmp() to return immediately to the innermost
PL next solution() . PL raise exception() registers the exception term and returns
FALSE. If a foreign predicate returns FALSE, while and exception-term is registered a Prolog ex-
ception will be raised by the virtual machine.

Calling these functions outside the context of a function implementing a foreign predicate results
in undefined behaviour.

PL exception() may be used after a call toPL next solution() fails, and returns a term
reference to an exception term if an exception was raised, and 0 otherwise.

If a C-function, implementing a predicate calls Prolog and detects an exception us-
ing PL exception() , it can handle this exception, or return with the exception.
Some caution is required though. It isnot allowed to call PL close query() or
PL discard foreign frame() afterwards, as this will invalidate the exception term. Below
is the code that calls a Prolog defined arithmetic function (seearithmetic function/1 ).

If PL next solution() succeeds, the result is analysed and translated to a number, after
which the query is closed and all Prolog data created afterPL open foreign frame() is de-
stroyed. On the other hand, ifPL next solution() fails and if an exception was raised, just
pass it. Otherwise generate an exception (PL error() is an internal call for building the standard
error terms and callingPL raise exception() ). After this, the Prolog environment should be
discarded usingPL cut query() andPL close foreign frame() to avoid invalidating the
exception term.

static int
prologFunction(ArithFunction f, term_t av, Number r)
{ int arity = f->proc->definition->functor->arity;

fid_t fid = PL_open_foreign_frame();
qid_t qid;
int rval;

qid = PL_open_query(NULL, PL_Q_NORMAL, f->proc, av);

if ( PL_next_solution(qid) )
{ rval = valueExpression(av+arity-1, r);

PL_close_query(qid);
PL_discard_foreign_frame(fid);

} else
{ term_t except;

SWI-Prolog 5.5 Reference Manual



222 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

if ( (except = PL_exception(qid)) )
{ rval = PL_throw(except); /* pass exception */
} else
{ char *name = stringAtom(f->proc->definition->functor->name);

/* generate exception */
rval = PL_error(name, arity-1, NULL, ERR_FAILED, f->proc);

}

PL_cut_query(qid); /* donot destroy data */
PL_close_foreign_frame(fid); /* same */

}

return rval;
}

int PL raise exception(term t exception)
Generate an exception (asthrow/1 ) and returnFALSE. Below is an example returning an
exception from foreign predicate:

foreign_t
pl_hello(term_t to)
{ char *s;

if ( PL_get_atom_chars(to, &s) )
{ Sprintf("Hello \"%s\"\n", s);

PL_succeed;
} else
{ term_t except = PL_new_term_ref();

PL_unify_term(except,
PL_FUNCTOR_CHARS, "type_error", 2,

PL_CHARS, "atom",
PL_TERM, to);

return PL_raise_exception(except);
}

}

int PL throw (term t exception)
Similar to PL raise exception() , but returns using the C longjmp() function to the in-
nermostPL next solution() .

term t PL exception(qid t qid)
If PL next solution() fails, this can be due to normal failure of the Prolog call, or because

SWI-Prolog 5.5 Reference Manual



9.6. THE FOREIGN INCLUDE FILE 223

an exception was raised usingthrow/1 . This function returns a handle to the exception term
if an exception was raised, or 0 if the Prolog goal simply failed.4.

9.6.11 Catching Signals (Software Interrupts)

SWI-Prolog offers both a C and Prolog interface to deal with software interrupts (signals). The Prolog
mapping is defined in section4.10. This subsection deals with handling signals from C.

If a signal is not used by Prolog and the handler does not call Prolog in any way, the native signal
interface routines may be used.

Some versions of SWI-Prolog, notably running on popular Unix platforms, handleSIG SEGV
for guarding the Prolog stacks. If the application whishes to handle this signal too, it should use
PL signal() to install its handler after initialisating Prolog. SWI-Prolog will passSIG SEGVto
the user code if it detected the signal is not related to a Prolog stack overflow.

Any handler that wishes to call one of the Prolog interface functions should callPL signal()
for its installation.

void (*)() PL signal(sig, func)
This function is equivalent to the BSD-Unix signal() function, regardless of the platform used.
The signal handler is blocked while the signal routine is active, and automatically reactivated
after the handler returns.

After a signal handler is registered using this function, the native signal interface redirects the
signal to a generic signal handler inside SWI-Prolog. This generic handler validates the en-
vironment, creates a suitable environment for calling the interface functions described in this
chapter and finally calls the registered user-handler.

By default, signals are handled asynchronously (i.e. at the time they arrive). It is inheritly
dangerous to call extensive code fragments, and especially exception related code from asyn-
chronous handlers. The interface allows forsynchronoushandling of signals. In this case
the native OS handler just schedules the signal usingPL raise() , which is checked by
PL handle signals() at the call- and redo-port. This behaviour is realised by or-ingsig
with the constantPL SIGSYNC.5

Signal handling routines may raise exceptions usingPL raise exception() . The use of
PL throw() is not safe. If a synchronous handler raises an exception, the exception is delayed
to the next call toPL handle signals() ;

int PL raise(int sig)
Registersig for synchronoushandling by Prolog. Synchronous signals are handled at the call-
port or if foreign code callsPL handle signals() . See alsothread signal/2 .

int PL handle signals(void)
Handle any signals pending fromPL raise() . PL handle signals() is called at each
pass through the call- and redo-port at a safe point. Exceptions raised by the handler using
PL raise exception() are properly passed to the environment.

4This interface differs in two ways from Quintus. The calling predicates simp,y signal failure if an exception was raised,
and a term referenced is returned, rather passed and filled with the error term. Exceptions can only be handled using the
PL next solution() interface, as a handle to the query is required

5A better default would be to use synchronous handling, but this interface preserves backward compatibility.

SWI-Prolog 5.5 Reference Manual



224 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

The user may call this function inside long-running foreign functions to handle scheduled inter-
rupts. This routine returns the number of signals handled. If a handler raises an exception, the
return value is -1 and the calling routine should return withFALSEas soon as possible.

9.6.12 Miscellaneous

Term Comparison

int PL compare(term t t1, termt t2)
Compares two terms using the standard order of terms and returns -1, 0 or 1. See also
compare/3 .

int PL samecompound(term t t1, termt t2)
YieldsTRUEif t1 andt2 refer to physically the same compound term andFALSEotherwise.

Recorded database

In some applications it is useful to store and retreive Prolog terms from C-code. For example, the
XPCE graphical environment does this for storing arbitrary Prolog data as slot-data of XPCE objects.

Please note that the returned handles have no meaning at the Prolog level and the recorded terms
are not visible from Prolog. The functionsPL recorded() andPL erase() are the only func-
tions that can operate on the stored term.

Two groups of functions are provided.The first group (PL record() and friends) store Prolog
terms on the Prolog heap for retrieval during the same session. These functions are also used by
recorda/3 and friends. The recorded database may be used to communicate Prolog terms between
threads.

record t PL record(term t +t)
Record the termt into the Prolog database asrecorda/3 and return an opaque handle to the
term. The returned handle remains valid untilPL erase() is called on it.PL recorded()
is used to copy recorded terms back to the Prolog stack.

void PL recorded(record t record, termt -t)
Copy a recorded term back to the Prolog stack. The same record may be used to copy multiple
instances at any time to the Prolog stack. See alsoPL record() andPL erase() .

void PL erase(record t record)
Remove the recorded term from the Prolog database, reclaiming all associated memory re-
sources.

The second group (headed byPL record external() ) provides the same functionality, but
the returned data has properties that enable storing the data on an external device. It has been designed
to make it possible to store Prolog terms fast an compact in an external database. Here are the main
features:

• Independent of session
Records can be communicated to another Prolog session and made visible using
PL recorded external() .

SWI-Prolog 5.5 Reference Manual



9.6. THE FOREIGN INCLUDE FILE 225

• Binary
The representation is binary for maximum performance. The returned data may contain 0-bytes.

• Byte-order independent
The representation can be transferred between machines with different byte-order.

• No alignment restrictions
There are no memory alignment restrictions and copies of the record can thus be moved freely.
For example, it is possible to use this representation to exchange terms using shared memory
between different Prolog processes.

• Compact
It is assumed that a smaller memory footprint will eventually outperform slightly faster repre-
sentations.

• Stable
The format is designed for future enhancements without breaking compatibility with older
records.

char * PL record external(term t +t, unsigned int *len)
Record the termt into the Prolog database asrecorda/3 and return an opaque handle to the
term. The returned handle remains valid untilPL erase() is called on it.

It is allowed to copy the data and usePL recorded external() on the copy. The user
is responsible for the memory management of the copy. After copying, the original may be
discarded usingPL erase external() .

PL recorded external() is used to copy such recorded terms back to the Prolog stack.

int PL recorded external(const char *record, termt -t)
Copy a recorded term back to the Prolog stack. The same record may be used to copy mul-
tiple instances at any time to the Prolog stack. See alsoPL record external() and
PL erase external() .

int PL eraseexternal(char *record)
Remove the recorded term from the Prolog database, reclaiming all associated memory re-
sources.

Getting file names

The functionPL get file name() provides access to Prolog filenames and its file-search mech-
anism described withabsolute file name/3 . Its existence is motivated to realise a uniform
interface to deal with file-properties, search, naming conventions etc. from foreign code.

int PL get file name(term t spec, char **name, int flags)
Translate a Prolog term into a file name. The name is stored in the static buffer ring described
with PL get chars() optionBUF RING. Conversion from the internal UNICODE encoding
is done using standard C library functions.flagsis a bit-mask controlling the conversion process.
Options are:

PL FILE ABSOLUTE
Return an absolute path to the requested file.

SWI-Prolog 5.5 Reference Manual



226 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

PL FILE OSPATH
Return a the name using the hosting OS conventions. On MS-Windows,\ is used to
seperate directories rather than the canonical/ .

PL FILE SEARCH
Invoke absolute file name/3 . This implies rules fromfile search path/2
are used.

PL FILE EXIST
Demand the path to refer to an existing entity.

PL FILE READ
Demand read-access on the result.

PL FILE WRITE
Demand write-access on the result.

PL FILE EXECUTE
Demand execute-access on the result.

PL FILE NOERRORS
Do not raise any exceptions.

9.6.13 Errors and warnings

PL warning() prints a standard Prolog warning message to the standard error (user error )
stream. Please note that new code should consider usingPL raise exception() to raise a Prolog
exception. See also section4.9.

int PL warning(format, a1, . . .)
Print an error message starting with ‘[WARNING: ’, followed by the output fromformat,
followed by a ‘] ’ and a newline. Then start the tracer.format and the arguments are the
same as forprintf( 2) . Always returnsFALSE.

9.6.14 Environment Control from Foreign Code

int PL action(int, ...)
Perform some action on the Prolog system.int describes the action, Remaining arguments
depend on the requested action. The actions are listed in table9.1.

9.6.15 Querying Prolog

long PL query(int)
Obtain status information on the Prolog system. The actual argument type depends on the
information required. int describes what information is wanted.6 The options are given in
table9.2.

6Returning pointers and integers as a long is bad style. The signature of this function should be changed.

SWI-Prolog 5.5 Reference Manual



9.6. THE FOREIGN INCLUDE FILE 227

PL ACTION TRACE Start Prolog tracer (trace/0 ). Requires no arguments.
PL ACTION DEBUG Switch on Prolog debug mode (debug/0 ). Requires no

arguments.
PL ACTION BACKTRACE Print backtrace on current output stream. The argument

(an int) is the number of frames printed.
PL ACTION HALT Halt Prolog execution. This action should be called rather

than Unix exit() to give Prolog the opportunity to clean up.
This call does not return. The argument (an int) is the exit
code. Seehalt/1 .

PL ACTION ABORT Generate a Prolog abort (abort/0 ). This call does not
return. Requires no arguments.

PL ACTION BREAK Create a standard Prolog break environment (break/0 ).
Returns after the user types the end-of-file character. Re-
quires no arguments.

PL ACTION GUIAPP Win32: Used to indicate the kernel that the application is
a GUI application if the argument is not 0 and a console
application if the argument is 0. If a fatal error occurs,
the system uses a windows messagebox to report this on
a GUI application and simply prints the error and exits
otherwise.

PL ACTION WRITE Write the argument, achar * to the current output
stream.

PL ACTION FLUSH Flush the current output stream. Requires no arguments.
PL ACTION ATTACHCONSOLEAttach a console to a thread if it does not have one. See

attach console/0 .

Table 9.1:PL action() options

SWI-Prolog 5.5 Reference Manual



228 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

PL QUERYARGC Return an integer holding the number of arguments given
to Prolog from Unix.

PL QUERYARGV Return a char ** holding the argument vector given to Pro-
log from Unix.

PL QUERYSYMBOLFILE Return a char * holding the current symbol file of the run-
ning process.

PL MAXINTEGER Return a long, representing the maximal integer value rep-
resented by a Prolog integer.

PL MIN INTEGER Return a long, representing the minimal integer value.
PL QUERYVERSION Return a long, representing the version as10, 000×M +

100×m + p, whereM is the major,m the minor version
number andp the patch-level. For example,20717 means
2.7.17 .

PL QUERYMAXTHREADS Return the maximum number of threads that can
be created in this version. Return values of
PL thread self() are between 0 and this num-
ber.

PL QUERYENCODING Return the default stream encoding of Prolog (of type
IOENC).

PL QUERYUSERCPU Get amount of user CPU time of the process in millisec-
onds.

Table 9.2:PL query() options

9.6.16 Registering Foreign Predicates

int PL register foreign in module(const char *module, const char *name, int arity, foreignt (*function)(), int flags)

Register a C-function to implement a Prolog predicate. After this call returns success-
fully a predicate with namename(a char *) and arityarity (a C int) is created in module
module. If moduleis NULL, the predicate is created in the module of the calling context or if
no context is present in the moduleuser .

When called in Prolog, Prolog will callfunction. flags forms bitwise or’ed list of options for
the installation. These are:

PL FA NOTRACE Predicate cannot be seen in the tracer
PL FA TRANSPARENT Predicate is module transparent
PL FA NONDETERMINISTIC Predicate is non-deterministic. See alsoPL retry() .
PL FA VARARGS Use alternative calling convention.

Predicates may be registered either before or afterPL initialise() . When registered be-
fore initialisation the registration is recorded and executed after installing the system predicates
and before loading the saved state.

Default calling (i.e. withoutPL FA VARARGS) function is passed the same number of termt
arguments as the arity of the predicate and, if the predicate is non-deterministic, an extra ar-
gument of typecontrol t (see section9.6.1). If PL FA VARARGSis provided,function is
called with three arguments. The first argument is aterm t handle to the first argument. Fur-
ther arguments can be reached by adding the offset (see alsoPL new term refs() ). The

SWI-Prolog 5.5 Reference Manual



9.6. THE FOREIGN INCLUDE FILE 229

second argument is the arity, which defines the number of valid term-references in the argument
vector. The last argument is used for non-deterministic calls. It is currently undocument and
should be defined of typevoid* . Here is an example:

static foreign_t
atom_checksum(term_t a0, int arity, void* context)
{ char *s;

if ( PL_get_atom_chars(a0, &s) )
{ int sum;

for(sum=0; *s; s++)
sum += *s&0xff;

return PL_unify_integer(a0+1, sum&0xff);
}

return FALSE;
}

install_t
install()
{ PL_register_foreign("atom_checksum", 2, atom_checksum, PL_FA_VARARGS);
}

int PL register foreign(const char *name, int arity, foreignt (*function)(), int flags)
Same asPL register foreign in module() , passingNULL for themodule.

void PL register extensionsin module(const char *module, PLextension *e)
Register a series of predicates from an array of definitions of the typePL extension in the
givenmodule. If moduleis NULL, the predicate is created in the module of the calling context
or if no context is present in the moduleuser . ThePL extension type is defined as

typedef struct PL_extension
{ char *predicate_name; /* Name of the predicate */

short arity; /* Arity of the predicate */
pl_function_t function; /* Implementing functions */
short flags; /* Or of PL_FA_... */

} PL_extension;

For details, seePL register foreign in module() . Here is an example of its usage:

static PL_extension predicates[] = {
{ "foo", 1, pl_foo, 0 },
{ "bar", 2, pl_bar, PL_FA_NONDETERMINISTIC },
{ NULL, 0, NULL, 0 }

SWI-Prolog 5.5 Reference Manual



230 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

};

main(int argc, char **argv)
{ PL_register_extensions_in_module("user", predicates);

if ( !PL_initialise(argc, argv) )
PL_halt(1);

...
}

void PL register extensions( PL extension *e)
Same asPL register extensions in module() usingNULLfor themoduleargument.

9.6.17 Foreign Code Hooks

For various specific applications some hooks re provided.

PL dispatch hook t PL dispatch hook(PL dispatchhook t)
If this hook is not NULL, this function is called when reading from the terminal. It is sup-
posed to dispatch events when SWI-Prolog is connected to a window environment. It can re-
turn two values:PL DISPATCHINPUT indicates Prolog input is available on file descriptor
0 or PL DISPATCHTIMEOUTto indicate a timeout. The old hook is returned. The type
PL dispatch hook t is defined as:

typedef int (*PL_dispatch_hook_t)(void);

void PL abort hook(PL abort hook t)
Install a hook whenabort/0 is executed. SWI-Prologabort/0 is implemented using C
setjmp()/longjmp() construct. The hooks are executed in the reverse order of their registra-
tion after the longjmp() took place and before the Prolog toplevel is reinvoked. The type
PL abort hook t is defined as:

typedef void (*PL_abort_hook_t)(void);

int PL abort unhook(PL abort hook t)
Remove a hook installed withPL abort hook() . ReturnsFALSE if no such hook is found,
TRUEotherwise.

void PL on halt(void (*f)(int, void *), void *closure)
Register the functionf to be called if SWI-Prolog is halted. The function is called with two
arguments: the exit code of the process (0 if this cannot be determined on your operating system)
and theclosureargument passed to thePL on halt() call. See alsoat halt/1 .

PL agc hook t PL agc hook(PL agc hook t new)
Register a hook with the atom-garbage collector (seegarbage collect atoms/0 that is
called on any atom that is reclaimed. The old hook is returned. If no hook is currently defined,

SWI-Prolog 5.5 Reference Manual



9.6. THE FOREIGN INCLUDE FILE 231

NULL is returned. The argument of the called hook is the atom that is to be garbage collected.
The return value is anint . If the return value is zero, the atom isnot reclaimed. The hook
may invoke any Prolog predicate.

The example below defines a foreign library for printing the garbage collected atoms for debug-
ging purposes.

#include <SWI-Stream.h>
#include <SWI-Prolog.h>

static int
atom_hook(atom_t a)
{ Sdprintf("AGC: deleting %s\n", PL_atom_chars(a));

return TRUE;
}

static PL_agc_hook_t old;

install_t
install()
{ old = PL_agc_hook(atom_hook);
}

install_t
uninstall()
{ PL_agc_hook(old);
}

9.6.18 Storing foreign data

This section provides some hints for handling foreign data in Prolog. With foreign data, we refer to
data that is used by foreign language predicates and needs to be passed around in Prolog. Excluding
combinations, there are three principal options for storing such data

• Natural Prolog data
E.i. using the representation one would choose if there was no foreign interface required.

• Opaque packed Prolog data
Data can also be represetented in a foreign structure and stored on the Prolog stacks using
PL put string nchars() and retrieved usingPL get string chars() . It is gener-
ally good practice to wrap the string in a compound term with arity 1, so Prolog can identify the
type.portray/1 rules may be used to streamline printing such terms during development.

• Natural foreign data, passing a pointer
An alternative is to pass a pointer to the foreign data. Again, this functor may be wrapped in a
compound term.

SWI-Prolog 5.5 Reference Manual



232 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

The choice may be guided using the following distinctions

• Is the data opaque to Prolog
With ‘opaque’ data, we refer to data handled in foreign functions, passed around in Prolog, but
of which Prolog never examines the contents of the data itself. If the data is opaque to Prolog,
the choosen representation does not depend on simple analysis by Prolog, and the selection will
be driven solely by simplicity of the interface and performance (both in time and space).

• How big is the data
Is effient encoding required? For examine, a boolean aray may be expressed as a compound
term, holding integers each of which contains a number of bits, or as a list oftrue andfalse .

• What is the nature of the data
For examples in C, constants are often expressed using ‘enum’ or #define’d integer values. If
prolog needs to handle this data, atoms are a more logical choice. Whether or not this mapping
is used depends on whether Prolog needs to interpret the data, how important debugging is and
how important performance is.

• What is the lifetime of the data
We can distinguish three cases.

1. The lifetime is dictated by the accesibility of the data on the Prolog stacks. Their is no
way by which the foreign code when the data becomes ‘garbage’, and the data thus needs
to be represented on the Prolog stacks using Prolog data-types. (2),

2. The data lives on the ‘heap’ and is explicitly allocated and deallocated. In this case,
representing the data using native foreign representation and passing a pointer to it is a
sensible choice.

3. The data lives as during the lifetime of a foreign predicate. If the predicate is deterministic,
foreign automatic variables are suitable. if the predicate is non-deterministic, the data may
be allocated using malloc() and a pointer may be passed. See section9.6.1.

Examples for storing foreign data

In this section, we wull outline some examples, covering typical cases. In the first example, we will
deal with extending Prolog’s data representation with integer-sets, represented as bit-vectors. In the
second example, we look at handling a ‘netmask’. Finally, we discuss the outline of the DDE interface.

Integer sets with not-to-far-apart upper- and lower-bounds can be represented using bit-vectors.
Common set operations, such as union, intersection, etc. are reduced to simple and’ing and or’ing the
bitvectors. This can be done in Prolog, using a compound term holding integer arguments. Especially
if the integers are kept below the maximum tagged integer value (seecurrent prolog flag/2 ),
this representation is fairly space-efficient (wasting 1 word for the functor and and 7 bits per integer
for the tags). Arithmetic can all be performed in Prolog too.

For really demanding applications, foreign representation will perform better, especially time-
wise. Bit-vectors are natrually expressed using string objects. If the string is wrapped in
bitvector/1 , lower-bound of the vector is 0, and the upperbound is not defined, an implemen-
tation for getting and putting the setes as well as the union predicate for it is below.

SWI-Prolog 5.5 Reference Manual



9.6. THE FOREIGN INCLUDE FILE 233

#include <SWI-Prolog.h>

#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b))

static functor_t FUNCTOR_bitvector1;

static int
get_bitvector(term_t in, int *len, unsigned char **data)
{ if ( PL_is_functor(in, FUNCTOR_bitvector1) )

{ term_t a = PL_new_term_ref();

PL_get_arg(1, in, a);
return PL_get_string(a, (char **)data, len);

}

PL_fail;
}

static int
unify_bitvector(term_t out, int len, const unsigned char *data)
{ if ( PL_unify_functor(out, FUNCTOR_bitvector1) )

{ term_t a = PL_new_term_ref();

PL_get_arg(1, out, a);

return PL_unify_string_nchars(a, len, (const char *)data);
}

PL_fail;
}

static foreign_t
pl_bitvector_union(term_t t1, term_t t2, term_t u)
{ unsigned char *s1, *s2;

int l1, l2;

if ( get_bitvector(t1, &l1, &s1) &&
get_bitvector(t2, &l2, &s2) )

{ int l = max(l1, l2);
unsigned char *s3 = alloca(l);

if ( s3 )
{ int n;

int ml = min(l1, l2);

for(n=0; n<ml; n++)

SWI-Prolog 5.5 Reference Manual



234 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

s3[n] = s1[n] | s2[n];
for( ; n < l1; n++)

s3[n] = s1[n];
for( ; n < l2; n++)

s3[n] = s2[n];

return unify_bitvector(u, l, s3);
}

return PL_warning("Not enough memory");
}

PL_fail;
}

install_t
install()
{ PL_register_foreign("bitvector_union", 3, pl_bitvector_union, 0);

FUNCTOR_bitvector1 = PL_new_functor(PL_new_atom("bitvector"), 1);
}

Netmask’s are used with TCP/IP configuration. Suppose we have an application dealing with rea-
soning about a network configuration. Such an application requires communicating netmask struc-
tures from the operating system, reasoning about them and possibly communicate them to the user.
A netmask consists of 4 bitmasks between 0 and 255. C-application normally see them as an 4-byte
wide unsigned integer. SWI-Prolog cannot do that, as integers are always signed.

We could use the string approach outlined above, but this makes it hard to handle these terms
in Prolog. A better choice is a compound termnetmask/4 , holding the 4 submasks as integer
arguments.

As the implementation is trivial, we will omit this here.

The DDE interface (see section4.43) represents another common usage of the foreign interface:
providing communication to new operating system features. The DDE interface requires knowledge
about active DDE server and client channels. These channels contains various foreign data-types.
Such an interface is normally achieved using an open/close protocol that creates and destroys ahandle.
The handle is a reference to a foreign data-structure containing the relevant information.

There are a couple of possibilities for representing the handle. The choice depends on respon-
sibilities and debugging facilities. The simplest aproach is to usingPL unify pointer() and
PL get pointer() . This approach is fast and easy, but has the drawbacks of (untyped) point-
ers: there is no reliable way to detect the validity of the pointer, not to verify it is pointing to a
structure of the desired type. The pointer may be wrapped into a compound term with arity 1 (i.e.,
dde channel( 〈Pointer〉) ), making the type-problem less serious.

Alternatively (used in the DDE interface), the interface code can maintain a (preferably variable
length) array of pointers and return the index in this array. This provides better protection. Especially

SWI-Prolog 5.5 Reference Manual



9.6. THE FOREIGN INCLUDE FILE 235

for debugging purposes, wrapping the handle in a compound is a good suggestion.

9.6.19 Embedding SWI-Prolog in other applications

With embedded Prolog we refer to the situation where the ‘main’ program is not the Prolog appli-
cation. Prolog is sometimes embedded in C, C++, Java or other languages to provide logic based
services in a larger application. Embedding loads the Prolog engine as a library to the external lan-
guage. Prolog itself only provides for embedding in the C-language (compatible to C++). Embedding
in Java is achieved using JPL using a C-glue between the Java and Prolog C-interfaces.

The most simple embedded program is below. The interface functionPL initialise() must
be called before any of the other SWI-Prolog foreign language functions described in this chap-
ter, except forPL initialise hook() , PL new atom() and PL register foreign() .
PL initialise() interprets all the command-line arguments, except for the-t toplevel flag
that is interpreted byPL toplevel() .

int
main(int argc, char **argv)
{
#ifdef READLINE /* Remove if you don’t want readline */

PL_initialise_hook(install_readline);
#endif

if ( !PL_initialise(argc, argv) )
PL_halt(1);

PL_halt(PL_toplevel() ? 0 : 1);
}

int PL initialise(int argc, char **argv)
Initialises the SWI-Prolog heap and stacks, restores the Prolog state, loads the system and
personal initialisation files, runs theat initialization/1 hooks and finally runs the
-g goal hook.

Special consideration is required forargv[0] . OnUnix, this argument passes the part of the
commandline that is used to locate the executable. Prolog uses this to find the file holding the
running executable. TheWindows version uses this to find amoduleof the running executable.
If the specified module cannot be found, it tries the modulelibpl.dll , containing the Prolog
runtime kernel. In all these cases, the resulting file is used for two purposes

• See whether a Prolog saved-state is appended to the file. If this is the case, this state will
be loaded instead of the defaultboot.prc file from the SWI-Prolog home directory. See
alsoqsave program/[1,2] and section9.7.

• Find the Prolog home directory. This process is described in detail in section9.8.

PL initialise() returns 1 if all initialisation succeeded and 0 otherwise.7

7BUG: Various fatal errors may cause PLinitialise to callPL halt( 1) , preventing it from returning at all.

SWI-Prolog 5.5 Reference Manual



236 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

In most cases,argc andargv will be passed from the main program. It is allowed to create
your own argument vector, providedargv[0] is constructed according to the rules above. For
example:

int
main(int argc, char **argv)
{ char *av[10];

int ac = 0;

av[ac++] = argv[0];
av[ac++] = "-x";
av[ac++] = "mystate";
av[ac] = NULL;

if ( !PL_initialise(ac, av) )
PL_halt(1);

...
}

Please note that the passed argument vector may be referred from Prolog at any time and should
therefore be valid as long as the Prolog engine is used.

A good setup in Windows is to add SWI-Prolog’sbin directory to yourPATHand either pass a
module holding a saved-state, or"libpl.dll" asargv[0] . If the Prolog state is attached
to a DLL (see the-dll option ofplld , pass the name of this DLL.

int PL is initialised(int *argc, char ***argv)
Test whether the Prolog engine is already initialised. ReturnsFALSE if Prolog is not initialised
andTRUEotherwise. If the engine is initialised andargc is notNULL, the argument count used
with PL initialise() is stored inargc. Same for the argument vectorargv.

void PL install readline()
Installs the GNU-readline line-editor. Embedded applications that do not use the Prolog toplevel
should normally delete this line, shrinking the Prolog kernel significantly. Note that the Win-
dows version does not use GNU readline.

int PL toplevel()
Runs the goal of the-t toplevel switch (defaultprolog/0 ) and returns 1 if successful,
0 otherwise.

void PL cleanup(int status)
This function performs the reverse ofPL initialise() . It runs thePL on halt() and
at halt/1 handlers, closes all streams (except for the ‘standard I/O’ streams which are
flushed only), deallocates all memory and restores all signal handlers. Thestatusargument
is passed to the various termination hooks and indicates theexit-status.

This function allows deleting and restarting the Prolog system in the same process. Use it with
care, asPL initialise() is a costly function. Unix users should consider using exec()
(available as part of the clib package,).

SWI-Prolog 5.5 Reference Manual



9.7. LINKING EMBEDDED APPLICATIONS USING PLLD 237

int PL halt(int status)
Cleanup the Prolog environment usingPL cleanup() and calls exit() with the status ar-
gument. AsPL cleanup() can only be called from the main thread, this function returns
FALSEwhen called from another thread as the main one.8

Threading, Signals and embedded Prolog

This section applies to Unix-based environments that have signals or multi-threading. The Windows
version is compiled for multi-threading and Windows lacks proper signals.

We can distinguish two classes of embedded executables. There are small C/C++-programs that
act as an interfacing layer around Prolog. Most of these programs can be replaced using the normal
Prolog executable extended with a dynamically loaded foreign extension and in most cases this is
the preferred route. In other cases, Prolog is embedded in a complex application that—like Prolog—
wants to control the process environment. A good example is Java. Embedding Prolog is generally
the only way to get these environments together in one process image. Java applications however are
by nature multi-threaded and appear to do signal-handling (software interrupts).

To make Prolog operate smoothly in such environments it must be told not to alter the process
environment. This is partly done at build-time and partly execution time. At build-time we must
specify the use of software stack-overflow rather then the default hardware checks. This is done using

sh configure --disable-segv-handling

The resulting Prolog executable is about 10% slower than the normal executable, but behaves much
more reliable in complicated embedded situations. In addition, as the process no longer handles
segmentation violations, debugging foreign code linked to it is much easier.

At runtime, it is adviced to pass the flag-nosignals , which inhibits all default signal handling.
This has a few consequences though:

• It is no longer possible to break into the tracer using an interrupt signal (Control-C).

• SIGPIPE is normally set to be ignored. Prolog uses return-codes to diagnose broken pipes.
Depending on the situation one should take appropriate action if Prolog streams are connected
to pipes.

• Fatal errors normally cause Prolog to callPL cleanup() and exit(). It is adviced to call
PL cleanup() as part of the exit-procedure of your application.

9.7 Linking embedded applications using plld

The utility programplld (Win32: plld.exe) may be used to link a combination of C-files and Prolog
files into a stand-alone executable.plld automates most of what is described in the previous sections.

In the normal usage, a copy is made of the default embedding template\ldots/pl/include/
stub.c . The main() routine is modified to suit your application.PL initialise() must
be passed the program-name (argv[0]) (Win32: the executing program can be obtained using
GetModuleFileName() ). The other elements of the command-line may be modified. Next,plld
is typically invoked as:

8BUG: Eventually it may become possible to callPL halt() from any thread.

SWI-Prolog 5.5 Reference Manual



238 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

plld -o output stubfile.c [other-c-or-o-files] [plfiles]

plld will first split the options into various groups for both the C-compiler and the Prolog compiler.
Next, it will add various default options to the C-compiler and call it to create an executable holding
the user’s C-code and the Prolog kernel. Then, it will call the SWI-Prolog compiler to create a saved
state from the provided Prolog files and finally, it will attach this saved state to the created emulator
to create the requested executable.

Below, it is described how the options are split and which additional options are passed.

-help
Print brief synopsis.

-pl prolog
Select the prolog to use. This prolog is used for two purposes: get the home-directory as well
as the compiler/linker options and create a saved state of the Prolog code.

-ld linker
Linker used to link the raw executable. Default is to use the C-compiler (Win32: link.exe).

-ccC-compiler
Compiler for.c files found on the commandline. Default is the compiler used to build SWI-
Prolog (seecurrent prolog flag/2 ) (Win32: cl.exe).

-c++ C++-compiler
Compiler for C++ sources (extensions.cpp , .cxx , .cc or .C ) files found on the command-
line. Default isc++ or g++ if the C-compiler isgcc ) (Win32: cl.exe).

-nostate
Just relink the kernel, do not add any Prolog code to the new kernel. This is used to create a
new kernel holding additional foreign predicates on machines that do not support the shared-
library (DLL) interface, or if building the state cannot be handled by the default procedure used
by plld . In the latter case the state is created seperately and appended to the kernel using
cat 〈kernel〉 〈state〉 > 〈out〉 (Win32: copy /b 〈kernel〉+〈state〉 〈out〉)

-shared
Link C, C++ or object files into a shared object (DLL) that can be loaded by the
load foreign library/1 predicate. If used with-c it sets the proper options to com-
pile a C or C++ file ready for linking into a shared object

-dll
Windows only. Embed SWI-Prolog into a DLL rather than an executable.

-c
Compile C or C++ source-files into object files. This turnsplld into a replacement for the C
or C++ compiler where proper options such as the location of the include directory are passed
automatically to the compiler.

-E
Invoke the C preprocessor. Used to makeplld a replacement for the C or C++ compiler.

SWI-Prolog 5.5 Reference Manual



9.7. LINKING EMBEDDED APPLICATIONS USING PLLD 239

-pl-options ,. . .
Additional options passed to Prolog when creating the saved state. The first character immedi-
ately followingpl-options is used as separator and translated to spaces when the argument
is built. Example:-pl-options,-F,xpce passed-F xpce as additional flags to Prolog.

-ld-options ,. . .
Passes options to the linker, similar to-pl-options .

-cc-options,. . .
Passes options to the C/C++ compiler, similar to-pl-options .

-v
Select verbose operation, showing the various programs and their options.

-o outfile
Reserved to specify the final output file.

-llibrary
Specifies a library for the C-compiler. By default,-lpl (Win32: libpl.lib) and the libraries
needed by the Prolog kernel are given.

-L library-directory
Specifies a library directory for the C-compiler. By default the directory containing the Prolog
C-library for the current architecture is passed.

-g | -I include-directory | -D definition
These options are passed to the C-compiler. By default, the include directory containing
SWI-Prolog.h is passed.plld adds two additional* -D def flags:

-D SWI PROLOG
Indicates the code is to be connected to SWI-Prolog.

-D SWI EMBEDDED
Indicates the creation of an embedded program.

*.o | *.c | *.C | *.cxx | *.cpp
Passed as input files to the C-compiler

*.pl |*.qlf
Passed as input files to the Prolog compiler to create the saved-state.

*
I.e. all other options. These are passed as linker options to the C-compiler.

9.7.1 A simple example

The following is a very simple example going through all the steps outlined above. It provides an
arithmetic expression evaluator. We will call the applicationcalc and define it in the filescalc.c
andcalc.pl . The Prolog file is simple:

SWI-Prolog 5.5 Reference Manual



240 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

calc(Atom) :-
term_to_atom(Expr, Atom),
A is Expr,
write(A),
nl.

The C-part of the application parses the command-line options, initialises the Prolog engine, locates
the calc/1 predicate and calls it. The coder is in figure9.5.
The application is now created using the following command-line:

% plld -o calc calc.c calc.pl

The following indicates the usage of the application:

% calc pi/2
1.5708

9.8 The Prolog ‘home’ directory

Executables embedding SWI-Prolog should be able to find the ‘home’ directory of the devel-
opment environment unless a self-contained saved-state has been added to the executable (see
qsave program/[1,2] and section9.7).

If Prolog starts up, it will try to locate the development environment. To do so, it will try the
following steps until one succeeds.

1. If the environment variableSWI HOMEDIR is defined and points to an existing directory, use
this.

2. If the environment variableSWIPL is defined and points to an existing directory, use this.

3. Locate the primary executable or (Windows only) a component (module) thereof and check
whether the parent directory of the directory holding this file contains the fileswipl . If so,
this file contains the (relative) path to the home directory. If this directory exists, use this. This
is the normal mechanism used by the binary distribution.

4. If the precompiled path exists, use it. This is only useful for a source installation.

If all fails and there is no state attached to the executable or provided Windows module (see
PL initialise() ), SWI-Prolog gives up. If a state is attached, the current working directory is
used.

Thefile search path/2 aliasswi is set to point to the home directory located.

9.9 Example of Using the Foreign Interface

Below is an example showing all stages of the declaration of a foreign predicate that transforms atoms
possibly holding uppercase letters into an atom only holding lower case letters. Figure9.6shows the
C-source file, figure9.7 illustrates compiling and loading of foreign code.

SWI-Prolog 5.5 Reference Manual



9.9. EXAMPLE OF USING THE FOREIGN INTERFACE 241

#include <stdio.h>
#include <SWI-Prolog.h>

#define MAXLINE 1024

int
main(int argc, char **argv)
{ char expression[MAXLINE];

char *e = expression;
char *program = argv[0];
char *plav[2];
int n;

/* combine all the arguments in a single string */

for(n=1; n<argc; n++)
{ if ( n != 1 )

*e++ = ’ ’;
strcpy(e, argv[n]);
e += strlen(e);

}

/* make the argument vector for Prolog */

plav[0] = program;
plav[1] = NULL;

/* initialise Prolog */

if ( !PL_initialise(1, plav) )
PL_halt(1);

/* Lookup calc/1 and make the arguments and call */

{ predicate_t pred = PL_predicate("calc", 1, "user");
term_t h0 = PL_new_term_refs(1);
int rval;

PL_put_atom_chars(h0, expression);
rval = PL_call_predicate(NULL, PL_Q_NORMAL, pred, h0);

PL_halt(rval ? 0 : 1);
}

return 0;
}

Figure 9.5: C-source for the calc application
SWI-Prolog 5.5 Reference Manual



242 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

/* Include file depends on local installation */
#include <SWI-Prolog.h>
#include <stdlib.h>
#include <ctype.h>

foreign_t
pl_lowercase(term_t u, term_t l)
{ char *copy;

char *s, *q;
int rval;

if ( !PL_get_atom_chars(u, &s) )
return PL_warning("lowercase/2: instantiation fault");

copy = malloc(strlen(s)+1);

for( q=copy; *s; q++, s++)
*q = (isupper(*s) ? tolower(*s) : *s);

*q = ’\0’;

rval = PL_unify_atom_chars(l, copy);
free(copy);

return rval;
}

install_t
install()
{ PL_register_foreign("lowercase", 2, pl_lowercase, 0);
}

Figure 9.6: Lowercase source file

SWI-Prolog 5.5 Reference Manual



9.9. EXAMPLE OF USING THE FOREIGN INTERFACE 243

% gcc -I/usr/local/lib/pl-\plversion/include -fpic -c lowercase.c
% gcc -shared -o lowercase.so lowercase.o
% pl
Welcome to SWI-Prolog (Version \plversion)
Copyright (c) 1993-1996 University of Amsterdam. All rights reserved.

For help, use ?- help(Topic). or ?- apropos(Word).

1 ?- load_foreign_library(lowercase).

Yes
2 ?- lowercase(’Hello World!’, L).

L = ’hello world!’

Yes

Figure 9.7: Compiling the C-source and loading the object file

SWI-Prolog 5.5 Reference Manual



244 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

9.10 Notes on Using Foreign Code

9.10.1 Memory Allocation

SWI-Prolog’s heap memory allocation is based on themalloc( 3) library routines. The stacks are
allocated using mmap() on most Unix machines and using VirtualAlloc() on windows. SWI-Prolog
provides the functions below as a wrapper around malloc(). Allocation errors in these functions trap
SWI-Prolog’s fatal-error handler, in which casePL malloc() or PL realloc() do not return.

Portable applications must usePL free() to release strings returned byPL get chars()
using theBUF MALLOCargument. Portable applications may use bothPL malloc() and friends or
malloc() and friends but should not mix these two sets of functions on the same memory.9

void * PL malloc(sizet bytes)
Allocate bytes of memory. On failure SWI-Prolog’s fatal error handler is called and
PL malloc() does not return. Memory allocated using these functions must use
PL realloc() andPL free() rather than realloc() and free().

void * PL realloc(void *mem, sizet size)
Change the size of the allocated chunk, possibly moving it. Thememargument must be obtained
from a previousPL malloc() or PL realloc() call.

void PL free(void *mem)
Release memory. Thememargument must be obtained from a previousPL malloc() or
PL realloc() call.

9.10.2 Compatibility between Prolog versions

Great care is taken to ensure binary compatibility of foreign extensions between different Prolog
versions. Only much less frequently used stream interface has been responsible for binary incompati-
bilities.

Source-code that relies on new features of the foreign interface can use the macroPLVERSION
to find the version ofSWI-Prolog.h andPL query() using the optionPL QUERYVERSIONto
find the version of the attached Prolog system. Both follow the same numbering schema explained
with PL query() .

9.10.3 Debugging Foreign Code

Statically linked foreign code or embedded systems can be debugged normally. Most modern envi-
ronments provide debugging tools for dynamically loaded shared objects or dynamic load libraries.
The following example traces the code of lowercase usinggdb( 1) in a Unix environment.

% gcc -I/usr/local/lib/pl-2.2.0/include -fpic -c -g lowercase.c
% gcc -shared -o lowercase.so lowercase.o
% gdb pl
(gdb) r
Welcome to SWI-Prolog (Version \plversion)
Copyright (c) 1993-1996 University of Amsterdam. All rights reserved.

9These functions were introduced in SWI-Prolog 5.0.9 to realise guaranteed portability. Foreign code that must be
compatible with older versions can check thePLVERSIONmacro.

SWI-Prolog 5.5 Reference Manual



9.10. NOTES ON USING FOREIGN CODE 245

For help, use ?- help(Topic). or ?- apropos(Word).

?- load_foreign_library(lowercase).
<type Control-C>
(gdb) shared % loads symbols for shared objects
(gdb) break pl_lowercase
(gdb) continue
?- lowercase(’HELLO’, X).

9.10.4 Name Conflicts in C modules

In the current version of the system all public C functions of SWI-Prolog are in the symbol table.
This can lead to name clashes with foreign code. Someday I should write a program to strip all these
symbols from the symbol table (why does Unix not have that?). For now I can only suggest to give
your function another name. You can do this using the C preprocessor. If—for example—your foreign
package uses a function warning(), which happens to exist in SWI-Prolog as well, the following macro
should fix the problem.

#define warning warning_

Note that shared libraries do not have this problem as the shared library loader will only look for
symbols in the main executable for symbols that are not defined in the library itself.

9.10.5 Compatibility of the Foreign Interface

The term-reference mechanism was first used by Quintus Prolog version 3. SICStus Prolog version 3
is strongly based on the Quintus interface. The described SWI-Prolog interface is similar to using the
Quintus or SICStus interfaces, defining all foreign-predicate arguments of type+term . SWI-Prolog
explicitly uses typefunctor t , while Quintus and SICStus uses〈name〉 and〈arity〉. As the names
of the functions differ from Prolog to Prolog, a simple macro layer dealing with the names can also
deal with this detail. For example:

#define QP_put_functor(t, n, a) PL_put_functor(t, PL_new_functor(n, a))

ThePL unify *() functions are lacking from the Quintus and SICStus interface. They can easily
be emulated or the put/unify approach should be used to write compatible code.

The PL open foreign frame() /PL close foreign frame() combination is
lacking from both other Prologs. SICStus hasPL new term refs( 0) , followed by
PL reset term refs() that allows for discarding term references.

The Prolog interface for the graphical user interface package XPCE shares about 90% of the code
using a simple macro layer to deal with different naming and calling conventions of the interfaces.

SWI-Prolog 5.5 Reference Manual



Generating Runtime
Applications 10
This chapter describes the features of SWI-Prolog for delivering applications that can run without the
development version of the system installed.

A SWI-Prolog runtime executable is a file consisting of two parts. The first part is theemulator,
which is machine dependent. The second part is theresource archive, which contains the compiled
program in a machine-independent format, startup options and possibly user-definedresources, see
resource/3 andopen resource/3 .

These two parts can be connected in various different ways. The most common way for distributed
runtime applications is toconcatenatethe two parts. This can be achieved using external commands
(Unix: cat , Windows: copy ), or using thestand alone option toqsave program/2 . The
second option is to attach a startup script in front of the resource that starts the emulator with the
proper options. This is the default under Unix. Finally, an emulator can be told to use a specified
resource file using the-x commandline switch.

qsaveprogram(+File, +ListOfOptions)
Saves the current state of the program to the fileFile. The result is a resource archive contain-
ing a saved-state that expresses all Prolog data from the running program and all user-defined
resources. Depending on thestand alone option, the resource is headed by the emulator, a
Unix shell-script or nothing.

ListOfOptionsis a list of 〈Key〉 = 〈Value〉 or 〈Key〉(〈Value〉) pairs. The available keys are
described in table10.1.

Before writing the data to file,qsave program/2 will run autoload/0 to all required
autoloading the system can discover. Seeautoload/0 .

Provided the application does not require any of the Prolog libraries to be loaded at runtime, the
only file from the SWI-Prolog development environment required is the emulator itself. The
emulator may be built in two flavours. The default is thedevelopment emulator. Theruntime
emulatoris similar, but lacks the tracer.

If the optionstand alone(true) is present, the emulator is the first part of the state. If
the emulator is started it will test whether a boot-file (state) is attached to the emulator itself
and load this state. Provided the application has all libraries loaded, the resulting executable is
completely independent of the runtime environment or location where it was build.

See also section2.10.2.

qsaveprogram(+File)
Equivalent toqsave program(File, []) .

autoload
Check the current Prolog program for predicates that are referred to, are undefined and have a
definition in the Prolog library. Load the appropriate libraries.

SWI-Prolog 5.5 Reference Manual



247

Key Option Type Description
local -L K-bytes Size (Limit) of local stack
global -G K-bytes Size (Limit) of global stack
trail -T K-bytes Size (Limit) of trail stack
argument -A K-bytes Size (Limit) of argument stack
goal -g atom Initialisation goal
toplevel -t atom Prolog toplevel goal
init file -f atom Personal initialisation file
class atom If runtime , only read resources from the state

(default). If kernel , lock all predicates as sys-
tem predicates Ifdevelopment , save the pred-
icates in their current state and keep reading re-
sources from their source (if present). See also
resource/3 .

autoload bool If true, runautoload/0 first
map file File to write info on dump
op save/standard Save operator declarations?
standalone bool Include the emulator in the state
emulator file Emulator attached to the (stand-alone) executable.

Default is the running emulator.

Table 10.1:〈Key〉 = 〈Value〉 pairs forqsave program/2

This predicate is used byqsave program/[1,2] to ensure the saved state will not depend
on one of the libraries. The predicateautoload/0 will find all direct references to predicates.
It does not find predicates referenced via meta-predicates. The predicate log/2 is defined in the
library(quintus) to provide a quintus compatible means to compute the natural logarithm of a
number. The following program will behave correctly if its state is executed in an environment
where the library(quintus) is not available:

logtable(From, To) :-
From > To, !.

logtable(From, To) :-
log(From, Value),
format(’˜d˜t˜8|˜2f˜n’, [From, Value]),
F is From + 1,
logtable(F, To).

However, the following implementation refers to log/2 through the meta-predicate
maplist/3 . Autoload will not be able to find the reference. This problem may be fixed
either by loading the module libtary(quintus) explicitly or userequire/1 to tell the system
that the predicate log/2 is required by this module.

logtable(From, To) :-
findall(X, between(From, To, X), Xlist),

SWI-Prolog 5.5 Reference Manual



248 CHAPTER 10. GENERATING RUNTIME APPLICATIONS

maplist(log, Xlist, SineList),
write_table(Xlist, SineList).

write_table([], []).
write_table([I|IT], [V|VT]) :-

format(’˜d˜t˜8|˜2f˜n’, [I, V]),
write_table(IT, VT).

volatile +Name/Arity, . . .
Declare that the clauses of specified predicates shouldnot be saved to the program. The volatile
declaration is normally used to avoid that the clauses of dynamic predicates that represent data
for the current session is saved in the state file.

10.1 Limitations of qsaveprogram

There are three areas that require special attention when usingqsave program/[1,2] .

• If the program is an embedded Prolog application or uses the foreign language interface, care
has to be taken to restore the appropriate foreign context. See section10.2for details.

• If the program uses directives (:- goal. lines) that perform other actions then setting predi-
cate attributes (dynamic, volatile, etc.) or loading files (consult, etc.), the directive may need to
be prefixed withinitialization/1 .

• Database references as returned byclause/3 , recorded/3 , etc. are not preserved and may
thus not be part of the database when saved.

10.2 Runtimes and Foreign Code

Some applications may need to use the foreign language interface. Object code is by definition
machine-dependent and thus cannot be part of the saved program file.

To complicate the matter even further there are various ways of loading foreign code:

• Using the library(shlib) predicates
This is the preferred way of dealing with foreign code. It loads quickly and ensures an accept-
able level of independence between the versions of the emulator and the foreign code loaded. It
works on Unix machines supporting shared libraries and library functions to load them. Most
modern Unixes, as well as Win32 (Windows 95/NT) satisfy this constraint.

• Static linking
This mechanism works on all machines, but generally requires the same C-compiler and linker
to be used for the external code as is used to build SWI-Prolog itself.

To make a runtime executable that can run on multiple platforms one must make runtime checks
to find the correct way of linking. Suppose we have a source-filemyextension defining the instal-
lation functioninstall() .

If this file is compiled into a shared library,load foreign library/1 will load this library
and call the installation function to initialise the foreign code. If it is loaded as a static extension,
defineinstall() as the predicateinstall/0 :

SWI-Prolog 5.5 Reference Manual



10.3. USING PROGRAM RESOURCES 249

static foreign_t
pl_install()
{ install();

PL_succeed;
}

PL_extension PL_extensions [] =
{
/*{ "name", arity, function, PL_FA_<flags> },*/

{ "install", 0, pl_install, 0 },
{ NULL, 0, NULL, 0 } /* terminating line */

};

Now, use the following Prolog code to load the foreign library:

load_foreign_extensions :-
current_predicate(install, install), !, % static loaded
install.

load_foreign_extensions :- % shared library
load_foreign_library(foreign(myextension)).

:- initialization load_foreign_extensions.

The path aliasforeign is defined byfile search path/2 . By default it searches the di-
rectories〈home〉/lib/ 〈arch〉 and 〈home〉/lib . The application can specify additional rules for
file search path/2 .

10.3 Using program resources

A resourceis very similar to a file. Resources however can be represented in two different formats:
on files, as well as part of the resourcearchiveof a saved-state (seeqsave program/2 ).

A resource has anameand aclass. The sourcedata of the resource is a file. Resources
are declared by declaring the predicateresource/3 . They are accessed using the predicate
open resource/3 .

Before going into details, let us start with an example. Short texts can easily be expressed in Prolog
sourcecode, but long texts are cumbersome. Assume our application defines a command ‘help’ that
prints a helptext to the screen. We put the content of the helptext into a file calledhelp.txt . The
following code implements our help command such thathelp.txt is incorperated into the runtime
executable.

resource(help, text, ’help.txt’).

help :-
open_resource(help, text, In),
copy_stream(In, user_output),

SWI-Prolog 5.5 Reference Manual



250 CHAPTER 10. GENERATING RUNTIME APPLICATIONS

close(In).

copy_stream(In, Out) :-
get0(In, C),
copy_stream(C, In, Out).

copy_stream(-1, _, _) :- !.
copy_stream(C, In, Out) :-

put(Out, C),
get0(In, C2),
copy_stream(C2, In, Out).

The predicatehelp/0 opens the resource as a Prolog stream. If we are executing this from the devel-
opment environment, this will actually return a stream to the filehelp.txt itself. When executed
from the saved-state, the stream will actually be a stream opened on the program resource file, taking
care of the offset and length of the resource.

10.3.1 Predicates Definitions

resource(+Name, +Class, +FileSpec)
This predicate is defined as a dynamic predicate in the moduleuser . Clauses for it may be
defined in any module, including the user module.Nameis the name of the resource (an atom).
A resource name may contain any character, except for $ and :, which are reserved for internal
usage by the resource library.Classdescribes the what kind of object is stored in the resource.
In the current implementation, it is just an atom.FileSpecis a file specification that may exploit
file search path/2 (seeabsolute file name/2 ).

Normally, resources are defined as unit clauses (facts), but the definition of this predicate also
allows for rules. For proper generation of the saved state, it must be possible to enumerate the
available resources by calling this predicate with all its arguments unbound.

Dynamic rules are useful to turn all files in a certain directory into resources, without specifying
a resources for each file. For example, assume thefile search path/2 icons refers to
the resource directory containing icon-files. The following definition makes all these images
available as resources:

resource(Name, image, icons(XpmName)) :-
atom(Name), !,
file_name_extension(Name, xpm, XpmName).

resource(Name, image, XpmFile) :-
var(Name),
absolute_file_name(icons(.), [type(directory)], Dir)
concat(Dir, ’/*.xpm’, Pattern),
expand_file_name(Pattern, XpmFiles),
member(XpmFile, XpmFiles).

open resource(+Name, ?Class, -Stream)
Opens the resource specified byNameandClass. If the latter is a variable, it will be unified to

SWI-Prolog 5.5 Reference Manual



10.4. FINDING APPLICATION FILES 251

the class of the first resource found that has the specifiedName. If successful,Streambecomes
a handle to a binary input stream, providing access to the content of the resource.

The predicateopen resource/3 first checksresource/3 . When succesful it will open
the returned resource source-file. Otherwise it will look in the programs resource database.
When creating a saved-state, the system normally saves the resource contents into the resource
archive, but does not save the resource clauses.

This way, the development environment uses the files (and modifications to theresource/3
declarations and/or files containing resource info thus immediately affect the running environ-
ment, while the runtime system quickly accesses the system resources.

10.3.2 Theplrc program

The utility programplrc can be used to examine and manipulate the contents of a SWI-Prolog
resource file. The options are inspired by the Unixar program. The basic command is:

% plrc option resource-file member ...

The options are described below.

l
List contents of the archive.

x
Extract named (or all) members of the archive into the current directory.

a
Add files to the archive. If the archive already contains a member with the same name, the
contents is replaced. Anywhere in the sequence of members, the options--class= classand
--encoding= encodingmay appear. They affect the class and encoding of subsequent files.
The initial class isdata and encodingnone .

d
Delete named members from the archive.

This command is also described in thepl( 1) Unix manual page.

10.4 Finding Application files

If your application uses files that are not part of the saved program such as database files, configuration
files, etc., the runtime version has to be able to locate these files. Thefile search path/2
mechanism in combination with the-p alias command-line argument is the preferred way to locate
runtime files. The first step is to define an alias for the toplevel directory of your application. We will
call this directorygnatdir in our examples.

A good place for storing data associated with SWI-Prolog runtime systems is below the emulator’s
home-directory.swi is a predefined alias for this directory. The following is a useful default definition
for the search path.

user:file_search_path(gnatdir, swi(gnat)).

SWI-Prolog 5.5 Reference Manual



252 CHAPTER 10. GENERATING RUNTIME APPLICATIONS

The application should locate all files using absolutefile name. Suppose gnatdir contains a file
config.pl to define local configuration. Then use the code below to load this file:

configure_gnat :-
( absolute_file_name(gnatdir(’config.pl’), ConfigFile)

-> consult(ConfigFile)
; format(user_error, ’gnat: Cannot locate config.pl˜n’),
halt(1)
).

10.4.1 Passing a path to the application

Suppose the system administrator has installed the SWI-Prolog runtime environment in/usr/
local/lib/rt-pl-3.2.0 . A user wants to installgnat , but gnat will look for its configuration
in /usr/local/lib/rt-pl-3.2.0/gnat where the user cannot write.

The user decides to install the gnat runtime files in/users/bob/lib/gnat . For one-time
usage, the user may decide to start gnat using the command:

% gnat -p gnatdir=/users/bob/lib/gnat

10.5 The Runtime Environment

10.5.1 The Runtime Emulator

The sources may be used to built two versions of the emulator. By default, thedevelopment emulator
is built. This emulator contains all features for interactive development of Prolog applications. If the
system is configured using--enable-runtime , make( 1) will create aruntime versionof the
emulator. This emulator is equivalent to the development version, except for the following features:

• No input editing
The GNU library-lreadline that provides EMACS compatible editing of input lines will
not be linked to the system.

• No tracer
The tracer and all its options are removed, making the system a little faster too.

• No profiler
profile/3 and friends are not supported. This saves some space and provides better perfor-
mance.

• No interrupt
Keyboard interrupt (Control-C normally) is not rebound and will normally terminate the appli-
cation.

• current prolog flag(runtime, true) succeeds
This may be used to verify your application is running in the runtime environment rather than
the development environment.

SWI-Prolog 5.5 Reference Manual



10.5. THE RUNTIME ENVIRONMENT 253

• clause/[2,3] do not work on static predicates
This prolog-flag inhibits listing your program. It is only a very limited protection however.

The following fragment is an example for building the runtime environment in\env{HOME}/
lib/rt-pl-3.2.0 . If possible, the shared-library interface should be configured to ensure it can
serve a large number of applications.

% cd pl-3.2.0
% mkdir runtime
% cd runtime
% ../src/configure --enable-runtime --prefix=$HOME
% make
% make rt-install

The runtime directory contains the components listed below. This directory may be tar’ed and shipped
with your application.

README.RT Info on the runtime environment
bin/ 〈arch〉/pl The emulator itself
man/pl.1 Manual page for pl
swipl pointer to the home directory (.)
lib/ directory for shared libraries
lib/ 〈arch〉/ machine-specific shared libraries

SWI-Prolog 5.5 Reference Manual



The SWI-Prolog library A
This chapter documents the SWI-Prolog library. As SWI-Prolog provides auto-loading, there is little
difference between library predicates and built-in predicates. Part of the library is therefore docu-
mented in the rest of the manual. Library predicates differ from built-in predicates in the following
ways.

• User-definition of a built-in leads to a permission-error, while using the name of a library pred-
icate is allowed.

• If autoloading is disabled explicitely or because trapping unknown predicates is disabled (see
unknown/2 andcurrent prolog flag/2 ), library predicates must be loaded explicitely.

• Using libraries reduce the footprint of applications that don’t need them.

The documentation of the library is just started. Material from the standard packages
should be moved here, some material from other parts of the manual should be moved
too and various libraries are not documented at all.

A.1 lists : List Manipulation

This library provides commonly accepted basic predicates for list manipulation in the Prolog commu-
nity. Some additional list manipulations are built-in. Their description is in section4.29.

append(?List1, ?List2, ?List3)
Succeeds whenList3 unifies with the concatenation ofList1 andList2. The predicate can be
used with any instantiation pattern (even three variables).

member(?Elem, ?List)
Succeeds whenElemcan be unified with one of the members ofList. The predicate can be used
with any instantiation pattern.

nextto(?X, ?Y, ?List)
Succeeds whenY follows X in List.

delete(+List1, ?Elem, ?List2)
Delete all members ofList1 that simultaneously unify withElemand unify the result withList2.

select(?Elem, ?List, ?Rest)
SelectElemfrom List leavingRest. It behaves asmember/2 , returning the remaining elements
in Rest. Note that besides selecting elements from a list, it can also be used to insert elements.1

1BUG: Upto SWI-Prolog 3.3.10, the definition of this predicate was not according to the de-facto standard. The first two
arguments were in the wrong order.

SWI-Prolog 5.5 Reference Manual



A.1. LISTS : LIST MANIPULATION 255

nth0(?Index, ?List, ?Elem)
Succeeds when theIndex-th element ofList unifies withElem. Counting starts at 0.

nth1(?Index, ?List, ?Elem)
Succeeds when theIndex-th element ofList unifies withElem. Counting starts at 1.

last(?List, ?Elem)
Succeeds ifElemunifies with the last element ofList. If List is a proper listlast/2 is deter-
ministic. If List has an unbound tail, backtracking will causeList to grow.2

reverse(+List1, -List2)
Reverse the order of the elements inList1and unify the result with the elements ofList2.

permutation(?List1, ?List2)
Permuation is true whenList1 is a permutation ofList2. The implementation can solve forList2
givenList1or List1givenList2, or even enumerateList1andList2 together.

flatten(+List1, -List2)
TransformList1, possibly holding lists as elements into a ‘flat’ list by replacing each list with
its elements (recursively). Unify the resulting flat list withList2. Example:

?- flatten([a, [b, [c, d], e]], X).

X = [a, b, c, d, e]

sumlist(+List, -Sum)
Unify Sumto the result of adding all elements inList. List must be a proper list holding numbers.
Seenumber/1 andis/2 . for details on arithmetic.

numlist(+Low, +High, -List)
If LowandHigh are integers withLow ≤ High, unify List to a list [Low, Low + 1, . . .High].
See alsobetween/3 .

A.1.1 Set Manipulation

The set predicates listed in this section work on ordinary unsorted lists. Note that this makes many of
the operations orderN2. For larger sets, please consider the use of ordered sets as implemented by
library oset.pl , running most these operations in orderN . This library is currently not documented
in the manual.

is set(+Set)
Succeeds ifSetis a list (seeis list/1 ) without duplicates.

list to set(+List, -Set)
Unifies Setwith a list holding the same elements asList in the same order. Iflist contains
duplicates, only the first is retained. See alsosort/2 . Example:

2The argument order of this predicate was changed in 5.1.12 for compatibility reasons.

SWI-Prolog 5.5 Reference Manual



256 APPENDIX A. THE SWI-PROLOG LIBRARY

?- list_to_set([a,b,a], X)

X = [a,b]

intersection(+Set1, +Set2, -Set3)
Succeeds ifSet3unifies with the intersection ofSet1andSet2. Set1andSet2are lists without
duplicates. They need not be ordered.

subtract(+Set, +Delete, -Result)
Delete all elements of set ‘Delete’ from ‘Set’ and unify the resulting set with ‘Result’.

union(+Set1, +Set2, -Set3)
Succeeds ifSet3unifies with the union ofSet1andSet2. Set1andSet2are lists without dupli-
cates. They need not be ordered.

subset(+Subset, +Set)
Succeeds if all elements ofSubsetare elements ofSetas well.

A.2 gensym : Generate unique identifiers

Gensym (GenerateSymbols) is an old library for generating unique symbols (atoms). Such symbols
are generated from a base atom which gets a sequence number appended. Of course there is no
guarantee that ‘catch22’ is not an already defined atom and therefore one must be aware these atoms
are only unique in an isolated context.

The SWI-Prolog gensym library is thread-safe. The sequence numbers are global over all threads
and therefore generated atoms are unique over all threads.

gensym(+Base, -Unique)
Generate a unique atom from baseBaseand unify it withUnique. Baseshould be an atom. The
first call will return〈base〉1, the next〈base〉2, etc. Note that this is no warrant that the atom is
unique in the system.

reset gensym(+Base)
Restart generation of identifiers fromBaseat 〈Base〉1. Used to make sure a program produces
the same results on subsequent runs. Use with care.

reset gensym
Reset gensym for all registered keys. This predicate is available for compatibility only. New
code is strongly advice to avoid the use of resetgensym or at least to reset only the keys used
by your program to avoid unexpected site-effects on other components.

A.3 check : Elementary completeness checks

This library defines the predicatecheck/0 and a few friends that allow for a quick-and-dirty cross-
referencing.

SWI-Prolog 5.5 Reference Manual



A.4. DEBUG: SOME REUSABLE CODE TO HELP DEBUGGING APPLICATIONS 257

check
Performs the three checking passes implemented bylist undefined/0 ,
list autoload/0 and list redefined/0 . Please check the definition of these
predicates for details.

The typical usage of this predicate is right after loading your program to get a quick overview
on the completeness and possible conflicts in your program.

list undefined
Scans the database for predicates that have no definition. A predicate is considered defined if
it has clauses, is declared usingdynamic/1 or multifile/1 . As a program is compiled
calls are translated to predicates. If the called predicate is not yet defined it is created as a
predicate without definition. The same happens with runtime generated calls. This predicate
lists all such undefined predicates that are referenced and not defined in the library. See also
list autoload/0 . Below is an example from a real program and an illustration how to edit
the referencing predicate usingedit/1 .

?- list_undefined.
Warning: The predicates below are not defined. If these are defined
Warning: at runtime using assert/1, use :- dynamic Name/Arity.
Warning:
Warning: rdf_edit:rdfe_retract/4, which is referenced by
Warning: 1-st clause of rdf_edit:undo/4
Warning: rdf_edit:rdfe_retract/3, which is referenced by
Warning: 1-st clause of rdf_edit:delete_object/1
Warning: 1-st clause of rdf_edit:delete_subject/1
Warning: 1-st clause of rdf_edit:delete_predicate/1

?- edit(rdf_edit:undo/4).

list autoload
Lists all undefined (seelist undefined/0 ) predicates that have a definition in the library
along with the file from which they will be autoloaded when accessed. See alsoautoload/0 .

list redefined
Lists predicates that are defined in the global moduleuser as well as in a normal module. I.e.
predicates for which the local definition overrules the global default definition.

A.4 debug : Some reusable code to help debugging applications

This library provides an structured alternative for putting print-statements into your source-code to
trace what is going on. Debug messages are organised intopicsthat can be activated and de-activated
without changing the source. In addition, if the application is compiled with the-O flag these predi-
cates are removed usinggoal expansion/2 .

Although this library can be used through the normal demand-loading mechanism it is adviced
to load it explicitely before code using it to profit from goal-expansion, which removes these calls
if compiled with optimisation on and records the topics fromdebug/3 and debugging/1 for
list debug topics/0 .

SWI-Prolog 5.5 Reference Manual



258 APPENDIX A. THE SWI-PROLOG LIBRARY

debug(+Topic, +Format, +Args)
If Topic is a selected debugging topic (seedebug/1 ) a message is printed using
print message/2 with level informational . Format and Args are interpreted by
format/2 . Here is a typical example:

...,
debug(init, ’Initialised ˜w’, [Module]),
...,

Topiccan be any Prolog term. Compound terms can be used to make categories of topics that
can be activated usingdebug/1 .

debugging(+Topic)
Succeeds if Topic is a selected debugging topic. It is intended to execute ar-
bitrary code depending on the users debug topic selection. The construct
(debugging(Topic) -> Code ; true) is removed if the code is compiled in
optimise mode.

debug(+Topic)
Select all registered topics that unify withTopicfor debugging. This call is normally used from
the toplevel to activate a topic for debugging. Topics are de-activated usingnodebug/1 .

nodebug(+Topic)
Deactivates topics for debugging. Seedebug/1 for the arguments.

list debug topics
List the current status of registered topics. See alsodebugging/0 .

assume(:Goal)
This predicate is to be compared to the C-library assert() function. By inserting this goal you
explicitely state you expectGoal to succeed at this place. Asassume/1 calls are removed
when compiling in optimized modeGoal should not have side-effects. Typical examples are
type-tests and validating invariants defined by your application.

If Goal fails the system prints a message and starts the debugger.

A.5 readutil : Reading lines, streams and files

This library contains primitives to read lines, files, multiple terms, etc.

read line to codes(+Stream, -Codes)
Read the next line of input fromStreamand unify the result withCodes afterthe line has been
read. A line is ended by a newline character or end-of-file. Unlikeread line to codes/3 ,
this predicate removes trailing newline character.

On end-of-file the atomend of file is returned. See alsoat end of stream/[0,1] .

read line to codes(+Stream, -Codes, ?Tail)
Diference-list version to read an input line to a list of character codes. Reading stops at the
newline or end-of-file character, but unlikeread line to codes/2 , the newline is retained

SWI-Prolog 5.5 Reference Manual



A.6. NETSCAPE: ACTIVATING YOUR WEB-BROWSER 259

in the output. This predicate is especially useful for readine a block of lines upto some delimiter.
The following example reads an HTTP header ended by a blank line:

read_header_data(Stream, Header) :-
read_line_to_codes(Stream, Header, Tail),
read_header_data(Header, Stream, Tail).

read_header_data("\r\n", _, _) :- !.
read_header_data("\n", _, _) :- !.
read_header_data("", _, _) :- !.
read_header_data(_, Stream, Tail) :-

read_line_to_codes(Stream, Tail, NewTail),
read_header_data(Tail, Stream, NewTail).

read stream to codes(+Stream, -Codes)
Read all input until end-of-file and unify the result toCodes.

read stream to codes(+Stream, -Codes, ?Tail)
Difference-list version ofread stream to codes/2 .

read file to codes(+Spec, -Codes, +Options)
Read a file to a list of character codes. Spec is a file-specification for
absolute file name/3 . Codes is the resulting code-list. Options is a list of op-
tions for absolute file name/3 and open/4 . In addition, the optiontail (Tail) is
defined, forming a difference-list.

read file to terms(+Spec, -Terms, +Options)
Read a file to a list of prolog terms (seeread/1 ). Spec is a file-specification for
absolute file name/3 . Termsis the resulting list of Prolog terms.Optionsis a list of
options forabsolute file name/3 andopen/4 . In addition, the optiontail (Tail) is
defined, forming a difference-list.

A.6 netscape : Activating your Web-browser

This library deals with the very system dependent task of opening a web page in a browser. See also
url and the HTTP package.

www open url( +URL)
OpenURL in an external web-browser. The reason to place this in the library is to centralise
the maintenance on this highly platform and browser specific task. It distinguishes between the
following cases:

• MS-Windows
If it detects MS-Windows it useswin shell/2 to open theURL. The behaviour and
browser started depends on the Window and Windows-shell configuration, but in general
it should be the behaviour expected by the user.

SWI-Prolog 5.5 Reference Manual



260 APPENDIX A. THE SWI-PROLOG LIBRARY

• Other platforms
On other platforms it tests the environment variable (seegetenv/2 ) namedBROWSER
or usesnetscape if this variable is not set. If the browser is eithermozilla or
netscape , wwwopen url/1 first tries to open a new window on a running using the
-remote option of netscape. If this fails or the browser is notmozilla or netscape
the system simply passes the URL as first argument to the program.

A.7 registry : Manipulating the Windows registry

The registry is only available on the MS-Windows version of SWI-Prolog. It loads the foreign
extensionplregtry.dll , providing the predicates described below. This library only makes the
most common operations on the registry available through the Prolog user. The underlying DLL
provides a more complete coverage of the Windows registry API. Please consult the sources inpl/
src/win32/foreign/plregtry.c for further details.

In all these predicates,Path refers to a ‘/’ separated path into the registry. This isnot an atom
containing ‘/’-characters as used for filenames, but a term using the functor//2 . Windows defines the
following roots for the registry:classes root , current user , local machine andusers

registry get key(+Path, -Value)
Get the principal (default) value associated to this key. Fails silently of the key does not exist.

registry get key(+Path, +Name, -Value)
Get a named value associated to this key.

registry set key(+Path, +Value)
Set the principal (default) value of this key. Creates (a path to) the key if this does not already
exist.

registry set key(+Path, +Name, +Value)
Associated a named value to this key. Creates (a path to) the key if this does not already exist.

registry deletekey(+Path)
Delete the indicated key.

shell register file type(+Ext, +Type, +Name, +OpenAction)
Register a file-type.Ext is the extension to associate.Typeis the type name, often something
link prolog.type . Nameis the name visible in the Windows file-type browser. Finally,Ope-
nActiondefines the action to execute when a file with this extension is opened in the Windows
explorer.

shell register dde(+Type, +Action, +Service, +Topic, +Command, +IfNotRunning)
Associate DDE actions to a type.Type is the same type as used for the 2nd argument of
shell register file type/4 , Actionis the a action to perform,ServiceandTopicspec-
ify the DDE topic to address andCommandis the command to execute on this topic. Finally,
IfNotRunningdefines the command to execute if the required DDE server is not present.

shell register prolog(+Ext)
Default registration of SWI-Prolog, which is invoked as part of the initialisation process on
Windows systems. As the source also explains the above predicates, it is given as an example:

SWI-Prolog 5.5 Reference Manual



A.8. URL: ANALYSING AND CONSTRUCTING URL 261

shell_register_prolog(Ext) :-
current_prolog_flag(argv, [Me|_]),
concat_atom([’"’, Me, ’" "%1"’], OpenCommand),
shell_register_file_type(Ext, ’prolog.type’, ’Prolog Source’,

OpenCommand),
shell_register_dde(’prolog.type’, consult,

prolog, control, ’consult(’’%1’’)’, Me),
shell_register_dde(’prolog.type’, edit,

prolog, control, ’edit(’’%1’’)’, Me).

A.8 url : Analysing and constructing URL

This library deals with the analysis and construction of a URL,UniversalResourceLocator. URL is
the basis for communicating locations of resources (data) on the web. A URL consists of a protocol
identifier (e.g. HTTP, FTP), and a protocol-specific syntax further defining the location. URLs are
standardized in RFC-1738.

The implementation in this library covers only a small portion of the defined protocols. Though the
initial implementation followed RFC-1738 strictly, the current is more relaxed to deal with frequent
violations of the standard encountered in practical use.

This library contains code by Jan Wielemaker who wrote the initial version and Lukas Faulstich
who added various extensions.

parse url( ?URL, ?Parts)
Construct or analyse aURL. URL is an atom holding a URL or a variable.Parts is a list of
components. Each component is of the formatName(Value). Defined components are:

protocol(Protocol)
The used protocol. This is, after the optionalurl: , an identifier separated from the
remainder of the URL using: . parse url/2 assumes thehttp protocol if no protocol
is specified and the URL can be parsed as a valid HTTP url. In addition to the RFC-1738
specified protocols, thefile: protocol is supported as well.

host(Host)
Host-name or IP-address on which the resource is located. Supported by all network-based
protocols.

port(Port)
Integer port-number to access on theHost. This only appears if the port is explicitly
specified in the URL. Implicit default ports (e.g. 80 for HTTP) donot appear in the part-
list.

path(Path)
(File-) path addressed by the URL. This is supported for theftp , http andfile pro-
tocols. If no path appears, the library generates the path/ .

search(ListOfNameValue)
Search-specification of HTTP URL. This is the part after the?, normally used to transfer
data from HTML forms that use the ‘GET’ protocol. In the URL it consists of a www-
form-encoded list ofName=Valuepairs. This is mapped to a list of PrologName=Value
terms with decoded names and values.

SWI-Prolog 5.5 Reference Manual



262 APPENDIX A. THE SWI-PROLOG LIBRARY

fragment(Fragment)
Fragment specification of HTTP URL. This is the part after the# character.

The example below illustrates the all this for an HTTP UTL.

?- parse_url(’http://swi.psy.uva.nl/message.cgi?msg=Hello+World%21#x’,
P).

P = [ protocol(http),
host(’swi.psy.uva.nl’),
fragment(x),
search([ msg = ’Hello World!’

]),
path(’/message.cgi’)

].

By instantiating the parts-list this predicate can be used to create a URL.

parse url( ?URL, +BaseURL, ?Parts)
Same asparse url/2 , but dealing a url that is relative to the givenBaseURL. This is used to
analyse or construct a URI found in the document behindBaseURL.

global url( +URL, +BaseURL, -AbsoluteUrl)
Transform a (possibly) relative URL into a global one.

http location(?Parts, ?Location)
Similar toparse url/2 , but only deals with the location part of an HTTP URL. That is, the
path, search and fragment specifiers. In the HTTP protocol, the first line of a message is

Action Location[HTTP/HttpVersion]

Locationis either an atom or a code-list.

www form encode(?Value, ?WwwFormEncoded)
Translate between a string-literal and the x-www-form-encoded representation used in path and
search specifications of the HTTP protocol.

Encoding implies mapping space to +, preserving alpha-numercial characters, map newlines to
%0D%0A and anything else to %XX. When decoding, newlines appear as a single newline (10)
character.

A.9 clp/bounds : Integer Bounds Constraint Solver

Author: Tom Schrijvers, K.U.Leuven
The bounds solver is a rather simple integer constraint solver, implemented with attributed vari-

ables. Its syntax is a subset of the SICStus clp(FD) syntax.
Please note that theclp/bounds library is not an autoload library and therefore this library

must be loaded explicitely before using it using:

:- use_module(library(’clp/bounds’)).

SWI-Prolog 5.5 Reference Manual



A.9. CLP/BOUNDS: INTEGER BOUNDS CONSTRAINT SOLVER 263

A.9.1 Constraints

The following constraints are supported:

-Var in +Range
VaribaleVar is restricted to be in rageRange. A range is denoted byL..U where bothL andU
are integers.

-Vars in +Range
A list of variablesVarsare restriced to be in rangeRange.

?Expr#> ?Expr
The left-hand expression is constrained to be greater than the right-hand expressions.

?Expr#< ?Expr
The left-hand expression is constrained to be smaller than the right-hand expressions.

?Expr#>= ?Expr
The left-hand expression is constrained to be greater than or equal to the right-hand expressions.

?Expr#=< ?Expr
The left-hand expression is constrained to be smaller than or equal to the right-hand expressions.

?Expr#= ?Expr
The left-hand expression is constrained to be equal to the right-hand expressions.

?Expr#\= ?Expr
The left-hand expression is constrained to be not equal to the right-hand expressions.

sum(+Vars,+Op,?Value)
HereVars is a list of variables and integers,Op is one of the binary constraint relation symbols
above andValueis an integer or variable. It represents the constraint (

∑
Vars) Op Value.

lex chain(+VarsLists)
The constraint enforces lexicographic ordering on the lists in the argument. The argumentVars
is a list of lists of variables and integers. The current implementation was contributed by Markus
Triska.

all different(+Vars)
Constrains all variabls in the listVarsto be pairwise not equal.

indomain(+Var)
Assigns a value in its domain to variableVar. Backtracks over all possible values from lowest
to greatest. Contributed by Markus Triska.

label(+Vars)
All variables are assigned a variable that does not violate the constraint on them.

HereExprcan be one of

integer Any integer.

variable A variable.

SWI-Prolog 5.5 Reference Manual



264 APPENDIX A. THE SWI-PROLOG LIBRARY

?Expr+ ?Expr
The sum of two expressions.

?Expr* ?Expr
The product of two expressions.

?Expr- ?Expr
The difference of two expressions.

max(?Expr,?Expr)
The maximum of two expressions.

min(?Expr,?Expr)
The minimum of two expressions.

?Exprmod ?Expr
The first expression modulo the second expression.

abs(?Expr)
The absolute value of an expression.

A.9.2 Constraint Implication and Reified Constraints

The following constraint implication predicates are available:

+P #=> +Q
P impliesQ, whereP andQ are reifyable constraints.

+Q #<= +P
P impliesQ, whereP andQ are reifyable constraints.

+P #<=> +Q
P andQ are equivalent, whereP andQ are reifyable constraints.

In addition, instead of being a reifyable constraint, eitherP or Q can be a boolean variable that is the
truth value of the corresponding constraint.
The following constraints are reifyable:#=/2 , #\=/2 , #</2 , #>/2 , #=</2 , #>/2 .

For example, to count the number of occurrences of a particular value in a list of constraint vari-
ables:

• Using constraint implication
occurrences(List,Value,Count) :-

occurrences(List,Value,0,Count).

occurrences([],_,Count,Count).
occurrences([X|Xs],Value,Acc,Count) :-

X #= Value #=> NAcc #= Acc + 1,
X #\= Value #=> NAcc #= Acc,
occurrences(Xs,Value,NAcc,Count).

SWI-Prolog 5.5 Reference Manual



A.10. CLPR: CONSTRAINT LOGIC PROGRAMMING OVER REALS 265

• Using reified constraints
occurrences(List,Value,Count) :-

occurrences(List,Value,0,Count).

occurrences([],_,Count,Count).
occurrences([X|Xs],Value,Acc,Count) :-

X #= Value #=> B,
NAcc #= Acc + B,
occurrences(Xs,Value,NAcc,Count).

A.9.3 Example

The following is an implementation of the classic alphametics puzzle SEND + MORE = MONEY:

:- use_module(library(’clp/bounds’)).

send([[S,E,N,D], [M,O,R,E], [M,O,N,E,Y]]) :-
Digits = [S,E,N,D,M,O,R,Y],
Carries = [C1,C2,C3,C4],
Digits in 0..9,
Carries in 0..1,

M #= C4,
O + 10 * C4 #= M + S + C3,
N + 10 * C3 #= O + E + C2,
E + 10 * C2 #= R + N + C1,
Y + 10 * C1 #= E + D,

M #>= 1,
S #>= 1,
all_different(Digits),
label(Digits).

A.9.4 SICStus clp(FD) compatibility

Apart from the limited syntax, the bounds solver differs in the following ways from the SICStus
clp(FD) solver:

• inf andsup
The smallest lowerbound and greatest upperbound in bounds aremax integer and
min integer + 1 .

A.10 clpr : Constraint Logic Programming over Reals

Author: Leslie De Koninck, K.U. Leuven as part of a thesis with supervisor Bart Demoen
and daily advisor Tom Schrijvers.

SWI-Prolog 5.5 Reference Manual



266 APPENDIX A. THE SWI-PROLOG LIBRARY

This CLP(R) system is a port of the CLP(Q,R) system of Sicstus Prolog by Christian Holzbaur:
Holzbaur C.: OFAI clp(q,r) Manual, Edition 1.3.3, Austrian Research Institute for Artificial Intelli-
gence, Vienna, TR-95-09, 1995.3 This port only contains the part concerning real arithmetics. This
manual is roughly based on the manual of the above mentioned CLP(QR) implementation.

Please note that theclpr library is not an autoload library and therefore this library must be
loaded explicitely before using it:

:- use_module(library(clpr)).

A.10.1 Solver predicates

The following predicates are provided to work with constraints:

{} (+Constraints)
Adds the constraints given byConstraintsto the constraint store.

entailed(+Constraint)
Succeeds ifConstraintis necessarily true within the current constraint store. This means that
adding the negation of the constraint to the store results in failure.

inf(+Expression, -Inf)
Computes the infimum ofExpressionwithin the current state of the constraint store and returns
that infimum inInf. This predicate does not change the constraint store.

sup(+Expression, -Sup)
Computes the supremum ofExpressionwithin the current state of the constraint store and re-
turns that supremum inSup. This predicate does not change the constraint store.

min(+Expression)
Minimizes Expressionwithin the current constraint store. This is the same as computing the
infimum and equation the expression to that infimum.

max(+Expression)
MaximizesExpressionwithin the current constraint store. This is the same as computing the
supremum and equating the expression to that supremum.

bb inf(+Ints, +Expression, -Inf, -Vertex, +Eps)
Computes the infimum ofExpressionwithin the current constraint store, with the additional
constraint that in that infimum, all variables inInts have integral values.Vertexwill contain the
values ofInts in the infimum.Epsdenotes how much a value may differ from an integer to be
considered an integer. E.g. whenEps= 0.001, then X = 4.999 will be considered as an integer
(5 in this case).Epsshould be between 0 and 0.5.

bb inf(+ints, +Expression, -Inf)
The same asbb inf/5 but without returning the values of the integers and with an eps of
0.001.

3http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09

SWI-Prolog 5.5 Reference Manual



A.10. CLPR: CONSTRAINT LOGIC PROGRAMMING OVER REALS 267

〈Constraints〉 ::= 〈Constraint〉 single constraint
| 〈Constraint〉 , 〈Constraints〉 conjunction
| 〈Constraint〉 ; 〈Constraints〉 disjunction

〈Constraint〉 ::= 〈Expression〉 < 〈Expression〉 less than
| 〈Expression〉 > 〈Expression〉 greater than
| 〈Expression〉 =< 〈Expression〉 less or equal
| <=(〈Expression〉, 〈Expression〉) less or equal
| 〈Expression〉 >= 〈Expression〉 greater or equal
| 〈Expression〉 =\= 〈Expression〉 not equal
| 〈Expression〉 =:= 〈Expression〉 equal
| 〈Expression〉 = 〈Expression〉 equal

〈Expression〉 ::= 〈Variable〉 Prolog variable
| 〈Number〉 Prolog number (float, integer)
| +〈Expression〉 unary plus
| -〈Expression〉 unary minus
| 〈Expression〉 + 〈Expression〉 addition
| 〈Expression〉 - 〈Expression〉 substraction
| 〈Expression〉 * 〈Expression〉 multiplication
| 〈Expression〉 / 〈Expression〉 division
| abs(〈Expression〉) absolute value
| sin(〈Expression〉) sine
| cos(〈Expression〉) cosine
| tan(〈Expression〉) tangent
| exp(〈Expression〉) exponent
| pow(〈Expression〉) exponent
| 〈Expression〉 ˆ 〈Expression〉 exponent
| min(〈Expression〉, 〈Expression〉) minimum
| max(〈Expression〉, 〈Expression〉) maximum

Table A.1: CLP(R) constraint BNF

dump(+Target, +Newvars, -CodedAnswer)
Returns the constraints onTarget in the list CodedAnswerwhere all variables ofTargethave
veen replaced byNewVars. This operation does not change the constraint store. E.g. in

dump([X,Y,Z],[x,y,z],Cons)

Cons will contain the constraints on X, Y and Z where these variables have been replaced by
atoms x, y and z.

A.10.2 Syntax of the predicate arguments

The arguments of the predicates defined in the subsection above are defined in tableA.1. Failing to
meet the syntax rules will result in an exception.

SWI-Prolog 5.5 Reference Manual



268 APPENDIX A. THE SWI-PROLOG LIBRARY

A = B ∗ C B or C is ground A = 5 * C or A = B * 4
A and (B or C) are ground 20 = 5 * C or 20 = B * 4

A = B/C C is ground A = B / 3
A and B are ground 4 = 12 / C

X = min(Y, Z) Y and Z are ground X = min(4,3)
X = max(Y, Z) Y and Z are ground X = max(4,3)
X = abs(Y ) Y is ground X = abs(-7)
X = pow(Y, Z) X and Y are ground 8 = 2 ˆ Z
X = exp(Y, Z) X and Z are ground 8 = Y ˆ 3
X = Y ˆ Z Y and Z are ground X = 2 ˆ 3
X = sin(Y ) X is ground 1 = sin(Y)
X = cos(Y ) Y is ground X = sin(1.5707)
X = tan(Y )

Table A.2: CLP(R) isolating axioms

A.10.3 Use of unification

Instead of using theScurl/1 predicate, you can also use the standard unification mechanism to store
constraints. The following code samples are equivalent:

• Unification with a variable
{X =:= Y}
{X = Y}
X = Y

• Unification with a number
{X =:= 5.0}
{X = 5.0}
X = 5.0

A.10.4 Non-linear constraints

In this version, non-linear constraints do not get solved until certain conditions are satisfied. We call
these conditions the isolation axioms. They are given in tableA.2.

SWI-Prolog 5.5 Reference Manual



Hackers corner B
This appendix describes a number of predicates which enable the Prolog user to inspect the Prolog
environment and manipulate (or even redefine) the debugger. They can be used as entry points for
experiments with debugging tools for Prolog. The predicates described here should be handled with
some care as it is easy to corrupt the consistency of the Prolog system by misusing them.

B.1 Examining the Environment Stack

prolog current frame(-Frame)
Unify Framewith an integer providing a reference to the parent of the current local stack frame.
A pointer to the current local frame cannot be provided as the predicate succeeds deterministi-
cally and therefore its frame is destroyed immediately after succeeding.

prolog frame attribute( +Frame, +Key, -Value)
Obtain information about the local stack frameFrame. Frameis a frame reference as obtained
throughprolog current frame/1 , prolog trace interception/4 or this predi-
cate. The key values are described below.

alternative
Value is unified with an integer reference to the local stack frame in which execution is
resumed if the goal associated withFramefails. Fails if the frame has no alternative frame.

has alternatives
Value is unified withtrue if Framestill is a candidate for backtracking.false other-
wise.

goal
Valueis unified with the goal associated withFrame. If the definition module of the active
predicate is notuser the goal is represented as〈module〉: 〈goal〉. Do not instantiate
variables in this goal unless youknow what you are doing! Note that the returned term
may contain references to the frame and should be discarded before the frame terminates.1

parent goal
If Valueis instantiated to a callable term, find a frame executing the predicate described by
Valueand unify the arguments ofValueto the goal arguments associated with the frame.
This is intended to check the current execution context. The user must ensure the checked
parent goal is not removed from the stack due to last-call optimisation and be aware of the
slow operation on deeply nested calls.

1The returned term is actually an illegal Prolog term that may hold references from the global- to the local stack to
preserve the variable names.

SWI-Prolog 5.5 Reference Manual



270 APPENDIX B. HACKERS CORNER

clause
Value is unified with a reference to the currently running clause. Fails if the current
goal is associated with a foreign (C) defined predicate. See alsonth clause/3 and
clause property/2 .

level
Valueis unified with the recursion level ofFrame. The top level frame is at level ‘0’.

parent
Valueis unified with an integer reference to the parent local stack frame ofFrame. Fails
if Frameis the top frame.

context module
Valueis unified with the name of the context module of the environment.

top
Valueis unified withtrue if Frameis the top Prolog goal from a recursive call back from
the foreign language.false otherwise.

hidden
Valueis unified withtrue if the frame is hidden from the user, either because a parent has
the hide-childs attribute (all system predicates), or the system has no trace-me attribute.

pc
Valueis unified with the program-pointer saved on behalve of the parent-goal if the parent-
goal is not owned by a foreign predicate.

argument(N)
Value is unified with theN-th slot of the frame. Argument 1 is the first argument of the
goal. Arguments above the arity refer to local variables. Fails silently ifN is out of range.

prolog choiceattribute( +ChoicePoint, +Key, -Value)
Extract attributes of a choice-point.ChoicePointis a reference to a choice-point as passed
to prolog trace interception/4 on the 3-th argument.Key specifies the requested
information:

parent
Requests a reference to the first older choice-point.

frame
Requests a reference to the frame to which the choice-point refers.

type
Requests the type. Defined values areclause (the goal has alternative clauses),
foreign (non-deterministic foreign predicate),jump (clause internal choicepoint),top
(first dummy choice-point),catch (catch/3 to allow for undo),debug (help the de-
bugger), ornone (has been deleted).

This predicate is used for the graphical debugger to show the choicepoint stack.

deterministic(-Boolean)
Unifies its argument withtrue if the clause in which is appears has not created any choice-
points since it was started. There are few realistic situations for using this predicate. It is used
by theprolog/0 toplevel to check whether Prolog should prompt the user for alternatives.

SWI-Prolog 5.5 Reference Manual



B.2. INTERCEPTING THE TRACER 271

B.2 Intercepting the Tracer

prolog trace interception(+Port, +Frame, +Choice, -Action)
Dynamic predicate, normally not defined. This predicate is called from the SWI-Prolog debug-
ger just before it would show a port. If this predicate succeeds the debugger assumes the trace
action has been taken care of and continues execution as described byAction. Otherwise the
normal Prolog debugger actions are performed.

Port denotes the reason to activate the tracer (‘port’ in the 4/5-port, but with some additions:

call
Normal extry through the call-port of the 4-port debugger.

redo
Normal extry through the call-port of the 4-port debugger. Theredo port signals resum-
ing a predicate to generate alternative solutions.

unify
The unify-port represents theneck instruction, signalling the end of the head-matching
process. This port is normally unvisible. Seeleash/1 andvisible/1 .

exit
The exit-port signals the goal is proved. It is possible for the goal to have alternative. See
prolog frame attribute/3 to examine the goal-stack.

fail
The fail-port signals final failure of the goal.

exception(Except)
An exception is raised and still pending. This port is activated on each parent frame of
the frame generating the exception until the exception is caught or the user restarts normal
computation usingretry . Exceptis the pending exception-term.

break(PC)
A break instruction is executed.PC is program counter. This port is used by the graphi-
cal debugger.

cut call(PC)
A cut is encountered atPC. This port is used by the graphical debugger. to visualise the
effect of the cut.

cut exit(PC)
A cut has been executed. Seecut call (PC) for more information.

Frame is a reference to the current local stack frame, which can be examined using
prolog frame attribute/4 . Choiceis a reference to the last choice-point and can be
examined usingprolog choice attribute/3 . Actionshould be unified with one of the
atomscontinue (just continue execution),retry (retry the current goal) orfail (force the
current goal to fail). Leaving it a variable is identical tocontinue .

Together with the predicates described in section4.39and the other predicates of this chapter
this predicate enables the Prolog user to define a complete new debugger in Prolog. Besides
this it enables the Prolog programmer monitor the execution of a program. The example below
records all goals trapped by the tracer in the database.

SWI-Prolog 5.5 Reference Manual



272 APPENDIX B. HACKERS CORNER

prolog_trace_interception(Port, Frame, _PC, continue) :-
prolog_frame_attribute(Frame, goal, Goal),
prolog_frame_attribute(Frame, level, Level),
recordz(trace, trace(Port, Level, Goal)).

To trace the execution of ‘go’ this way the following query should be given:

?- trace, go, notrace.

prolog skip level(-Old, +New)
Unify Old with the old value of ‘skip level’ and than set this level according toNew. New is
an integer, or the special atomvery deep (meaning don’t skip). The ‘skip level’ is a global
variable of the Prolog system that disables the debugger on all recursion levels deeper than the
level of the variable. Used to implement the trace options ‘skip’ (sets skip level to the level of
the frame) and ‘up’ (sets skip level to the level of the parent frame (i.e., the level of this frame
minus 1).

B.3 Hooks using theexception/3 predicate

This section describes the predicateexception/3 , which may be defined by the user in the module
user as a multifile predicate. Unlike the name suggests, this is actually ahookpredicate. Excep-
tions are handled by the ISO predicatescatch/3 andthrow/1 . They all frames created after the
matchingcatch/3 to be discarded immediately.

The predicateexception/3 is called by the kernel on a couple of events, allowing the user to
alter the behaviour on some predefined events.

exception(+Exception, +Context, -Action)
Dynamic predicate, normally not defined. Called by the Prolog system on run-time excep-
tions that can be repaired ‘just in time’. Currentlyexception/3 is only used for trapping
undefined predicates. The values forExceptionare described below. See alsocatch/3 and
throw/1 .

undefined predicate
If Exceptionis undefined predicate Contextis instantiated to a termName/Arity.
Name refers to the name andArity to the arity of the undefined predicate.
If the definition module of the predicate is notuser, Context will be of the
form 〈Module〉: 〈Name〉/ 〈Arity〉. If the predicate fails Prolog will generate an
esistence error exception. If the predicate succeeds it should instantiate the last
argument either to the atomfail to tell Prolog to fail the predicate, the atomretry to
tell Prolog to retry the predicate orerror to make the system generate an exception. The
actionretry only makes sense if the exception handler has defined the predicate.

B.4 Hooks for integrating libraries

Some libraries realise an entirely new programming paradigm on top of Prolog. An example is XPCE
which adds an object-system to Prolog as well as an extensive set of graphical primitives. SWI-Prolog

SWI-Prolog 5.5 Reference Manual



B.5. HOOKS FOR LOADING FILES 273

provides several hooks to improve the integration of such libraries. See also section4.4 for editing
hooks and section4.9.3for hooking into the message system.

prolog list goal(:Goal)
Hook, normally not defined. This hook is called by the ’L’ command of the tracer in the module
user to list the currently called predicate. This hook may be defined to list only relevant clauses
of the indicatedGoal and/or show the actual source-code in an editor. See alsoportray/1
andmultifile/1 .

prolog:debug control hook(:Action)
Hook for the debugger-control predicates that allows the creator of more high-level program-
ming languages to use the common front-end predicates to control de debugger. For example,
XPCE uses these hooks to allow for spying methods rather then predicates.Action is one of:

spy(Spec)
Hook inspy/1 . If the hook succeedsspy/1 takes no further action.

nospy(Spec)
Hook in nospy/1 . If the hook succeedsspy/1 takes no further action. Ifspy/1 is
hooked, it is advised to place a complementary hook fornospy/1 .

nospyall
Hook in nospyall/0 . Should remove all spy-points. This hook is called in a failure-
driven loop.

debugging
Hook in debugging/0 . It can be used in two ways. It can report the status of the
additional debug-points controlled by the above hooks and fail to let the system report the
others or it succeed, overruling the entire behaviour ofdebugging/0 .

prolog:help hook(+Action)
Hook intohelp/0 andhelp/1 . If the hook succeeds, the built-in actions are not executed.
For example,?- help(picture). is caught by the XPCE help-hook to give help on the
classpicture. Defined actions are:

help
User entered plainhelp/0 to give default help. The default performshelp(help/1) ,
giving help on help.

help(What)
Hook inhelp/1 on the topicWhat.

apropos(What)
Hook inapropos/1 on the topicWhat.

B.5 Hooks for loading files

All loading of source-files is achieved byload files/2 . The hookprolog load file/2 can
be used to load Prolog code from non-files or even load entirely different information, such as foreign
files.

SWI-Prolog 5.5 Reference Manual



274 APPENDIX B. HACKERS CORNER

user:prolog load file(+Spec, +Options)
Load a single object. If this call succeeds,load files/2 assumes the action has been taken
care of. This hook is only called ifOptionsdoes not contain thestream (Input) option.

Thehttp load provides an example, loading Prolog sources directly from an HTTP server.

B.6 Readline Interaction

The following predicates are available ifcurrent prolog flag(readline, true) suc-
ceeds. They allow for direct interaction with the GNU readline library. See alsoreadline( 3)

rl read init file(+File)
Read a readline initialisation file. Readline by default reads˜/.inputrc . This predicate may
be used to read alternative readline initialisation files.

rl add history(+Line)
Add a line to the Control-P/Control-N history system of the readline library.

SWI-Prolog 5.5 Reference Manual



Glossary of Terms C
anonymous [variable]

The variable_ is called theanonymousvariable. Multiple occurrences of_ in a singletermare
notshared.

arguments
Arguments areterms that appear in acompound term. A1 and a2 are the first and second
argument of the termmyterm (A1, a2).

arity
Argument count (is number of arguments) of acompound term.

assert
Add aclauseto apredicate. Clauses can be added at either end of the clause-list of apredicate.
Seeassert/1 andassertz/1 .

atom
Textual constant. Used as name forcompoundterms, to represent constants or text.

backtracking
Searching process used by Prolog. If a predicate offers multipleclausesto solve agoal, they are
tried one-by-one until onesucceeds. If a subsequent part of the prove is not satisfied with the
resultingvariable binding, it may ask for an alternativesolution(= binding of the variables),
causing Prolog to reject the previously chosenclauseand try the next one.

binding [of a variable]
Current value of thevariable. See alsobacktrackingandquery.

built-in [predicate]
Predicate that is part of the Prolog system. Built in predicates cannot be redefined by the user,
unless this is overruled usingredefine system predicate/1 .

body
Part of aclausebehind theneckoperator (:- ).

clause
‘Sentence’ of a Prolog program. Aclauseconsists of aheadandbodyseparated by theneck
operator (:- ) or it is afact. For example:

parent(X) :-
father(X, _).

SWI-Prolog 5.5 Reference Manual



276 APPENDIX C. GLOSSARY OF TERMS

Expressed “X is a parent if X is a father of someone”. See alsovariableandpredicate.

compile
Process where a Prologprogramis translated to a sequence of instructions. See alsointerpreted.
SWI-Prolog always compiles your program before executing it.

compound [term]
Also calledstructure. It consists of a name followed byN arguments, each of which areterms.
N is called thearity of the term.

context module
If a term is referring to apredicatein a module, thecontext moduleis used to find the target
module. The context module of agoal is the module in which thepredicateis defined, unless
this predicateis module transparent, in which case thecontext moduleis inherited from the
parentgoal. See alsomodule transparent/1 .

dynamic [predicate]
A dynamicpredicate is a predicate to whichclausesmay beasserted and from whichclauses
may beretracted while the program is running. See alsoupdate view.

exported [predicate]
A predicateis said to beexportedfrom a moduleif it appears in thepublic list. This im-
plies that the predicate can beimportedinto another module to make it visible there. See also
use module/[1,2] .

fact
Clausewithout abody. This is called a fact because interpreted as logic, there is no condition
to be satisfied. The example below statesjohn is a person.

person(john).

fail
A goal is said to haved failed if it could not beproven.

float
Computers cripled representation of a real number. Represented as ‘IEEE double’.

foreign
Computer code expressed in other languages than Prolog. SWI-Prolog can only cooperate
directly with the C and C++ computer languages.

functor
Combination of name andarity of acompoundterm. The termfoo (a, b, c) is said to be a term
belonging to the functorfoo/3 . foo/0 is used to refer to theatomfoo .

goal
Question stated to the Prolog engine. Agoal is either anatomor a compoundterm. A goal
succeeds, in which case thevariablesin thecompoundterms have abindingor fails if Prolog
fails to prove thegoal.

SWI-Prolog 5.5 Reference Manual



277

hashing
Indexingtechnique used for quick lookup.

head
Part of aclausebefore theneckinstruction. This is an atom orcompoundterm.

imported [predicate]
A predicateis said to beimportedinto a moduleif it is defined in anothermoduleand made
available in thismodule. See also chapter5.

indexing
Indexing is a technique used to quickly select candidateclausesof a predicatefor a specific
goal. In most Prolog systems, including SWI-Prolog, indexing is done on the firstargument
of the head. If this argument is instantiated to anatom, integer, float or compoundterm with
functor, hashingis used quickly select allclausesof which the first argument mayunify with
the first argument of thegoal.

integer
Whole number. On most current machines, SWI-Prolog integers are represented
as ‘32-bit signed values’, ranging from -2147483648 to 2147483647. See also
current prolog flag/2 .

interpreted
As opposed tocompiled, interpreted means the Prolog system attempts to prove agoal by
directly reading theclausesrather than executing instructions from an (abstract) instruction set
that is not or only indirectly related to Prolog.

meta predicate
A predicatethat reasons about otherpredicates, either by calling them, (re)defining them or
queryingproperties.

module
Collection of predicates. Each module defines a name-space for predicates.built-in predicates
are accessible from all modules. Predicates can be published (exported) andimportedto make
their definition available to other modules.

module transparent [predicate]
A predicatethat does not change thecontext module. Sometimes also called ameta predicate.

multifile [predicate]
Predicate for which the definition is distributed over multiple source-files. Seemultifile/1 .

neck
Operator (:- ) separatingheadfrom bodyin aclause.

operator
Symbol (atom) that may be placed before itsoperant (prefix), after itsoperant (postfix) or
between its twooperants(infix).

In Prolog, the expressiona+b is exactly the same as the canonical term+(a,b) .

SWI-Prolog 5.5 Reference Manual



278 APPENDIX C. GLOSSARY OF TERMS

operant
Argumentof anoperator.

precedence
The priority of an operator. Operator precedence is used to interpreta+b*c as
+(a, *(b,c)) .

predicate
Collection ofclauseswith the samefunctor(name/arity). If a goal is proved, the system looks
for a predicatewith the same functor, then usedindexingto select candidateclausesand then
tries theseclausesone-by-one. See alsobacktracking.

priority
In the context ofoperatorsa synonym forprecedence.

program
Collection ofpredicates.

property
Attribute of an object. SWI-Prolog defines various* propertypredicates to query the status of
predicates, clauses. etc.

prove
Process where Prolog attempts to prove aqueryusing the availablepredicates.

public list
List of predicatesexported from amodule.

query
Seegoal.

retract
Remove aclausefrom apredicate. See alsodynamic, update viewandassert.

shared
Two variablesare calledsharedafter they areunified. This implies if either of them isbound,
the other is bound to the same value:

?- A = B, A = a.

A = a,
B = a

singleton [variable]
Variableappearing only one time in aclause. SWI-Prolog normally warns for this to avoid you
making spelling mistakes. If a variable appears on purpose only once in a clause, write it as_
(seeanonymous) or make sure the first character is a_. See also thestyle check/1 option
singletons .

solution
Bindingsresulting from a successfullyproven goal.

SWI-Prolog 5.5 Reference Manual



279

structure
Synonym forcompoundterm.

string
Used for the following representations of text: a packed array (see section4.23, SWI-Prolog
specific), a list of character codes or a list of one-characteratoms.

succeed
A goal is said to havesucceededif it has beenproven.

term
Value in Prolog. Aterm is either avariable, atom, integer, float orcompoundterm. In addition,
SWI-Prolog also defines the typestring

transparent
Seemodule transparent.

unify
Prolog process to make two terms equal by assigning variables in one term to values at the
corresponding location of the other term. For example:

?- foo(a, B) = foo(A, b).

A = a,
B = b

Unlike assignment (which does not exist in Prolog), unification is not directed.

update view
How Prolog behaves when adynamic predicateis changed while it is running. There are two
models. In most older Prolog systems the change becomes immediately visible to thegoal, in
modern systems including SWI-Prolog, the runninggoal is not affected. Only newgoals‘see’
the new definition.

variable
A Prolog variable is a value that ‘is not yet bound’. Afterbinding a variable, it cannot be
modified. Backtrackingto a point in the execution before the variable was bound will turn it
back into a variable:

?- A = b, A = c.
No
?- (A = b; true; A = c).
A = b ;
A = _G283 ;
A = c ;
No

See alsounify.

SWI-Prolog 5.5 Reference Manual



SWI-Prolog License Conditions
and Tools D
SWI-Prolog licensing aims at a large audience, combining ideas from the Free Software Foundation
and the less principal Open Source Initiative. The license aims at:

• Make SWI-Prolog itself and its libraries are ‘As free as possible’.

• Allow for easy integration of contributions. See sectionD.2.

• Free software can build on SWI-Prolog without limitations.

• Non-free (open or proprietary) software can be produced using SWI-Prolog, although con-
tributed pure GPL-ed components cannot be used.

To achieve this, different parts of the system have different licenses. SWI-Prolog programs con-
sists of a mixture of ‘native’ code (source compiled to machine instructions) and ‘virtual machine’
code (Prolog source compiled to SWI-Prolog virtual machine instructions, covering both compiled
SWI-Prolog libraries and your compiled application).

For maximal coherence between free licenses, we start with the two prime licenses from the Free
Software Foundation, the GNU General Public License (GPL) and the Lesser GNU General Public
License (LGPL), after which we add a proven (used by the GNU-C compiler runtime library as well
as the GNUClassPathproject) exception to deal with the specific nature of compiled virtual machine
code in a saved state.

D.1 The SWI-Prolog kernel and foreign libraries

The SWI-Prolog kernel and our foreign libraries are distributed under theLGPL . A Prolog executable
consists of the combination of these ‘native’ code components and Prolog virtual machine code. The
SWI-Prologplrc utility allows for disassembling and re-assembling these parts, a process satisfying
article6b of the LGPL.

Under the LGPL SWI-Prolog can be linked to code distributed under arbitrary licenses, provided
a number of requirements are fullfilled. The most important requirement is that, if an application
replies on amodifiedversion of SWI-Prolog, the modified sources must be made available.

D.1.1 The SWI-Prolog Prolog libraries

Lacking a satisfactory technical solution to handle article6 of the LGPL, this license cannot be used
for the Prolog source code that is part of the SWI-Prolog system (both libraries and kernel code). This
situation is comparable tolibgcc , the runtime library used with the GNU C-compiler. Therefore,
we use the same proven license terms as this library. The libgcc license is the with a special exception.
Below we rephrased this exception adjusted to our needs:

SWI-Prolog 5.5 Reference Manual



D.2. CONTRIBUTING TO THE SWI-PROLOG PROJECT 281

As a special exception, if you link this library with other files, compiled with a Free
Software compiler, to produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License. This exception
does not however invalidate any other reasons why the executable file might be covered
by the GNU General Public License.

D.2 Contributing to the SWI-Prolog project

To achieve maximal coherence using SWI-Prolog for Free and Non-Free software we advice the use
of the LGPL for contributed foreign code and the use of the GPL with SWI-Prolog exception for
Prolog code for contributed modules.

As a rule of thumb it is advised to use the above licenses whenever possible and only use a strict
GPL compliant license only if the module contains other code under strict GPL compliant licenses.

D.3 Software support to keep track of license conditions

Given the above, it is possible that SWI-Prolog packages and extensions will rely on the GPL.1 The
predicates below allow for registering license requirements for Prolog files and foreign modules. The
predicateeval license/0 reports which components from the currenly configured system are dis-
tributed under copy-left and open source enforcing licenses (the GPL) and therefore must be replaced
before distributing linked applications under non-free license conditions.

eval license
Evaluate the license conditions of all loaded components. If the system contains one or more
components that are licenced under GPL-like restrictions the system indicates this program may
only be distributed under theGPLlicense as well as which components prohibit the use of other
license conditions.

license(+LicenseId, +Component)
Register the fact thatComponentis distributed under a license identified byLicenseId. The
most importantLicenseId’s are:

swipl
Indicates this module is distributed under the GNU General Public License (GPL) with
the SWI-Prolog exception:2

As a special exception, if you link this library with other files, compiled with
SWI-Prolog, to produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License. This
exception does not however invalidate any other reasons why the executable file
might be covered by the GNU General Public License.

1On the Unix version, the default toplevel uses the GNU readline library for command-line editing. This library is
distributed under the GPL. In practice this problem is small as most final applications have Prolog embedded, without direct
access to the commandline and therefore without need forlibreadline .

2This exception is a straight re-phrasing of the license used forlibgcc , the GNU-C runtime library facing similar
technical issues.

SWI-Prolog 5.5 Reference Manual



282 APPENDIX D. SWI-PROLOG LICENSE CONDITIONS AND TOOLS

This should be the default for software contributed to the SWI-Prolog project as it allows
the community to prosper both in the free and non-free world. Still, people using SWI-
Prolog to create non-free applications must contribute sources to improvements they make
to the community.

lgpl
This is the default license for foreign-libraries linked with SWI-Prolog. Use
PL license() to register the condition from foreign code.

gpl
Indicates this module is strictly Free Software, which implies it cannot be used together
with any module that is incompatible to the GPL. Please only use these conditions when
forced by other code used in the component.

Other licenses known to the system areguile , gnu ada , x11 , expat , sml ,
public domain , cryptix , bsd , zlib , constlgplcompatible andgpl compatible .
New licenses can be defined by adding clauses for the multifile predicate
license:license/3 . Below is an example. The second argument is eithergpl or
lgpl to indicate compatibility to these licenses. Other values cause the license to inter-
preted asproprietary. Proprietary licenses are reported byeval license/0 . See the file
boot/license.pl for details.

:- multifile license:license/3.

license:license(mylicense, lgpl,
[ comment(’My personal license’),

url(’http://www.mine.org/license.html’)
]).

:- license(mylicense).

license(+LicenseId)
Intented as a directive in Prolog source files. It takes the current filename and calls
license/2 .

void PL license(const char *LicenseId, const char *Component)
Intended for the install() procedure of foreign libraries. This call can be madebefore
PL initialise() .

SWI-Prolog 5.5 Reference Manual



Summary E
E.1 Predicates

The predicate summary is used by the Prolog predicateapropos/1 to suggest predicates from a
keyword.

! /0 Cut (discard choicepoints)
! /1 Cut block. Seeblock/3
#> /2 Greater than constraint
#< /2 Less than constraint
#>=/2 Greater or equal constraint
#=< /2 Less of equal constraint
#\= /2 Non-equal constraint
#=/2 Equality constraint
#<=> /2 Constraint equivalence
#<=/2 Constraint implication to the left
#=> /2 Constraint implication to the right
, /2 Conjunction of goals
-> /2 If-then-else
*-> /2 Soft-cut
. /2 Consult. Also list constructor
; /2 Disjunction of goals. Same as|/2
</2 Arithmetic smaller
=/2 Unification
=.. /2 “Univ.” Term to list conversion
=:= /2 Arithmetic equal
=</2 Arithmetic smaller or equal
==/2 Identical
=@=/2 Structural identical
=\= /2 Arithmetic not equal
>/2 Arithmetic larger
>=/2 Arithmetic larger or equal
?=/2 Test of terms can be compared now
@</2 Standard order smaller
@=</2 Standard order smaller or equal
@>/2 Standard order larger
@>=/2 Standard order larger or equal
\+ /1 Negation by failure. Same asnot/1
\= /2 Not unifiable

SWI-Prolog 5.5 Reference Manual



284 APPENDIX E. SUMMARY

\== /2 Not identical
\=@=/2 Not structural identical
ˆ /2 Existential quantification (bagof/3 , setof/3 )
| /2 Disjunction of goals. Same as;/2
abolish/1 Remove predicate definition from the database
abolish/2 Remove predicate definition from the database
abort/0 Abort execution, return to top level
absolutefile name/2 Get absolute path name
absolutefile name/3 Get absolute path name with options
accessfile/2 Check access permissions of a file
acyclic term/1 Test term for cycles
add import module/3 Add module to the auto-import list
all different/1 Constraint all values to be unique
append/1 Append to a file
apply/2 Call goal with additional arguments
apropos/1 online help Search manual
arg/3 Access argument of a term
arithmeticfunction/1 Register an evaluable function
assert/1 Add a clause to the database
assert/2 Add a clause to the database, give reference
asserta/1 Add a clause to the database (first)
asserta/2 Add a clause to the database (first)
assertz/1 Add a clause to the database (last)
assertz/2 Add a clause to the database (last)
assume/1 Make assertions about your program
attachconsole/0 Attach I/O console to thread
attr unify hook/2 Attributed variable unification hook
attr portrayhook/2 Attributed variable print hook
attvar/1 Type test for attributed variable
at endof stream/0 Test for end of file on input
at endof stream/1 Test for end of file on stream
at halt/1 Register goal to run athalt/1
at initialization/1 Register goal to run at start-up
atom/1 Type check for an atom
atomchars/2 Convert between atom and list of characters
atomcodes/2 Convert between atom and list of characters codes
atom length/2 Determine length of an atom
atomprefix/2 Test for start of atom
atomnumber/2 Convert between atom and number
atomto term/3 Convert between atom and term
atomic/1 Type check for primitive
autoload/0 Autoload all predicates now
b getval/2 Fetch backtrackable global variable
b setval/2 Assign backtrackable global variable
bagof/3 Find all solutions to a goal
between/3 Integer range checking/generating
block/3 Start a block (‘catch’/‘throw’)

SWI-Prolog 5.5 Reference Manual



E.1. PREDICATES 285

break/0 Start interactive toplevel
call/1 Call a goal
call/[2..] Call with additional arguments
call cleanup/3 Guard a goal with a cleaup-handler
call cleanup/2 Guard a goal with a cleaup-handler
call sharedobject function/2 UNIX: Call C-function in shared (.so) file
call with depthlimit/3 Prove goal with bounded depth
callable/1 Test for atom or compound term
catch/3 Call goal, watching for exceptions
charcode/2 Convert between character and character code
charconversion/2 Provide mapping of input characters
char type/2 Classify characters
charactercount/2 Get character index on a stream
chdir/1 Compatibility: change working directory
chr showstore/1 List suspended CHR constraints
chr trace/0 Start CHR tracer
chr notrace/0 Stop CHR tracer
chr leash/1 Define CHR leashed ports
clause/2 Get clauses of a predicate
clause/3 Get clauses of a predicate
clauseproperty/2 Get properties of a clause
close/1 Close stream
close/2 Close stream (forced)
closeddeconversation/1 Win32: Close DDE channel
closesharedobject/1 UNIX: Close shared library (.so file)
compare/3 Compare, using a predicate to determine the order
compilepredicates/1 Compile dynamoc code to static
compiling/0 Is this a compilation run?
compound/1 Test for compound term
atomconcat/3 Append two atoms
codetype/2 Classify a character-code
concatatom/2 Append a list of atoms
concatatom/3 Append a list of atoms with separator
consult/1 Read (compile) a Prolog source file
contextmodule/1 Get context module of current goal
converttime/8 Break time stamp into fields
converttime/2 Convert time stamp to string
copy streamdata/2 Copy all data from stream to stream
copy streamdata/3 Copy n bytes from stream to stream
copy term/2 Make a copy of a term
copy term nat/2 Make a copy of a term without attributes
currentarithmeticfunction/1 Examine evaluable functions
currentatom/1 Examine existing atoms
currentblob/2 Examine typed blobs
currentcharconversion/2 Query input character mapping
currentflag/1 Examine existing flags
currentforeign library/2 shlib Examine loaded shared libraries (.so files)

SWI-Prolog 5.5 Reference Manual



286 APPENDIX E. SUMMARY

currentformat predicate/2 Enumerate user-defined format codes
currentfunctor/2 Examine existing name/arity pairs
currentinput/1 Get current input stream
currentkey/1 Examine existing database keys
currentmodule/1 Examine existing modules
currentmodule/2 Examine existing modules
currentmutex/3 Examine existing mutexes
currentop/3 Examine current operator declarations
currentoutput/1 Get the current output stream
currentpredicate/1 Examine existing predicates (ISO)
currentpredicate/2 Examine existing predicates
currentsignal/3 Current software signal mapping
currentstream/3 Examine open streams
currentthread/2 Examine Prolog threads
cyclic term/1 Test term for cycles
ddecurrentconnection/2 Win32: Examine open DDE connections
ddecurrentservice/2 Win32: Examine DDE services provided
ddeexecute/2 Win32: Execute command on DDE server
dde registerservice/2 Win32: Become a DDE server
dde request/3 Win32: Make a DDE request
ddepoke/3 Win32: POKE operation on DDE server
ddeunregisterservice/1 Win32: Terminate a DDE service
debug/0 Test for debugging mode
debug/1 Select topic for debugging
debug/3 Print debugging message on topic
debugcontrol hook/1 (hook) Extendspy/1 , etc.
debugging/0 Show debugger status
debugging/1 Test where we are debugging topic
defaultmodule/2 Get the default modules of a module
del attr/2 Delete attribute from variable
deletedirectory/1 Remove a folder from the file system
deletefile/1 Remove a file from the file system
deleteimport module/2 Remove module from import list
deterministic/1 Test deterministicy of current clause
dif/2 Contrain two terms to be different
discontiguous/1 Indicate distributed definition of a predicate
downcaseatom/2 Convert atom to lower-case
duplicateterm/2 Create a copy of a term
dwim match/2 Atoms match in “Do What I Mean” sense
dwim match/3 Atoms match in “Do What I Mean” sense
dwim predicate/2 Find predicate in “Do What I Mean” sense
dynamic/1 Indicate predicate definition may change
edit/0 Edit current script- or associated file
edit/1 Edit a file, predicate, module (extensible)
encoding/1 Define encoding inside a source file
ensureloaded/1 Consult a file if that has not yet been done
erase/1 Erase a database record or clause

SWI-Prolog 5.5 Reference Manual



E.1. PREDICATES 287

eval license/0 Evaluate licenses of loaded modules
exception/3 (hook) Handle runtime exceptions
existsdirectory/1 Check existence of directory
existsfile/1 Check existence of file
exit/2 Exit from named block. Seeblock/3
expandanswer/2 Expand answer of query
expandfile name/2 Wildcard expansion of file names
expandfile searchpath/2 Wildcard expansion of file paths
expandgoal/2 Compiler: expand goal in clause-body
expandquery/4 Expanded entered query
expandterm/2 Compiler: expand read term into clause(s)
explain/1 explain Explain argument
explain/2 explain 2nd argument is explanation of first
export/1 Export a predicate from a module
export list/2 List of public predicates of a module
fail/0 Always false
fail/1 Immediately fail named block. Seeblock/3
currentprolog flag/2 Get system configuration parameters
file basename/2 Get file part of path
file directoryname/2 Get directory part of path
file nameextension/3 Add, remove or test file extensions
file searchpath/2 Define path-aliases for locating files
fileerrors/2 Do/Don’t warn on file errors
findall/3 Find all solutions to a goal
flag/3 Simple global variable system
float/1 Type check for a floating point number
flush output/0 Output pending characters on current stream
flush output/1 Output pending characters on specified stream
forall/2 Prove goal for all solutions of another goal
format/1 Formatted output
format/2 Formatted output with arguments
format/3 Formatted output on a stream
format predicate/2 Programformat/[1,2]
term variables/2 Find unbound variables in a term
term variables/3 Find unbound variables in a term
freeze/2 Delay execution until variable is bound
frozen/2 Query delayed goals on var
functor/3 Get name and arity of a term or construct a term
garbagecollect/0 Invoke the garbage collector
garbagecollect atoms/0 Invoke the atom garbage collector
gensym/2 Generate unique atoms from a base
get/1 Read first non-blank character
get/2 Read first non-blank character from a stream
get0/1 Read next character
get0/2 Read next character from a stream
get attr/3 Fetch named attribute from a variable
get attrs/2 Fetch all attributes of a variable

SWI-Prolog 5.5 Reference Manual



288 APPENDIX E. SUMMARY

get byte/1 Read next byte (ISO)
get byte/2 Read next byte from a stream (ISO)
get char/1 Read next character as an atom (ISO)
get char/2 Read next character from a stream (ISO)
get code/1 Read next character (ISO)
get code/2 Read next character from a stream (ISO)
get singlechar/1 Read next character from the terminal
get time/1 Get current time
getenv/2 Get shell environment variable
goal expansion/2 Hook for macro-expanding goals
ground/1 Verify term holds no unbound variables
guitracer/0 Install hooks for the graphical debugger
halt/0 Exit from Prolog
halt/1 Exit from Prolog with status
hash/1 Index predicate using a hash-table
hashterm/2 Hash-value of ground term
help/0 Give help on help
help/1 Give help on predicates and show parts of manual
help hook/1 (hook) User-hook in the help-system
ignore/1 Call the argument, but always succeed
import/1 Import a predicate from a module
import module/2 Query import modules
in/2 Define interval for variable
include/1 Include a file with declarations
index/1 Change clause indexing
initialization/1 Initialization directive
int to atom/2 Convert from integer to atom
int to atom/3 Convert from integer to atom (non-decimal)
integer/1 Type check for integer
interactor/0 Start new thread with console and toplevel
is/2 Evaluate arithmetic expression
is absolutefile name/1 True if arg defines an absolute path
is list/1 Type check for a list
keysort/2 Sort, using a key
label/1 Solve constraints for variables
last/2 Last element of a list
leash/1 Change ports visited by the tracer
length/2 Length of a list
library directory/1 (hook) Directories holding Prolog libraries
license/1 Define license for current file
license/2 Define license for named module
limit stack/2 Limit stack expansion
line count/2 Line number on stream
line position/2 Character position in line on stream
list debugtopics/0 List registered topics for debugging
list to set/2 Remove duplicates from a list
listing/0 List program in current module

SWI-Prolog 5.5 Reference Manual



E.1. PREDICATES 289

listing/1 List predicate
load files/2 Load source files with options
load foreign library/1 shlib Load shared library (.so file)
load foreign library/2 shlib Load shared library (.so file)
make/0 Reconsult all changed source files
makedirectory/1 Create a folder on the file system
makelibrary index/1 Create autoload file INDEX.pl
makelibrary index/2 Create selective autoload file INDEX.pl
maplist/2 Apply predicate on all elements
maplist/3 Map elements pairwise
maplist/4 Map triples of elements
memberchk/2 Deterministicmember/2
merge/3 Merge two sorted lists
mergeset/3 Merge two sorted sets
messagehook/3 Interceptprint message/2
messagequeuecreate/1 Create queue for thread communication
messagequeuedestroy/1 Destroy queue for thread communication
messageto string/2 Translate message-term to string
metapredicate/1 Quintus compatibility
module/1 Query/set current type-in module
module/2 Declare a module
moduletransparent/1 Indicate module based meta predicate
msort/2 Sort, do not remove duplicates
multifile/1 Indicate distributed definition of predicate
mutexcreate/1 Create a thread-synchronisation device
mutexdestroy/1 Destroy a mutex
mutex lock/1 Become owner of a mutex
mutexstatistics/0 Print statistics on mutex usage
mutex trylock/1 Become owner of a mutex (non-blocking)
mutexunlock/1 Release ownership of mutex
mutexunlock all/0 Release ownership of all mutexes
name/2 Convert between atom and list of character codes
nb current/2 Enumerate non-backtrackable global variables
nb delete/1 Delete a non-backtrackable global variable
nb getval/2 Fetch non-backtrackable global variable
nb linkarg/3 Non-backtrackable assignment to term
nb linkval/2 Assign non-backtrackable global variable
nb setarg/3 Non-backtrackable assignment to term
nb setval/2 Assign non-backtrackable global variable
nl/0 Generate a newline
nl/1 Generate a newline on a stream
nodebug/0 Disable debugging
nodebug/1 Disable debug-topic
noguitracer/0 Disable the graphical debugger
nonvar/1 Type check for bound term
noprofile/1 Hide (meta) predicate for the profiler
noprotocol/0 Disable logging of user interaction

SWI-Prolog 5.5 Reference Manual



290 APPENDIX E. SUMMARY

nospy/1 Remove spy point
nospyall/0 Remove all spy points
not/1 Negation by failure (argument not provable). Same as\+/1
notrace/0 Stop tracing
notrace/1 Do not debug argument goal
nth clause/3 N-th clause of a predicate
number/1 Type check for integer or float
numberchars/2 Convert between number and one-char atoms
numbercodes/2 Convert between number and character codes
numbervars/3 Number unbound variables of a term
numbervars/4 Number unbound variables of a term
on signal/3 Handle a software signal
once/1 Call a goal deterministically
op/3 Declare an operator
open/3 Open a file (creating a stream)
open/4 Open a file (creating a stream)
openddeconversation/3 Win32: Open DDE channel
opennull stream/1 Open a stream to discard output
openresource/3 Open a program resource as a stream
opensharedobject/2 UNIX: Open shared library (.so file)
opensharedobject/3 UNIX: Open shared library (.so file)
pcedispatch/1 Run XPCE GUI in seperate thread
pcecall/1 Run goal in XPCE GUI thread
peekbyte/1 Read byte without removing
peekbyte/2 Read byte without removing
peekchar/1 Read character without removing
peekchar/2 Read character without removing
peekcode/1 Read character-code without removing
peekcode/2 Read character-code without removing
phrase/2 Activate grammar-rule set
phrase/3 Activate grammar-rule set (returning rest)
please/3 Query/change environment parameters
plus/3 Logical integer addition
portray/1 (hook) Modify behaviour ofprint/1
portrayclause/1 Pretty print a clause
portrayclause/2 Pretty print a clause to a stream
predicateproperty/2 Query predicate attributes
predsort/3 Sort, using a predicate to determine the order
preprocessor/2 Install a preprocessor before the compiler
print/1 Print a term
print/2 Print a term on a stream
print message/2 Print message from (exception) term
print messagelines/3 Print message to stream
profile/1 Obtain execution statistics
profile/3 Obtain execution statistics
profile count/3 Obtain profile results on a predicate
profiler/2 Obtain/change status of the profiler

SWI-Prolog 5.5 Reference Manual



E.1. PREDICATES 291

prolog/0 Run interactive toplevel
prolog choiceattribute/3 Examine the choice-point stack
prolog currentframe/1 Reference to goal’s environment stack
prolog edit:locate/2 Locate targets foredit/1
prolog edit:locate/3 Locate targets foredit/1
prolog edit:edit source/1 Call editor foredit/1
prolog edit:edit command/2 Specify editor activation
prolog edit:load/0 Loadedit/1 extensions
prolog file type/2 Define meaning of file extension
prolog frameattribute/3 Obtain information on a goal environment
prolog ide/1 Program access to the development enviroment
prolog list goal/1 (hook) Intercept tracer ’L’ command
prolog load context/2 Context information for directives
prolog load file/2 (hook) Programload files/2
prolog skip level/2 Indicate deepest recursion to trace
prolog to os filename/2 Convert between Prolog and OS filenames
prolog traceinterception/4 user Intercept the Prolog tracer
prompt1/1 Change prompt for 1 line
prompt/2 Change the prompt used byread/1
protocol/1 Make a log of the user interaction
protocola/1 Append log of the user interaction to file
protocolling/1 On what file is user interaction logged
put/1 Write a character
put/2 Write a character on a stream
put attr/3 Put attribute on a variable
put attrs/2 Set/replace all attributes on a variable
put byte/1 Write a byte
put byte/2 Write a byte on a stream
put char/1 Write a character
put char/2 Write a character on a stream
put code/1 Write a character-code
put code/2 Write a character-code on a stream
qcompile/1 Compile source to Quick Load File
qsaveprogram/1 Create runtime application
qsaveprogram/2 Create runtime application
read/1 Read Prolog term
read/2 Read Prolog term from stream
readclause/1 Read clause
readclause/2 Read clause from stream
readhistory/6 Read using history substitution
readlink/3 Read a symbolic link
readpendinginput/3 Fetch buffered input from a stream
readterm/2 Read term with options
readterm/3 Read term with options from stream
recorda/2 Record term in the database (first)
recorda/3 Record term in the database (first)
recorded/2 Obtain term from the database

SWI-Prolog 5.5 Reference Manual



292 APPENDIX E. SUMMARY

recorded/3 Obtain term from the database
recordz/2 Record term in the database (last)
recordz/3 Record term in the database (last)
redefinesystempredicate/1 Abolish system definition
reloadlibrary index/0 Force reloading the autoload index
renamefile/2 Change name of file
repeat/0 Succeed, leaving infinite backtrack points
require/1 This file requires these predicates
resetgensym/1 Reset a gensym key
resetgensym/0 Reset all gensym keys
resetprofiler/0 Clear statistics obtained by the profiler
resource/3 Declare a program resource
retract/1 Remove clause from the database
retractall/1 Remove unifying clauses from the database
samefile/2 Succeeds if arguments refer to same file
see/1 Change the current input stream
seeing/1 Query the current input stream
seek/4 Modify the current position in a stream
seen/0 Close the current input stream
set input/1 Set current input stream from a stream
setoutput/1 Set current output stream from a stream
setprolog IO/3 Prepare streams for interactive session
setprolog flag/2 Define a system feature
set stream/2 Set stream attribute
set streamposition/2 Seek stream to position
set tty/2 Set ‘tty’ stream
setarg/3 Destructive assignment on term
setenv/2 Set shell environment variable
setlocale/3 Set/query C-library regional information
setof/3 Find all unique solutions to a goal
sformat/2 Format on a string
sformat/3 Format on a string
shell/0 Execute interactive subshell
shell/1 Execute OS command
shell/2 Execute OS command
showprofile/1 Show results of the profiler
showprofile/2 Show results of the profiler
sizefile/2 Get size of a file in characters
skip/1 Skip to character in current input
skip/2 Skip to character on stream
rl addhistory/1 Add line to readline(3) history
rl readinit file/1 Read readline(3) init file
sleep/1 Suspend execution for specified time
sort/2 Sort elements in a list
sourcefile/1 Examine currently loaded source files
sourcefile/2 Obtain source file of predicate
sourcelocation/2 Location of last read term

SWI-Prolog 5.5 Reference Manual



E.1. PREDICATES 293

spy/1 Force tracer on specified predicate
stackparameter/4 Some systems: Query/Set runtime stack parameter
statistics/0 Show execution statistics
statistics/2 Obtain collected statistics
streamproperty/2 Get stream properties
string/1 Type check for string
string concat/3 atom concat/3 for strings
string length/2 Determine length of a string
string to atom/2 Conversion between string and atom
string to list/2 Conversion between string and list of character codes
strip module/3 Extract context module and term
style check/1 Change level of warnings
subatom/5 Take a substring from an atom
sublist/3 Determine elements that meet condition
substring/5 Take a substring from a string
succ/2 Logical integer successor relation
swritef/2 Formatted write on a string
swritef/3 Formatted write on a string
tab/1 Output number of spaces
tab/2 Output number of spaces on a stream
tell/1 Change current output stream
telling/1 Query current output stream
term expansion/2 (hook) Convert term before compilation
term to atom/2 Convert between term and atom
threadat exit/1 Register goal to be called at exit
threadcreate/3 Create a new Prolog task
threaddetach/1 Make thread cleanup after completion
threadexit/1 Terminate Prolog task with value
threadget message/1 Wait for message
threadget message/2 Wait for message in a queue
threadjoin/2 Wait for Prolog task-completion
threadlocal/1 Declare thread-specific clauses for a predicate
threadpeekmessage/1 Test for message
threadpeekmessage/2 Test for message in a queue
threadself/1 Get identifier of current thread
threadsendmessage/2 Send message to another thread
threadsetconcurrency/2 Number of active threads
threadsignal/2 Execute goal in another thread
threadstatistics/3 Get statistics of another thread
threads/0 List running threads
throw/1 Raise an exception (seecatch/3 )
time/1 Determine time needed to execute goal
time file/2 Get last modification time of file
tmp file/2 Create a temporary filename
told/0 Close current output
trace/0 Start the tracer
trace/1 Set trace-point on predicate

SWI-Prolog 5.5 Reference Manual



294 APPENDIX E. SUMMARY

trace/2 Set/Clear trace-point on ports
tracing/0 Query status of the tracer
trim stacks/0 Release unused memory resources
true/0 Succeed
tty get capability/3 Get terminal parameter
tty goto/2 Goto position on screen
tty put/2 Write control string to terminal
tty size/2 Get row/column size of the terminal
ttyflush/0 Flush output on terminal
unify with occurscheck/2 Logically sound unification
unifiable/3 Determing binding required for unification
unix/1 OS interaction
unknown/2 Trap undefined predicates
unloadforeign library/1 shlib Detach shared library (.so file)
unsetenv/1 Delete shell environment variable
upcaseatom/2 Convert atom to upper-case
usemodule/1 Import a module
usemodule/2 Import predicates from a module
var/1 Type check for unbound variable
visible/1 Ports that are visible in the tracer
volatile/1 Predicates that are not saved
wait for input/3 Wait for input with optional timeout
when/2 Execute goal when condition becomes true
wildcard match/2 Csh(1) style wildcard match
win exec/2 Win32: spawn Windows task
win hasmenu/0 Win32: true if console menu is available
win insertmenu/2 plwin.exe: add menu
win insertmenuitem/4 plwin.exe: add item to menu
win shell/2 Win32: open document through Shell
win shell/3 Win32: open document through Shell
win registryget value/3 Win32: get registry value
win window pos/1 Win32: change size and position of window
window title/2 Win32: change title of window
with mutex/2 Run goal while holding mutex
working directory/2 Query/change CWD
write/1 Write term
write/2 Write term to stream
writeln/1 Write term, followed by a newline
write canonical/1 Write a term with quotes, ignore operators
write canonical/2 Write a term with quotes, ignore operators on a stream
write term/2 Write term with options
write term/3 Write term with options to stream
writef/1 Formatted write
writef/2 Formatted write on stream
writeq/1 Write term, insert quotes
writeq/2 Write term, insert quotes on stream

SWI-Prolog 5.5 Reference Manual



E.2. LIBRARY PREDICATES 295

E.2 Library predicates

E.2.1 lists

append/3 Concatenate lists
delete/3 Delete all matching members from a list
flatten/2 Transform nested list into flat list
intersection/3 Set intersection
is set/1 Type check for a set
list to set/2 Remove duplicates
member/2 Element is member of a list
nextto/3 Y follows X in List
nth0/3 N-th element of a list (0-based)
nth1/3 N-th element of a list (1-based)
numlist/3 Create list of integers in interval
permutation/2 Test/generate permutations of a list
reverse/2 Inverse the order of the elements in a list
select/3 Select element of a list
subset/2 Check subset relation for unordered sets
subtract/3 Delete elements that do not satisfy condition
sumlist/2 Add all numbers in a list
union/3 Union of two sets

E.2.2 check

check/0 Program completeness and consistency
list undefined/0 List undefined predicates
list autoload/0 List predicates that require autoload
list redefined/0 List locally redefined predicates

E.2.3 readutil

readline to codes/2 Read line from a stream
readline to codes/3 Read line from a stream
readstreamto codes/2 Read contents of stream
readstreamto codes/3 Read contents of stream
readfile to codes/3 Read contents of file
readfile to terms/3 Read contents of file to Prolog terms

E.2.4 netscape

www openurl/1 Open a web-page in a browser

E.2.5 registry

registryget key/2 Get principal value of key

SWI-Prolog 5.5 Reference Manual



296 APPENDIX E. SUMMARY

registryget key/3 Get associated value of key
registryset key/2 Set principal value of key
registryset key/3 Set associated value of key
registrydeletekey/1 Remove a key
shell registerfile type/4 Register a file-type
shell registerdde/6 Register DDE action
shell registerprolog/1 Register Prolog

E.2.6 url

parseurl/2 Analyse or construct a URL
parseurl/3 Analyse or construct a relative URL
global url/3 Make relative URL global
http location/2 Analyse or construct location
www form encode/2 Encode or decode form-data

SWI-Prolog 5.5 Reference Manual



E.3. ARITHMETIC FUNCTIONS 297

E.3 Arithmetic Functions

* /2 Multiplication
** /2 Power function
+/2 Addition
- /1 Unary minus
- /2 Subtraction
/ /2 Division
// /2 Integer division
/\ /2 Bitwise and
<</2 Bitwise left shift
>>/2 Bitwise right shift
. /2 List of one character: character code
\ /1 Bitwise negation
\/ /2 Bitwise or
ˆ /2 Power function
abs/1 Absolute value
acos/1 Inverse (arc) cosine
asin/1 Inverse (arc) sine
atan/1 Inverse (arc) tangent
atan/2 Rectangular to polar conversion
ceil/1 Smallest integer larger than arg
ceiling/1 Smallest integer larger than arg
cos/1 Cosine
cputime/0 Get CPU time
e/0 Mathematical constant
exp/1 Exponent (basee)
float/1 Explicitly convert to float
float fractionalpart/1 Fractional part of a float
float integerpart/1 Integer part of a float
floor/1 Largest integer below argument
integer/1 Round to nearest integer
log/1 Natural logarithm
log10/1 10 base logarithm
max/2 Maximum of two numbers
min/2 Minimum of two numbers
msb/1 Most significant bit
mod/2 Remainder of division
random/1 Generate random number
rem/2 Remainder of division
round/1 Round to nearest integer
truncate/1 Truncate float to integer
pi/0 Mathematical constant
sign/1 Extract sign of value
sin/1 Sine
sqrt/1 Square root

SWI-Prolog 5.5 Reference Manual



298 APPENDIX E. SUMMARY

tan/1 Tangent
xor/2 Bitwise exclusive or

SWI-Prolog 5.5 Reference Manual



E.4. OPERATORS 299

E.4 Operators

$ 1 fx Bind toplevel variable
ˆ 200 xfy Predicate
ˆ 200 xfy Arithmetic function
mod 300 xfx Arithmetic function
* 400 yfx Arithmetic function
/ 400 yfx Arithmetic function
// 400 yfx Arithmetic function
<< 400 yfx Arithmetic function
>> 400 yfx Arithmetic function
xor 400 yfx Arithmetic function
+ 500 fx Arithmetic function
- 500 fx Arithmetic function
? 500 fx XPCE: obtainer
\ 500 fx Arithmetic function
+ 500 yfx Arithmetic function
- 500 yfx Arithmetic function
/\ 500 yfx Arithmetic function
\/ 500 yfx Arithmetic function
: 600 xfy module:term separator
< 700 xfx Predicate
= 700 xfx Predicate
=.. 700 xfx Predicate
=:= 700 xfx Predicate
< 700 xfx Predicate
== 700 xfx Predicate
=@= 700 xfx Predicate
=\= 700 xfx Predicate
> 700 xfx Predicate
>= 700 xfx Predicate
@< 700 xfx Predicate
@=< 700 xfx Predicate
@> 700 xfx Predicate
@>= 700 xfx Predicate
is 700 xfx Predicate
\= 700 xfx Predicate
\== 700 xfx Predicate
=@= 700 xfx Predicate
not 900 fy Predicate
\+ 900 fy Predicate
, 1000 xfy Predicate
-> 1050 xfy Predicate
*-> 1050 xfy Predicate
; 1100 xfy Predicate
| 1100 xfy Predicate

SWI-Prolog 5.5 Reference Manual



300 APPENDIX E. SUMMARY

discontiguous 1150 fx Predicate
dynamic 1150 fx Predicate
moduletransparent 1150 fx Predicate
metapredicate 1150 fx Head
multifile 1150 fx Predicate
threadlocal 1150 fx Predicate
volatile 1150 fx Predicate
initialization 1150 fx Predicate
:- 1200 fx Introduces a directive
?- 1200 fx Introduces a directive
--> 1200 xfx DCGrammar: rewrite
:- 1200 xfx head:- body. separator

SWI-Prolog 5.5 Reference Manual



Bibliography

[Anjewierden & Wielemaker, 1989]A. Anjewierden and J. Wielemaker. Extensible objects. ESPRIT
Project 1098 Technical Report UvA-C1-TR-006a, University of
Amsterdam, March 1989.

[BIM, 1989] BIM Prolog release 2.4. Everberg, Belgium, 1989.

[Bowen & Byrd, 1983] D. L. Bowen and L. M. Byrd. A portable Prolog compiler. In
L. M. Pereira, editor,Proceedings of the Login Programming
Workshop 1983, Lisabon, Portugal, 1983. Universidade nova de
Lisboa.

[Bratko, 1986] I. Bratko. Prolog Programming for Artificial Intelligence.
Addison-Wesley, Reading, Massachusetts, 1986.

[Butenhof, 1997] David R. Butenhof.Programming with POSIX threads. Addi-
son-Wesley, Reading, MA, USA, 1997.

[Clocksin & Melish, 1987] W. F. Clocksin and C. S. Melish.Programming in Prolog.
Springer-Verlag, New York, Third, Revised and Extended edi-
tion, 1987.

[Demoen, 2002] Bart Demoen. Dynamic attributes, their hProlog implementa-
tion, and a first evaluation. Report CW 350, Department of Com-
puter Science, K.U.Leuven, Leuven, Belgium, oct 2002. URL =
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW350.abs.html.

[Deransartet al., 1996] P. Deransart, A. Ed-Dbali, and L. Cervoni.Prolog: The Stan-
dard. Springer-Verlag, New York, 1996.

[Frühwirth, ] T. Frühwirth. Thom Fruehwirth’s constraint han-
dling rules website. http://www.informatik.uni-
ulm.de/pm/mitarbeiter/fruehwirth/chr-intro.html.

[Frühwirth, 1998] T. Frühwirth. Theory and Practice of Constraint Handling Rules.
In P. Stuckey and K. Marriot, editors,Special Issue on Con-
straint Logic Programming, volume 37, October 1998.

[Grahamet al., 1982] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick.
gprof: a call graph execution profiler. InSIGPLAN Symposium
on Compiler Construction, pages 120–126, 1982.

[Hodgson, 1998] Jonathan Hodgson. validation suite for con-
formance with part 1 of the standard, 1998,
http://www.sju.edu/˜jhodgson/pub/suite.tar.gz .

SWI-Prolog 5.5 Reference Manual



302 BIBLIOGRAPHY

[Holzbaur, 1990] Christian Holzbaur. Realization of forward checking in logic
programming through extended unification. Report TR-90-11,
Oesterreichisches Forschungsinstitut fuer Artificial Intelligence,
Wien, Austria, 1990.

[Kernighan & Ritchie, 1978] B. W. Kernighan and D. M. Ritchie.The C Programming Lan-
guage. Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[O’Keefe, 1990] R. A. O’Keefe.The Craft of Prolog. MIT Press, Massachussetts,
1990.

[Pereira, 1986] F. Pereira.C-Prolog User’s Manual, 1986.

[Qui, 1997] Quintus Prolog, User Guide and Reference Manual. Berkham-
sted, UK, 1997.

[Sterling & Shapiro, 1986] L. Sterling and E. Shapiro.The Art of Prolog. MIT Press, Cam-
bridge, Massachusetts, 1986.

SWI-Prolog 5.5 Reference Manual



Index

’MANUAL’ library, 24
–disable-segv-handling,237
-lpl library, 239
-lreadlinelibrary, 252
.pl, 50
.pro,50
?=/2,74
=:= /2, 119
/\ /2, 121
=\= /2, 119
| /2, 75
#=/2, 263
#>=/2, 263
#> /2, 263
#=< /2, 263
#< /2, 263
#\= /2, 263
, /2, 74
{} /1, 266
! /0, 74
! /1, 84
/ , 50
/ /2, 120
. /2, 121
=/2, 72
==/2, 72
#<=> /2, 264
>=/2, 119
>/2, 119
ˆ /2, 122
// /2, 120
-> /2, 75
=</2, 119
#<=/2, 264
<</2, 121
</2, 119
- /1, 120
- /2, 120, 264
\= /2, 73
\ /1, 122
\== /2, 72
\+ /1, 75

\/ /2, 121
+/2, 120, 264
** /2, 122
#=> /2, 264
>>/2, 121
; /2, 75
*-> /2, 75
=@=/2, 73
\=@=/2, 73
@>=/2, 73
@>/2, 73
* /2, 120, 264
@=</2, 73
@</2, 73
=.. /2, 108
\ , 50
PL get arg(),204

abolish/1,14, 85
abolish/2,85, 192
abolish/[1

2], 37
abort/0,23, 29, 33, 93, 96, 139, 173, 185, 227,

230
abs/1,120, 264
absolutefile name/2,18, 63, 66, 136–138, 250
absolutefile name/3,38, 40, 62, 66, 136, 137,

192, 225, 226, 259
absolutefile name/[2

3], 39, 66, 137
accessfile/2, 36, 135, 137
acos/1,122
acquire(),216
acyclic term/1,72
add import module/3,159
address/2,184
all different/1,263
Alpha

DEC,14
append/1,97, 98
append/3,112, 254
apply/2,76

SWI-Prolog 5.5 Reference Manual



304 INDEX

apropos/1,25, 41, 273, 283
arg/3,108
arithmeticfunction/1,123, 221
asin/1,122
assert/1,63, 65, 85–88, 90, 156, 160, 165, 183,

275
assert/2,86, 91
asserta/1,23, 65, 86
asserta/2,86
assertions,258
assertz/1,86, 275
assertz/2,86
assume/1,258
at endof stream/0,103
at endof stream/1,103
at endof stream/[0

1], 95, 258
at halt/1,68, 139, 179, 230, 236
at initialization/1,68, 235
atan/1,122
atan/2,122
atom/1,71, 200
atomchar/2,111
atomchars/2,16, 35, 62, 102, 111, 115
atomcodes/2,16, 35, 62, 111, 115
atomconcat/3,112, 116, 293
atom length/2,37, 113, 116
atomnumber/2,111
atomprefix/2,113
atomto term/3,104, 112
atomic/1,71
attachconsole/0,186, 227
attr portrayhook/2,104, 164
attr unify hook/2,41, 162, 163
attvar/1,163
autoload/0,65, 246, 247, 257

b getval/2,165, 166
b setval/2,165
backcomplibrary, 15, 16, 109
bagof/3,45, 68, 125, 284
bb inf/3, 266
bb inf/5, 266
between/3,118, 255
block/3,83, 283, 287
BOM, 47
break/0,23, 29, 139, 173, 227

Byte Order Mark,47

call/1, 15, 68, 72, 76, 78, 141, 145, 146, 164,
217

call/2,76
call/[2-6], 76
call cleanup/2,78
call cleanup/3,77, 78, 185
call cleanup/[2-3],185
call sharedobject function/2,192
call with depthlimit/2, 82
call with depthlimit/3, 76, 77
callable/1,72
catch/3,14, 15, 78, 79, 83, 100, 106, 145, 178–

180, 270, 272, 293
ceil/1,121
ceiling/1,121
charcode/2,62, 111
charconversion/2,34, 117
char type/2,113, 115
character set,43
charactercount/2,100
chat:invmap list/5, 145
chdir/1,138
checklibrary, 65, 91, 256, 295
check/0,65, 256, 257
checkold select/0,17
checklist/2,126
checkselectlibrary, 16
chr library, 172, 174
chr leash/1,174
chr notrace/0,173, 174
chr showstore/1,174
chr trace/0,173, 174
clause/2,75, 91
clause/3,86, 91, 92, 248
clause/[2

3], 37, 253
clauseproperty/2,66, 92, 270
clib

package,236
close/1,92, 94
close/2,94
closeddeconversation/1,148
closesharedobject/1,192
clp/boundslibrary, 262
clpr library, 265, 266

SWI-Prolog 5.5 Reference Manual



INDEX 305

codetype/2,113, 115
COM, 215
commandline

arguments,24
compare(),216
compare/3,45, 73, 124, 224
compilepredicates/1,88
compiling/0,68, 69
completion

TAB, 53
compound/1,71
concatatom/2,112
concatatom/3,112
consult/1,19, 20, 30, 41, 58, 62–64, 69, 88,

106, 142
contextmodule/1,158, 218
converttime/2,134
converttime/8,134
converttime/[2

8], 136
copy streamdata/2,103
copy streamdata/3,103
copy term/2,45, 109, 110, 164, 165
copy term nat/2,164
cos/1,122
cputime/0,123
ctypelibrary, 113
currentarithmeticfunction/1,123
currentatom/1,89
currentblob/2,89, 216
currentcharconversion/2,117
currentflag/1,89
currentforeign library/2,192
currentformat predicate/2,131
currentfunctor/2,89
currentinput/1,67, 98, 99
currentkey/1,89
currentmodule/1,158
currentmodule/2,158
currentmutex/3,185
currentop/3,117
currentoutput/1,99
currentpredicate/1,90
currentpredicate/2,90
currentprolog flag/2, 16, 22, 24, 33, 41, 43,

44, 62, 63, 72, 79, 80, 104, 105, 107,

139, 142, 149, 191, 193, 215, 232,
238, 254, 277

currentsignal/3,82
currentstream/3,16, 95, 138
currentthread/2,178–180
cyclic terms,45
cyclic term/1,72

DCG,63, 84
ddecurrentconnection/2,150
ddecurrentservice/2,150
ddeexecute/2,149
ddepoke/4,149
dde registerservice/2,149
dde request/3,148
ddeunregisterservice/1,150
debuglibrary, 257
debug/0,27, 30, 79, 141, 227
debug/1,258
debug/3,257, 258
debugging

exceptions,79
debugging/0,41, 141, 258, 273
debugging/1,257, 258
DEC

Alpha,14
defaultmodule/2,159
del attr/2,163, 164
delete/3,254
deletedirectory/1,138
deletefile/1, 136
deleteimport module/2,159
deterministic/1,270
Development environment,50
dif library, 165
dif/2, 45, 74, 165
discontiguous/1,88
display/1,128, 207, 208
display/[1

2], 15
displayq/[1

2], 15
dld, 191
downcaseatom/2,114, 115
dump/3,267
dup/2,16
dup stream/2,16

SWI-Prolog 5.5 Reference Manual



306 INDEX

duplicateterm/2,45, 109, 110, 166
dwim match/2,91, 150
dwim match/3,150
dwim predicate/2,91
dynamic/1,38, 85, 88, 90, 158, 183, 257

e/0,123
edit/0,70
edit/1, 17, 35, 41, 53, 54, 58, 60, 65, 69, 70,

257, 291
edit source/1,70
editorclass, 53, 55
Emacs,24
emacs/[0

1], 54
emacs/prologcolour library, 57
emacs/prologmodelibrary, 57
emacs/swiprolog library, 17
encoding/1,46, 65
ensureloaded/1,30, 62, 64, 154
entailed/1,266
erase/1,86, 91
eval license/0,281, 282
exception/3,41, 272
exceptions

debugging,79
existsdirectory/1,136
existsfile/1, 36, 135
exit/2,83
exp/1,120, 122
expandanswer/2,139
expandfile name/2,36, 63, 133, 136, 137
expandfile searchpath/2,66
expandgoal/2,38, 67, 68
expandquery/4,139
expandterm/2,67, 84
explainlibrary, 287
explain/1,25
explain/2,25
export/1,158
export list/2, 159

fail/0, 74
fail/1, 83
feature/2,16
file basename/2,136
file directoryname/2,136

file nameextension/3,137
file searchpath/2,20, 23, 34, 39–43, 51, 63–

66, 192, 226, 240, 249–251
fileerrors/0,100
fileerrors/2,35, 100
findall/3,45, 68, 125, 160, 161
flag/3,37, 87, 89, 110
flatten/2,255
float/1,71, 119, 121
float fractionalpart/1,121
float integerpart/1,121
floor/1,121
flush output/0,101
flush output/1,80, 101, 103
flush output/[0

1], 93, 101
foo/0,276
foo/3,276
forall/2, 68, 126
format/1,80, 128
format/2,128, 130, 258
format/3,80, 129, 130
format/[1

2], 36, 104, 126, 287
format/[2

3], 45
format predicate/2,130
free variables/2,109
freeze/2,164, 165
frozen/2,164
FTP,261
functor/3,10, 71, 72, 108, 166

garbagecollect/0,147
garbagecollect atoms/0,147, 230
gensymlibrary, 256
gensym/2,256
get/1,102
get/2,102
get0/1,93, 102
get0/2,102
get attr/3,163, 164
get attrs/2,164
get byte/1,101, 102
get byte/2,102
get byte/[1

2], 62

SWI-Prolog 5.5 Reference Manual



INDEX 307

get char/1,102
get char/2,102
get char/[1

2], 62
get code/1,102, 103
get code/2,46, 102, 103
get code/[1

2], 62
get singlechar/1,23, 39, 103
get time/1,134, 136
getenv/2,133, 260
global url/3, 262
GNU-Emacs,24
go/0,21
goal expansion/2,40, 63, 67, 68, 257
Graphics,11
ground/1,72, 87, 201
GUI, 11
guitracer/0,17, 59, 60, 140

halt/0,29, 139
halt/1,139, 227, 284
halt/[0

1], 68
hash/1,89
hashterm/2,45, 87
help/0,25, 41, 250, 273
help/1,24, 25, 40, 41, 273
helpidx library, 24
hooks,40
HTTP,261
http load library, 64, 274
http location/2,262

IDE, 50
ignore/1,68, 76, 145, 178
immediate

update view,87
import/1,153, 154, 158
import module/2,159
in/2, 263
include/1,62, 63, 65
index/1,87–90
indomain/1,263
inf/2, 266
infinite trees,45
initialization/1,68, 191, 248

install/0,248
int to atom/2,112
int to atom/3,112
integer/1,71, 121
interactor/0,96, 186
internationalization,45
intersection/3,256
is/2,37, 119, 121, 123, 255
is absolutefile name/1,137
is cyclic/1,72
is list/1, 124, 255
is set/1,255
iso latin 1,43

Java,215

keysort/2,124

label/1,263
last/2,255
leash/1,27, 141, 142, 174, 271
length/2,124
lex chain/1,263
library directory/1,40–42, 64, 65
library directory/2,43
license/1,282
license/2,281, 282
license:license/3,282
likes/2,19
limit stack/2,147
line count/2,96, 100, 131
line position/2,96, 100, 131
list autoload/0,257
list debugtopics/0,257, 258
list redefined/0,257
list to set/2,255
list undefined/0,65, 257
listing/0,71
listing/1,29, 71
lists library, 123, 254, 295
load files/1,40
load files/2,36, 41, 46, 63, 64, 273, 274, 291
load foreign library/1,192, 238, 248
load foreign library/2,192
load foreign library/[1

2], 66, 191
log/1,122
log10/1,122

SWI-Prolog 5.5 Reference Manual



308 INDEX

logical
update view,87

MacOS X,11
main/0,33
make/0,10, 42, 43, 54, 58, 60, 63, 65
makedirectory/1,138
makelibrary index/1,42
makelibrary index/2,42
makelibrary index/[1

2], 43
manpce/0,47
maplist/2,126
maplist/3,126, 156, 247
maplist/4,126
max/1,266
max/2,120, 264
member/2,28, 78, 92, 124, 137, 254, 289
memberchk/2,124
memory

layout,47
merge/3,124
mergeset/3,125
messagehook/3,15, 40, 80, 81
messagequeuecreate/1,181, 182
messagequeuedestroy/1,182
messageto string/2,80, 81
metapredicate/1,158–160
min/1,266
min/2,120, 264
mod/2,120, 264
module/1,159
module/2,67, 116, 153, 158
moduletransparent/1,91, 158, 159, 218, 276
msb/1,122
msort/2,124
multifile/1, 69, 88, 90, 257, 273, 277
mutexcreate/1,184, 185
mutexdestroy/1,185
mutex lock/1,185
mutexstatistics/0,180
mutex trylock/1,185
mutexunlock/1,185
mutexunlock all/0, 185

name/2,111, 112
nb current/2,166

nb delete/1,166
nb getval/2,166
nb linkarg/3,110
nb linkval/2, 110, 166
nb setarg/3,87, 110
nb setval/2,87, 110, 165, 166
netmask/4,234
netscapelibrary, 259, 295
nextto/3,254
nl/0, 100
nl/1, 101
nl/[0

1], 127
nodebug/0,141
nodebug/1,258
nofileerrors/0,100
noguitracer/0,59, 60, 140
nonvar/1,71
noprofile/1,145
noprotocol/0,140
nospy/1,27, 41, 141, 273
nospyall/0,41, 141, 273
not/1,68, 76, 283
notrace/0,140, 174
notrace/1,141
nth0/3,255
nth1/3,255
nth clause/3,91, 92, 270
number/1,71, 255
numberchars/2,16, 62, 111
numbercodes/2,16, 62, 111
numbervars/3,105, 109
numbervars/4,109
numbervars/[3

4], 45
numlist/3,255

on signal/3,15, 81, 82
once/1,68, 76, 77, 82, 141, 144, 185, 219
online help library, 284
op/3,16, 61, 88, 105, 117
open/3,36, 92, 94
open/4,13, 46, 47, 61, 93–96, 103, 259
openddeconversation/3,148
opennull stream/1,94
openresource/3,15, 246, 249–251
opensharedobject/2,37, 191

SWI-Prolog 5.5 Reference Manual



INDEX 309

opensharedobject/3,191
operator

and modules,116
option/2,170

package
clib, 236

parseurl/2, 261, 262
parseurl/3, 262
pcecall/1,189
pcedispatch/1,189
peekbyte/1,102
peekbyte/2,102
peekbyte/[1

2], 62
peekchar/1,102
peekchar/2,102
peekchar/[1

2], 62
peekcode/1,102
peekcode/2,102
peekcode/[1

2], 62
permutation/2,255
phrase/2,84
phrase/3,84
pi/0, 122
PL aborthook(),230
PL abortunhook(),230
PL action(),226
PL agchook(),230
PL atomchars(),200
PL atomnchars(),205
PL atomwchars(),206
PL blob data(),217
PL BLOB NOCOPY,215
PL BLOB TEXT, 215
PL BLOB UNIQUE, 215
PL call(), 219
PL call predicate(),219
PL charsto term(),214
PL cleanup(),236
PL closeforeign frame(),219
PL closequery(),219
PL compare(),224
PL consfunctor(),209
PL consfunctor v(), 209

PL conslist(), 209
PL context(),220
PL copy term ref(), 196
PL createengine(),188
PL cut query(),219
PL destroyengine(),188
PL discardforeign frame(),219
PL dispatchhook(),230
PL erase(),224
PL eraseexternal(),225
PL exception(),222
PL fail(), 197
PL foreign context(),198
PL foreign contextaddress(),198
PL foreign control(),198
PL free(),244
PL functor arity(), 200
PL functor name(),200
PL get arg(),204
PL get atom(),202
PL get atomchars(),202
PL get atomnchars(),204
PL get blob(),217
PL get bool(),204
PL get chars(),202
PL get file name(),225
PL get float(),204
PL get functor(),204
PL get head(),206
PL get int64(),204
PL get integer(),203
PL get list(), 206
PL get list chars(),203
PL get list nchars(),204
PL get long(),203
PL get module(),204
PL get namearity(), 204
PL get nchars(),205
PL get nil(), 206
PL get pointer(),204
PL get string chars(),202
PL get tail(), 206
PL get wchars(),206
PL halt(),237
PL handlesignals(),223
PL initialise(),235
PL install readline(),236

SWI-Prolog 5.5 Reference Manual



310 INDEX

PL is atom(),201
PL is atomic(),202
PL is blob(),216
PL is compound(),202
PL is float(),202
PL is functor(),202
PL is ground(),201
PL is initialised(),236
PL is integer(),202
PL is list(), 202
PL is number(),202
PL is string(),201
PL is variable(),201
PL license(),282
PL malloc(),244
PL modulename(),221
PL new atom(),198
PL new atomnchars(),205
PL new atomwchars(),205
PL new functor(),200
PL new module(),221
PL new term ref(), 195
PL new term refs(),195
PL next solution(),219
PL on halt(),230
PL openforeign frame(),219
PL openquery(),218
PL pred(),217
PL predicate(),217
PL predicateinfo(), 217
PL put atom(),207
PL put atomchars(),207
PL put atomnchars(),205
PL put blob(),217
PL put float(),207
PL put functor(),209
PL put int64(),207
PL put integer(),207
PL put list(), 209
PL put list chars(),207
PL put list nchars(),205
PL put list ncodes(),205
PL put nil(), 209
PL put pointer(),207
PL put string chars(),207
PL put string nchars(),205, 207
PL put term(),209

PL put variable(),207
PL query(),226
PL quote(),214
PL raise(),223
PL raiseexception(),222
PL realloc(),244
PL record(),224
PL recordexternal(),225
PL recorded(),224
PL recordedexternal(),225
PL registeratom(),200
PL registerextensions(),230
PL registerextensionsin module(),229
PL registerforeign(),229
PL registerforeign in module(),228
PL resetterm refs(),196
PL retry(),198
PL retry address(),198
PL rewind foreign frame(),219
PL samecompound(),224
PL setengine(),188
PL signal(),223
PL strip module(),220
PL succeed(),197
PL term type(),201
PL threadat exit(), 187
PL threadattachengine(),187
PL threaddestroyengine(),187
PL threadself(),186
PL throw(),222
PL toplevel(),236
PL unify(), 210
PL unify arg(),212
PL unify atom(),211
PL unify atomchars(),211
PL unify atomnchars(),205
PL unify blob(),216
PL unify chars(),211
PL unify float(),211
PL unify functor(),211
PL unify int64(),211
PL unify integer(),211
PL unify list(), 211
PL unify list chars(),211
PL unify list nchars(),205
PL unify list ncodes(),205
PL unify nil(), 212

SWI-Prolog 5.5 Reference Manual



INDEX 311

PL unify pointer(),211
PL unify string chars(),211
PL unify string nchars(),205, 211
PL unify term(),212
PL unify wchars(),206
PL unregisteratom(),200
PL unregisterblob type(),216
PL warning(),226
plus/3,76, 118
PLVERSION,244
portray/1,30, 40, 52, 104–106, 218, 231, 273
portrayclause/1,71
portrayclause/2,71
predicateproperty/2,89, 90, 159
predsort/3,124
preprocessor/2,68
print/1,105, 106, 128, 129, 218, 290
print/2,105
print/[1

2], 104
print message/2,15, 39, 40, 63, 68, 79–81,

106, 178, 179, 258, 289
print messagelines/3,15, 80, 81
profile file,20
profile/1,144
profile/3,144, 252
profiler/2,144
prolog/0,23, 35, 97, 139, 159, 236, 270
prolog:debugcontrol hook/1,41, 273
prolog:helphook/1,41, 273
prolog:showprofile hook/2,144
prolog choiceattribute/3,270, 271
prolog currentframe/1,269
prolog edit:edit command/2,41, 70
prolog edit:edit source/1,41, 53, 60, 69, 70
prolog edit:load/0,70
prolog edit:locate/2,70
prolog edit:locate/3,41, 69, 70
prolog file type/2,62, 66, 137
prolog frameattribute/3,92, 269, 271
prolog frameattribute/4,271
prolog ide class, 59
prolog ide/1,59
prolog list goal/1,41, 273
prolog load context/2,67
prolog load file/2, 41, 64, 273
prolog serverlibrary, 97

prolog skip level/2,272
prolog to os filename/2,51, 137, 138
prolog traceinterception/4,41, 59, 140, 269–

271
prompt/2,107, 108
prompt1/1,108
properlist/1, 124
protocol/1,140
protocola/1,140
protocolling/1,140
prove/3,54
put/1,101
put/2,101
put attr/3,163, 164
put attrs/2,164
put byte/1,101
put byte/2,101
put byte/[1

2], 62
put char/1,101
put char/2,101
put char/[1

2], 62
put code/1,101
put code/2,46, 101, 103
put code/[1

2], 62

qcompile/1,63, 64, 68, 69
qsaveprogram/1,246
qsaveprogram/2,14, 32, 33, 36, 52, 59, 246,

247, 249
qsaveprogram/[1

2], 14, 15, 23, 32, 38, 68, 91, 191, 235,
240, 247, 248

quiet,22, 80
quintuslibrary, 16, 158, 160

random/1,121
read/1,34, 36, 49, 93, 101, 105, 106, 108, 116,

142, 166, 259, 291
read/2,100, 106
readclause/1,106, 142
readclause/2,106
readfile to codes/3,259
readfile to terms/3,259
readhistory/6,107

SWI-Prolog 5.5 Reference Manual



312 INDEX

readline to codes/2,258
readline to codes/3,258
readlink/3, 138
readpendinginput/3,103
readstreamto codes/2,259
readstreamto codes/3,259
readterm/2,26, 34, 106, 107, 112
readterm/3,107, 117, 139
readterm/[2

3], 106
readutillibrary, 53, 258, 295
reconsult/1,63
recorda/2,86
recorda/3,45, 86, 89, 165, 224, 225
recorded/2,86
recorded/3,86, 160, 248
recordz/2,86, 160
recordz/3,45, 86
redefinesystempredicate/1,13, 85, 275
registry,47
registrylibrary, 260, 295
registrydeletekey/1,260
registryget key/2,260
registryget key/3,260
registryset key/2,260
registryset key/3,260
release(),216
reloadlibrary index/0,43
rem/2,120
renamefile/2, 136
repeat/0,74, 77
require/1,65, 247
resetgensym/0,256
resetgensym/1,256
resetprofiler/0,144, 145
resource/3,15, 38, 41, 246, 247, 249–251
retract/1,63, 65, 85–88, 90, 160, 183
retractall/1,85, 86
reverse/2,153, 255
RFC-1738,261
rl addhistory/1,274
rl readinit file/1, 274
rlimit library, 17
round/1,121

samefile/2, 136
Scurl/1,268

see/1,15, 92, 93, 97, 98
seeing/1,97, 98, 138
seek/4,95, 96
seen/0,99
select/3,16, 254
set feature/2,16
set input/1,96, 98, 99
setoutput/1,98, 99
setprolog flag/2,16, 25, 33, 40, 118
setprolog IO/3, 97
set stream/2,46, 93, 95–97, 100
set streamposition/2,95, 96
set tty/2, 131
setarg/3,109, 110, 163, 166
setenv/2,133
setlocale/3,133
setof/3,45, 68, 125, 284
sformat/2,130
sformat/3,104, 130
shell/0,132, 133
shell/1,51, 70, 132, 133
shell/2,132
shell/[0-2],133
shell/[1

2], 132
shell registerdde/6,260
shell registerfile type/4,260
shell registerprolog/1,260
shlib library, 285, 289, 294
showprofile/1,144
showprofile/2,144
sign/1,120
silent,80
sin/1,120, 122
sizefile/2, 136
skip/1,103
skip/2,103
sleep/1,151
socketlibrary, 100
Solaris,179
sort/2,124, 125, 255
sourcefile/1, 66
sourcefile/2, 66, 69, 90
sourcefile/[1

2], 158
sourcelocation/2,67
spy/1,27, 35, 36, 41, 59, 60, 141, 273, 286

SWI-Prolog 5.5 Reference Manual



INDEX 313

sqrt/1,122
stack

memory management,47
stackparameter/4,147
startup file,20
statisticslibrary, 144
statistics/0,144
statistics/2,123, 142, 143, 180
streamproperty/2,47, 93, 94, 96, 97, 107
string/1,71, 129
string concat/3,112, 116
string length/2,116
string to atom/2,116
string to list/2, 116
strip module/3,158
style check/1,49, 88, 142, 278
subatom/5,113, 116
substring/5,116
sublist/3,126
subset/2,256
subtract/3,256
succ/2,118
sum/3,263
sumlist/2,255
sup/2,266
swi/pceprofile library, 144
swi edit library, 70
swi help library, 24
swritef/2,128
swritef/3,128

TAB
completion,53

tab/1,101
tab/2,101
tan/1,122
tell/1, 15, 92, 93, 97, 98
telling/1,97–99, 138
term expansion/2,40, 63, 67–69, 139, 172
term to atom/2,104, 112, 214
term variables/2,45, 106, 109
term variables/3,109
terms

cyclic, 45
threadat exit/1,179, 187
threadcreate/3,177, 179, 189
threaddetach/1,178, 179

threadexit/1,179, 180
threadget message/1,181, 182
threadget message/2,182
threadjoin/2, 178–180
threadlocal/1,88, 91, 183
threadpeekmessage/1,182
threadpeekmessage/2,182
threadself/1,38, 178, 179, 181
threadsendmessage/2,181, 182
threadsetconcurrency/2,179
threadsignal/2,183, 185, 223
threadstatistics/3,180
threads/0,186
throw/1,14, 27, 45, 78, 83, 139, 180, 183, 222,

223, 272
time library, 82
time/1,123, 144
time file/2, 134, 136
tmp file/2, 138
told/0,99
trace/0,27, 36, 59, 60, 140, 141, 174, 183, 227
trace/1,35, 141
trace/2,141
tracing/0,140
trim stacks/0,35, 147
true/0,38, 74, 77
truncate/1,121
tty get capability/2,132
tty get capability/3,131
tty goto/2,131
tty put/2,131
tty size/2,131, 132
ttyflush/0,101, 128

UCS,45
UNICODE,45
unifiable/3,74
unify with occurscheck/2,73
union/3,256
Unix, 11
unix, 39
unix/1,16, 133
unknown/2,41, 142, 158, 254
unloadforeign library/1,192
unsetenv/1,133
upcaseatom/2,114, 115
update view,87

SWI-Prolog 5.5 Reference Manual



314 INDEX

URL, 132
url library, 259, 261, 296
usemodule/1,41, 51, 154
usemodule/2,42, 154
usemodule/[1

2], 30, 58, 62, 64, 153–155, 158, 276
userlibrary, 291
user profile file,20
user:prologload file/2, 274
UTF-8,45
utf-8, 61

var/1,13, 71, 163, 200
verbose,22
visible/1,142, 271
volatile/1,91, 184, 248

wait for input/3,96, 99, 100
whenlibrary, 165
when/2,45, 74, 164, 165
wildcard match/2,150
win exec/2,132
win hasmenu/0,135
win insertmenu/2,135
win insertmenuitem/4,135
win registryget value/3,133
win shell/2,132, 259
win window pos/1,135
Window interface,11
window title/2, 134
Windows,11
windows,40
with mutex/2,185, 186
working directory/2,133, 134, 137, 138
write(), 216
write/1, 36, 40, 45, 105, 112, 113, 128, 130,

203, 207, 216
write/2,105
write canonical/1,105, 129
write canonical/2,105
write canonical/[1

2], 15
write term/2, 27, 35, 39, 73, 104, 105, 116,

128, 130, 164
write term/3,40, 105, 109
write term/[2

3], 14, 36

writef/1, 127
writef/2, 18, 44, 45, 104, 127, 128
writef/[1

2], 126
writeln/1,127
writeq/1,105, 128, 129
writeq/2,105
www form encode/2,262
www openurl/1, 259, 260

X-Windows,11
X11, 11
xor/2,121
XPCE,11

SWI-Prolog 5.5 Reference Manual


	Introduction
	SWI-Prolog
	Books about Prolog

	Status
	Compliance to the ISO standard
	Should you be using SWI-Prolog?
	The XPCE GUI system for Prolog
	Release Notes
	Version 1.8 Release Notes
	Version 1.9 Release Notes
	Version 2.0 Release Notes
	Version 2.5 Release Notes
	Version 2.6 Release Notes
	Version 2.7 Release Notes
	Version 2.8 Release Notes
	Version 2.9 Release Notes
	Version 3.0 Release Notes
	Version 3.1 Release Notes
	Version 3.3 Release Notes
	Version 3.4 Release Notes
	Version 4.0 Release Notes
	Version 5.0 Release Notes
	Version 5.1 Release Notes
	Version 5.2 Release Notes
	Version 5.3 Release Notes
	Version 5.4 Release Notes
	Version 5.5 Release Notes

	Donate to the SWI-Prolog project
	Acknowledgements

	Overview
	Getting started quickly
	Starting SWI-Prolog
	Executing a query

	The user's initialisation file
	Initialisation files and goals
	Command line options
	GNU Emacs Interface
	Online Help
	Query Substitutions
	Limitations of the History System

	Reuse of toplevel bindings
	Overview of the Debugger
	Compilation
	During program development
	For running the result

	Environment Control (Prolog flags)
	An overview of hook predicates
	Automatic loading of libraries
	Garbage Collection
	Syntax Notes
	ISO Syntax Support

	Infinite trees (cyclic terms)
	Wide character support
	Wide character encodings on streams

	System limits
	Limits on memory areas
	Other Limits
	Reserved Names


	Initialising and Managing a Prolog Project
	The project source-files
	File Names and Locations
	Project Special Files
	International Sourcefiles

	Using modules
	The test-edit-reload cycle
	Locating things to edit
	Editing and incremental compilation

	Using the PceEmacs built-in editor
	Activating PceEmacs
	Bluffing through PceEmacs
	Prolog Mode

	The Graphical Debugger
	Invoking the window-based debugger

	The Prolog Navigator
	Accessing the IDE from your program
	Summary of the iDE

	Built-in predicates
	Notation of Predicate Descriptions
	Character representation
	Loading Prolog source files
	Quick load files

	Listing and Editor Interface
	Verify Type of a Term
	Comparison and Unification or Terms
	Standard Order of Terms

	Control Predicates
	Meta-Call Predicates
	ISO compliant Exception handling
	Debugging and exceptions
	The exception term
	Printing messages

	Handling signals
	Notes on signal handling

	The `block' control-structure
	DCG Grammar rules
	Database
	Update view
	Indexing databases

	Declaring predicates properties
	Examining the program
	Input and output
	ISO Input and Output Streams
	Edinburgh-style I/O
	Switching Between Edinburgh and ISO I/O

	Status of streams
	Primitive character I/O
	Term reading and writing
	Analysing and Constructing Terms
	Non-logical operations on terms

	Analysing and Constructing Atoms
	Classifying characters
	Case conversion

	Representing text in strings
	Operators
	Character Conversion
	Arithmetic
	Arithmetic Functions
	Adding Arithmetic Functions
	Built-in list operations
	Finding all Solutions to a Goal
	Invoking Predicates on all Members of a List
	Forall
	Formatted Write
	Writef
	Format
	Programming Format

	Terminal Control
	Operating System Interaction
	Dealing with time and date
	Controlling the PLWIN.EXE console window

	File System Interaction
	User Toplevel Manipulation
	Creating a Protocol of the User Interaction
	Debugging and Tracing Programs
	Obtaining Runtime Statistics
	Execution profiling
	Profiling predicates
	Visualizing profiling data
	Information gathering

	Memory Management
	Windows DDE interface
	DDE client interface
	DDE server mode

	Miscellaneous

	Using Modules
	Why Using Modules?
	Name-based versus Predicate-based Modules
	Defining a Module
	Importing Predicates into a Module
	Reserved Modules

	Using the Module System
	Object Oriented Programming

	Meta-Predicates in Modules
	Definition and Context Module
	Overruling Module Boundaries

	Dynamic Modules
	Module Handling Predicates
	Compatibility of the Module System
	Emulating meta_predicate/1


	Special Variables and Coroutining
	Attributed variables
	Special purpose predicates for attributes

	Coroutining
	Global variables
	Compatibility of SWI-Prolog Global Variables


	CHR: Constraint Handling Rules
	Introduction
	Syntax and Semantics
	Syntax
	Semantics

	CHR in SWI-Prolog Programs
	Embedding in Prolog Programs
	Constraint declaration
	Compilation

	Debugging
	Ports
	Tracing
	CHR Debugging Predicates

	Examples
	Compatibility with SICStus CHR
	Guidelines

	Multi-threaded applications
	Creating and destroying Prolog threads
	Monitoring threads
	Linux: linuxthreads vs. NPTL

	Thread communication
	Message queues
	Signalling threads
	Threads and dynamic predicates

	Thread synchronisation
	Thread-support library(threadutil)
	Multi-threaded mixed C and Prolog applications
	A Prolog thread for each native thread (one-to-one)
	Pooling Prolog engines (many-to-many)

	Multithreading and the XPCE graphics system

	Foreign Language Interface
	Overview of the Interface
	Linking Foreign Modules
	What linking is provided?
	What kind of loading should I be using?

	Dynamic Linking of shared libraries
	Using the library shlib for .DLL and .so files
	Static Linking

	Interface Data types
	Type term_t: a reference to a Prolog term
	Other foreign interface types

	The Foreign Include File
	Argument Passing and Control
	Atoms and functors
	Analysing Terms via the Foreign Interface
	Constructing Terms
	Unifying data
	BLOBS: Using atoms to store arbitrary binary data
	Calling Prolog from C
	Discarding Data
	Foreign Code and Modules
	Prolog exceptions in foreign code
	Catching Signals (Software Interrupts)
	Miscellaneous
	Errors and warnings
	Environment Control from Foreign Code
	Querying Prolog
	Registering Foreign Predicates
	Foreign Code Hooks
	Storing foreign data
	Embedding SWI-Prolog in other applications

	Linking embedded applications using plld
	A simple example

	The Prolog `home' directory
	Example of Using the Foreign Interface
	Notes on Using Foreign Code
	Memory Allocation
	Compatibility between Prolog versions
	Debugging Foreign Code
	Name Conflicts in C modules
	Compatibility of the Foreign Interface


	Generating Runtime Applications
	Limitations of qsave_program
	Runtimes and Foreign Code
	Using program resources
	Predicates Definitions
	The plrc program

	Finding Application files
	Passing a path to the application

	The Runtime Environment
	The Runtime Emulator


	The SWI-Prolog library
	lists: List Manipulation
	Set Manipulation

	gensym: Generate unique identifiers
	check: Elementary completeness checks
	debug: Some reusable code to help debugging applications
	readutil: Reading lines, streams and files
	netscape: Activating your Web-browser
	registry: Manipulating the Windows registry
	url: Analysing and constructing URL
	clp/bounds: Integer Bounds Constraint Solver
	Constraints
	Constraint Implication and Reified Constraints
	Example
	SICStus clp(FD) compatibility

	clpr: Constraint Logic Programming over Reals
	Solver predicates
	Syntax of the predicate arguments
	Use of unification
	Non-linear constraints


	Hackers corner
	Examining the Environment Stack
	Intercepting the Tracer
	Hooks using the exception/3 predicate
	Hooks for integrating libraries
	Hooks for loading files
	Readline Interaction

	Glossary of Terms
	SWI-Prolog License Conditions and Tools
	The SWI-Prolog kernel and foreign libraries
	The SWI-Prolog Prolog libraries

	Contributing to the SWI-Prolog project
	Software support to keep track of license conditions

	Summary
	Predicates
	Library predicates
	lists
	check
	readutil
	netscape
	registry
	url

	Arithmetic Functions
	Operators


