AUSZUG aus prelude.hs
Standard-Funktionen und -Listenfunktionen

fst :r (a,b) -> a

fst (x,) = x

snd :: (a,b) > Db

snd (_,vy) =y

curry :: ((a,b) =>c) -> (a => b -> ¢)
curry f x y = f (x,v)

uncurry it (a => b ->c) -> ((a,b) -> ¢)
uncurry f p = f (fst p) (snd p)

id tra -> a

id X = x

const tra ->b ->a

const k =k

(.) :: (b ->c) -> (a => b) -> (a -> c)

(f . g) x = f (g x)
flip :: (@ ->b ->c¢c) -=>Db ->a ->c
flip £ x y =fyx
($) :: (a->Db) —>a ->b
f S x = f x
until :: (a => Bool) -> (a -> a) -> a -> a
until p f x = if p x then x else until p f (f x)
-- Standard list functions {PreludelList} ------
head i [a]l -> a
head (x:) = x
last i [a]l -> a
last [x] = X
last (_:xs) = last xs
tail o [a]l > [al
tail (_:xs) = Xs
init i [a]l => [a]
init [x] =[]
init (x:xs) = x init xs
null :: [a]l] -> Bool
null [] = True
null (_:) = False
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs8) ++ ys = x (xs ++ ys)
map i (a => b) -> [a] -> [b]
map f xs = [£ x X <- xs]
filter (a => Bool) -> [a] -> [a]
filter p xs =[x | x <- x5, p x]
concat o [[all -> [a]
concat = foldr (++) []
length :: [a]l] -> Int
length = foldl' (\n _->n + 1) 0
() :: [b] -> Int -> b
(x:) 'L o0 = x
(_:xs) !'!'n | n>0 = xs !! (n-1)
() e = error "Prelude.!!: negative index"
[] N = error "Prelude.!!: index too large"
foldl :: (a ->b ->a) ->a -> [b] -> a
foldl £ z [] =z
foldl f z (x:xs) = foldl f (f z x) xs
scanl :: (a ->b ->a) -> a -> [b] -> [a]
scanl f g xs = q (case xs of

[] -> [

x:xs -> scanl £ (f g x) xs)
foldr (a -=>b ->Db) -=>b -> [a] -> Db
foldr £ z [] =z
foldr f z (x:xs) = f x (foldr f z xs)
scanr :: (a ->b ->Db) -> Db -> [a] -> [b]
scanr £ g0 [] = [q0]
scanr £ g0 (x:xs) = f x g : gs

where gs@(qg:_) = scanr f g0 xs

iterate (a => a) -> a -> [a]
iterate f x = X iterate £ (f x)
repeat 1ra —> [al
repeat x = xs where xs = X:xs
replicate Int -> a -> [a]

replicate n x = take n (repeat x)

cycle
cycle []
cycle xs

take
take _
take _ [
take n (
take
argument"

o

]
X1XS)

drop

drop 0 xs
drop _ []
drop n (_:xs)
drop
argument"

splitAt
splitAt 0 xs
splitAt [1

splitAt n (x:

where (xs',x

splitAt _

takeWhile
takeWhile p [
takeWhile p (

I px

[a
= er
= XS

In

| n>0 =
= err

In
= XS
=[]

| n>0 =
= err

In
([1]
([1

n>0

xS)

o —

err

n

]
x:

s

%

| otherwise = []

dropWhile
dropWhile p [

] -

dropWhile p xs@(x:xs')

] > [a]

ror "Prelude.cycle: empty list"
' where xs'=xs+ttxs'

t -> [a] -> [a]

x : take (n-1) xs
or "Prelude.take: negative

t -> [a] -> [a]

drop (n-1) xs
or "Prelude.drop: negative

t -> [a]l -> (lal, [a])
1 XS)
L)
= (x:xs',xs'")
) = splitAt (n-1) xs
or

Prelude.splitAt: negative argument"

(a -=> Bool) -> [a] -> [a]

[]

x : takeWhile p xs

(a => Bool) -> [a] -> [a]
[]

| p x = dropWhile p xs'
| otherwise = xs
span, break (a -> Bool) -> [a]l -> (lal,[al])
span p [] = ([1, 01
span p xs@(x:xs')
I p x = (x:ys, zs)
| otherwise = ([],xs)
where (ys,zs) = span p xs'
break p = span (not . p)
lines String -> [String]
lines "" =[]
lines s = let (1,s') = break ('\n'==) s
in 1 : case s' of [] -> []
(_:s'') -> lines s''
words :: String -> [String]
words s = case dropWhile isSpace s of
oS
s' => w words s''
where (w,s'') = break isSpace s'
unlines [String] -> String
unlines = concatMap (\1 -> 1 ++ "\n")
unwords [String] -> String
unwords [] []
unwords ws = foldrl (\w s -> w ++ ' ':s) ws
reverse [a] -> [a]
reverse = foldl (flip (:)) []
and, or [Bool] -> Bool
and = foldr (&&) True
or = foldr (|]|) False
any, all (a => Bool) -> [a] -> Bool
any p = or . map p
all p = and . map p
elem, notElem Eg a => a -> [a] -> Bool
elem = any . (==
notElem = all . (/=)
lookup Eg a => a -> [(a,b)] -> Maybe b
lookup k [] = Nothing
lookup k ((x,y):xys) | k==x = Just y
| otherwise = lookup k xys
sum, product : Num a => [a] -> a
sum = foldl' (+) O
product = foldl' (*) 1
maximum, minimum :: Ord a => [a] -> a
maximum = foldll max
minimum = foldll min
concatMap : (a -> [b]l) -> [a] -> [b]
concatMap f = concat . map f
zip fal => [b] -> [(a,b)]
zip = zipWith (\a b -> (a,b))
zipWith 11 (a=>b->c) -> [a]l->[b]->[c]
zipWith z (a:as) (b:bs) =z a b zipWith z as bs
zipWith _ _ =[]
unzip v [(a,b)] => ([al, [b])
unzip = foldr (\(a,b) ~(as,bs) -> (a:as, b:bs))

(1,

