
{--
 AUSZUG aus prelude.hs
 Standard-Funktionen und -Listenfunktíonen
---}

-- Some standard functions ---------

fst :: (a,b) -> a
fst (x,_) = x

snd :: (a,b) -> b
snd (_,y) = y

curry :: ((a,b) -> c) -> (a -> b -> c)
curry f x y = f (x,y)

uncurry :: (a -> b -> c) -> ((a,b) -> c)
uncurry f p = f (fst p) (snd p)

id :: a -> a
id x = x

const :: a -> b -> a
const k _ = k

(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x

($) :: (a -> b) -> a -> b
f $ x = f x

until :: (a -> Bool) -> (a -> a) -> a -> a
until p f x = if p x then x else until p f (f x)

-- Standard list functions {PreludeList} ------

head :: [a] -> a
head (x:_) = x

last :: [a] -> a
last [x] = x
last (_:xs) = last xs

tail :: [a] -> [a]
tail (_:xs) = xs

init :: [a] -> [a]
init [x] = []
init (x:xs) = x : init xs

null :: [a] -> Bool
null [] = True
null (_:_) = False

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

map :: (a -> b) -> [a] -> [b]
map f xs = [f x | x <- xs]

filter :: (a -> Bool) -> [a] -> [a]
filter p xs = [x | x <- xs, p x]

concat :: [[a]] -> [a]
concat = foldr (++) []

length :: [a] -> Int
length = foldl' (\n _ -> n + 1) 0

(!!) :: [b] -> Int -> b
(x:_) !! 0 = x
(_:xs) !! n | n>0 = xs !! (n-1)
(_:_) !! _ = error "Prelude.!!: negative index"
[] !! _ = error "Prelude.!!: index too large"

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

scanl :: (a -> b -> a) -> a -> [b] -> [a]
scanl f q xs = q : (case xs of
 [] -> []
 x:xs -> scanl f (f q x) xs)

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

scanr :: (a -> b -> b) -> b -> [a] -> [b]
scanr f q0 [] = [q0]
scanr f q0 (x:xs) = f x q : qs
 where qs@(q:_) = scanr f q0 xs

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

repeat :: a -> [a]
repeat x = xs where xs = x:xs

replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)

cycle :: [a] -> [a]
cycle [] = error "Prelude.cycle: empty list"
cycle xs = xs' where xs'=xs++xs'

take :: Int -> [a] -> [a]
take 0 _ = []
take _ [] = []
take n (x:xs) | n>0 = x : take (n-1) xs
take _ _ = error "Prelude.take: negative
argument"

drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop _ [] = []
drop n (_:xs) | n>0 = drop (n-1) xs
drop _ _ = error "Prelude.drop: negative
argument"

splitAt :: Int -> [a] -> ([a], [a])
splitAt 0 xs = ([],xs)
splitAt _ [] = ([],[])
splitAt n (x:xs) | n>0 = (x:xs',xs'')
 where (xs',xs'') = splitAt (n-1) xs
splitAt _ _ = error
 "Prelude.splitAt: negative argument"

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)
 | p x = x : takeWhile p xs
 | otherwise = []

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs')
 | p x = dropWhile p xs'
 | otherwise = xs

span, break :: (a -> Bool) -> [a] -> ([a],[a])
span p [] = ([],[])
span p xs@(x:xs')
 | p x = (x:ys, zs)
 | otherwise = ([],xs)
 where (ys,zs) = span p xs'
break p = span (not . p)

lines :: String -> [String]
lines "" = []
lines s = let (l,s') = break ('\n'==) s
 in l : case s' of [] -> []
 (_:s'') -> lines s''

words :: String -> [String]
words s = case dropWhile isSpace s of
 "" -> []
 s' -> w : words s''
 where (w,s'') = break isSpace s'

unlines :: [String] -> String
unlines = concatMap (\l -> l ++ "\n")

unwords :: [String] -> String
unwords [] = []
unwords ws = foldr1 (\w s -> w ++ ' ':s) ws

reverse :: [a] -> [a]
reverse = foldl (flip (:)) []

and, or :: [Bool] -> Bool
and = foldr (&&) True
or = foldr (||) False

any, all :: (a -> Bool) -> [a] -> Bool
any p = or . map p
all p = and . map p

elem, notElem :: Eq a => a -> [a] -> Bool
elem = any . (==)
notElem = all . (/=)

lookup :: Eq a => a -> [(a,b)] -> Maybe b
lookup k [] = Nothing
lookup k ((x,y):xys) | k==x = Just y
 | otherwise = lookup k xys

sum, product :: Num a => [a] -> a
sum = foldl' (+) 0
product = foldl' (*) 1

maximum, minimum :: Ord a => [a] -> a
maximum = foldl1 max
minimum = foldl1 min

concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f = concat . map f

zip :: [a] -> [b] -> [(a,b)]
zip = zipWith (\a b -> (a,b))

zipWith :: (a->b->c) -> [a]->[b]->[c]
zipWith z (a:as) (b:bs) = z a b : zipWith z as bs
zipWith _ _ _ = []

unzip :: [(a,b)] -> ([a],[b])
unzip = foldr (\(a,b) ~(as,bs) -> (a:as, b:bs))
 ([], [])

