
9. Alternative Konzepte: 
Parallele funktionale Programmierung

Implicit Parallelism 

Controlled Parallelism

Explicit Parallelism

Data Parallelism

Control Parallelism

Parallelism

Concurrency
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Kernel Ideas

• From Implicit to Controlled Parallelism
• Strictness analysis uncovers inherent parallelism
• Annotations mark potential parallelism
• Evaluation strategies control dynamic behaviour

• Process-control and Coordination Languages 
• Lazy streams model communication
• Process nets describe parallel systems

• Data Parallelism
• Data parallel combinators
• Nested parallelism
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Why Parallel Functional Progr. Matters

• Hughes 1989: Why Functional Programming Matters
• ease of program construction
• ease of function/module reuse
• simplicity
• generality through higher-order functions (“functional glue”)

• additional points suggested by experience
• ease of reasoning / proof
• ease of program transformation
• scope for optimisation

• Hammond 1999: additional reasons for the parallel programmer:
• ease of partitioning a parallel program
• simple communication model
• absence from deadlock
• straightforward semantic debugging
• easy exploitation of pipelining and other parallel control 

constructs
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Inherent Parallelism in Functional 
Programs

• Church Rosser property (confluence) of reduction semantics 
=> independent subexpressions can be evaluated in parallel

• Data dependencies introduce the need for communication:

let f x = e1
g x = e2

in  g (f 10) 

----> pipeline parallelism

let f x = e1
g x = e2

in   (f 10) + (g 20)
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Further Semantic Properties

• Determinacy: Purely functional programs have the same semantic value 
when evaluated in parallel as when evaluated sequentially. 
The value is independent of the evaluation order that is chosen.
• no race conditions 
• system issues as variations in communication latencies, the 

intricacies of scheduling of parallel tasks do not affect the result of 
a program

Testing and debugging can be done on a sequential machine. 
Nevertheless, performance monitoring tools are necessary on the 
parallel machine.

• Absence of Deadlock: Any program that delivers a value when run 
sequentially will deliver the same value then run in parallel.
However, an erroneous program (i.e. one whose result is undefined) 
may fail to terminate, when executed either sequentially or in parallel.
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Parallelism control data 

implicit automatic parallelisation data parallel languages 

 annotation-based languages 
 

 

controlled para-functional programming high-level data parallelism 

 evaluation strategies  

 skeletons  

explicit process control languages  

 message passing languages  

 concurrent languages  
 

A Classification
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Examples

• binomial coefficients:
binom :: Int -> Int -> Int
binom n k | k == 0 && n >= 0  = 1

| n <   k && n >= 0 = 0
| n >= k && k >= 0  = binom (n-1) k + binom (n-1) (k-1)
| otherwise = error “negative params”

• multiplication of sparse matrices with dense vectors:
type SparseMatrix a = [[(Int,a)]]  -- rows with (col,nz-val) pairs
type Vector a = [a]

matvec :: Num a => SparseMatrix a -> Vector a -> Vector a
matvec m v = map (sum.map (\ (i,x) -> x * v!!i)) m
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From Implicit to Controlled Parallelism

Implicit Parallelism (only control parallelism):
• Automatic Parallelisation, Strictness Analysis
• Indicating Parallelism: parallel let, annotations, parallel 

combinators

Controlled Parallelism
• Para-functional programming
• Evaluation strategies

still semantically transparent parallelism 
programmer is aware of parallelism

higher-level language constructs

semantically transparent parallelism 
introduced through low-level language constructs
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Automatic Parallelisation

Parallel Computer

Parallel Intermediate
Language

(Lazy) Functional Language
Parallelising Compiler:

• Strictness Analysis 
• Granularity / Cost 

Analysis

low level parallel 
language constructs

parallel runtime system
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Indicating Parallelism

• parallel let
• annotations
• predefined combinators

As it is very difficult to detect parallelism automatically, it is 
common for programmers to indicate parallelism manually.

} • semantically transparent
• only advice for the compiler
• do not enforce parallel evaluation
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Parallel Combinators

• special projection functions which provide control over the evaluation 
of their arguments

• e.g. in Glasgow parallel Haskell (GpH):
par, seq :: a -> b -> b

where  
• par e1 e2 creates a spark for e1 and returns e2. A spark is a marker 

that an expression can be evaluated in parallel.
• seq e1 e2 evaluates e1 to WHNF and returns e2 (sequential 

composition).
• advantages:

• simple, annotations as functions (in the spirit of funct. progr.)
• disadvantages:

• explicit control of evaluation order by use of seq necessary
• programs must be restructured
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Examples with Parallel Combinators
• binomial coefficients:

binom :: Int -> Int -> Int
binom n k | k == 0 && n >= 0 = 1

| n <   k && n >= 0 = 0
| n >= k && k >= 0 = let b1 = binom (n-1) k

b2 = binom (n-1) (k-1)
in  b2  ‘par‘ b1 ‘seq‘ (b1 + b2)

| otherwise = error “negative params”
• parallel map:

parmap :: (a-> b) -> [a] -> [b]
parmap f  [ ]   = [ ]
parmap f  (x:xs) = let fx = (f x) 

fxs = parmap f xs
in fx ‘par‘ fxs ‘seq‘ (fx : fxs)

explicit control
of evaluation order
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Controlled Parallelism

• parallelism under the control of the programmer

• more powerful constructs

• semi-explicit

• explicit in the form of special constructs or operations

• details are hidden within the implementation of these 
constructs/operations

• no explicit notion of a parallel process

• denotational semantics remains unchanged, parallelism is only a 
matter of the implementation

• e.g. para-functional programming [Hudak 1986]

evaluation strategies [Trinder, Hammond, Loidl, Peyton Jones 1998]
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“unit” typeresult type

Evaluation Strategies
• high-level control of dynamic behavior, i.e. the evaluation degree of

an expression and parallelism
• defined on top of parallel combinators par and seq
• An evaluation strategy is a function taking as an argument the value 

to be computed. It is executed purely for effect. Its result is simply ():
type  Strategy  a = a ->   ( )

The using function allows strategies to be attached to functions:
using :: a -> Strategy a -> a
x `using` s = (s x) `seq` x

• clear separation of
the algorithm specified by a functional program and
the specification of its dynamic behavior
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Example for Evaluation Strategies

binomial coefficients:

binom :: Int -> Int -> Int
binom n k | k == 0 && n >= 0 = 1

| n <   k && n >= 0 = 0
| n >= k && k >= 0 = (b1 + b2)  ‘using‘ strat
| otherwise = error “negative params”
where

b1 = binom (n-1) k
b2 = binom (n-1) (k-1)
strat _  =  b2  ‘par‘ b1 ‘seq‘ ()

dynamic 
behaviour

functional 
program
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Process-control and Coordination 
Languages

• Higher-order functions and laziness are powerful abstraction 
mechanisms which can also be exploited for parallelism:
• lazy lists can be used to model communication streams
• higher-order functions can be used to define general process 

structures or skeletons

• Dynamically evolving process networks can simply be described in
a functional framework [Kahn, MacQueen 1977]

p3

p2p1 let outp2 = p2  inp
(outp3, out) = p3 outp1 outp2
outp1 = p1 outp3

in out

inp

out
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parallelism control

• explicit processes
• implicit communication

(no send/receive)
• runtime system control
• stream-based typed

communication channels
• disjoint address spaces,

distributed memory
• nondeterminism,  

reactive systems

Eden: 
Parallel Programming at a High Level of Abstraction

functional language
» polymorphic type system
» pattern matching
» higher order functions
» lazy evaluation
» ...
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Eden
= Haskell + Coordination

process definition

process instantiation

parallel 
programming

at a high level of
abstraction

process :: (Trans a, Trans b) => (a -> b) -> Process a b
gridProcess =    process (\ (fromLeft,fromTop) -> 

let ...     in   (toRight, toBottom)) 

( # ) :: (Trans a, Trans b) => Process a b -> a -> b
(outEast, outSouth)    =    gridProcess # (inWest,inNorth)

process outputs
computed by

concurrent threads,
lists sent as streams
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dimx
ul

lr

Idea: parallel computation of lines

image :: Double -> Complex Double -> Complex Double -> Integer -> String
image threshold ul lr dimx
= header ++ (  concat $ map xy2col lines )
where
xy2col ::[Complex Double] ->  String
xy2col line = concatMap (rgb.(iter threshold (0.0 :+ 0.0) 0)) line
(dimy, lines)  = coord ul lr dimx

Example: 
Functional Program for
Mandelbrot Sets
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parMap :: (Trans a, Trans b) => 
(a->b) -> [a] -> [b]

parMap f xs = [ (process f) # x | x <- xs] 
`using` spine

farm, farmB :: (Trans a, Trans b) => 
(a->b) -> [a] -> [b]

farm f xs =  shuffle (parMap (map f)
(unshuffle noPe xs))

farmB f xs =  concat (parMap (map f)
(block noPe xs)) 

Simple Parallelisations of map

map :: (a->b) -> [a] -> [b]
map f xs = [ f x | x <- xs ]

y2 y3 y4y1

...f f ff

...

x2 x3 x4x1 ...

1 process
per processor

with static
task distribution

1 process
per list element
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dimx
ul

lr

Idea: parallel computation of lines

image :: Double -> Complex Double -> Complex Double -> Integer -> String
image threshold ul lr dimx
= header ++ (  concat $ map xy2col lines )
where
xy2col ::[Complex Double] ->  String
xy2col line = concatMap (rgb.(iter threshold (0.0 :+ 0.0) 0)) line
(dimy, lines)  = coord ul lr dimx

Example: Parallel 
Functional Program for
Mandelbrot Sets

Replace map by
farm or farmB
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Data  Parallelism
Global operations on large data structures are done in parallel by 
performing the individual operations on singleton elements 
simultaneously. 
The parallelism is determined by the organisation of data structures
rather than the organisation of processes.

Example:  ys =  map  (2 ∗ )  xs

→explicit control of parallelism with inherently parallel operations
→naturally scaling with the problem size

ys

xs

(2*) (2*) (2*) (2*)(2*)

[John O’Donnell, Chapter 7 
of [Hammond, Michaelson 99]]
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Data-parallel Languages
• main application area: scientific computing
• requirements: efficient matrix and vector operations

• distributed arrays
• parallel transformation and reduction operations

• languages
• imperative: 

• FORTRAN 90: aggregate array operations
• HPF (High Performance FORTRAN): distribution directives, loop 

parallelism
• functional: 

• SISAL (Streams and Iterations in a Single Assignment Language): 
applicative-order evaluation, forall-expressions, stream-/pipeline 
parallelism, function parallelism  

• Id, pH (parallel Haskell): concurrent evaluation, I- and M-structures 
(write-once and updatable storage locations), expression, loop and 
function parallelism

• SAC (Single Assignment C): With-loops (dimension-invariant form 
of array comprehensions)
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Finite Sequences
• simplest parallel data structure
• vector, array, list distributed across processors of a distributed-

memory multiprocessor

A finite sequence xs of length k is written as  [x0, x1, ... xk-1]. 

For simplicity, we assume that k = N, where N is the number of 
processor elements. The element xi is placed in the memory of 
processor Pi. 

• Lists can be used to represent finite sequences. It is important to 
remember that such lists 
• must have finite length, 
• do not allow sharing of sublists, and 
• will be computed strictly.
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Data Parallel Combinators
• Higher-order functions are good at expressing data parallel 

operations:
• flexible and general, may be user-defined
• normal reasoning tools applicable, but special data parallel 

implementations as primitives necessary

• Sequence transformation:
map :: (a -> b) -> [a] -> [b]
map  f  [ ] = [ ]
map  f  (x:xs) = (f x) : map  f  xs

only seen as
specification of 
the semantics, 

not as an 
implementation

map f  xs

xs

f f f ff f
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Communication Combinators
Nearest Neighbour Network
• unidirectional communication:

shiftr :: a -> [a] -> ([a], a)
shiftr a  [ ] = ([ ], a)
shiftr a  (x:xs) = (a:xs’,x’) 

where (xs’,x’) = shiftr x xs
• bidirectional communication:

shift :: a -> b -> [(a,b)] -> (a,b,[(a,b)])
shift  a  b  [ ] = (a,b,[ ])
shift  a  b  ((xa,xb):xs) = (a’, xb, (a,b’):xs’) 

where (a’, b’, xs’) = shift xa b xs

xa

xa
xb b

a
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Example: The Heat Equation
Numerical Solution of the one-dimensional heat equation

The continuous interval is represented as a linear sequence of n
discrete gridpoints ui, for 1 ≤ i ≤ n, and the solution proceeds in 
discrete timesteps:

∂2u
∂ x2

∂u
∂t

=             , for x ∈ (0,1) and t > 0

u2’ u3’ u4’u1’ u5’ un’ un+1

u0

u2 u3 u4u1 u5 un+1

u0 un

ui’ = ui + k/h2 [ui-1 -2ui + ui+1]
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Example: The Heat Equation (cont’d)
The following function computes the vector at the next timestep:

step ::  Float -> Float -> [Float] -> [Float]
step  u0 un+1 us =  map g  (zip  us  zs)

where
g  (x, (a,b))  =  (k / h*h) * (a - 2*x + b)
(a’,b’,zs) = shift u0 un+1 (map (\ u -> (u,u)) us)

u2’ u3’ u4’u1’ u5’ un’ un+1

u0

u2 u3 u4u1 u5 un+1

u0 un

ui’ = ui + k/h2 [ui-1 -2ui + ui+1]
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Reduction Combinators
• Combine Computation with Communication
• folding: foldl :: (a -> b -> a) -> a -> [b] -> a

foldl f  a  [ ] =  a
foldl f  a  (x:xs) =  foldl f  (f a x)  xs

• scanning: scanl :: (a -> b -> a) -> a -> [b] -> [a]
scanl f  a  xs =  [foldl f  a (take i xs) | i <- [0..length xs-1]]

foldl ⊕ a  xs

ys = scanl ⊕ a xs

⊕a ⊕ ⊕⊕

y1 y2 yn-1y0

xs x1 x2 xn-1x0

only seen as
specification of 
the semantics, 

not as an 
implementation
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Bidirectional Map-Scan

mscan ::  (a -> b -> c -> (a,b,d)) -> a -> b -> [c] -> (a,b,[d])
mscan f  a  b  [ ] =  (a,  b,  [ ])
mscan f  a  b  (x:xs) =  (a’’, b’’, x’ : xs’)

where (a’’, b’, xs’) = mscan f  a’ b  xs
(a’, b’’, x’)   = f  a  b’ x

a’’
bf

y1 y2 yn-1y0

xs x1 x2 xn-1x0

f ff
b’

a’a
b’’
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Example: Maximum Segment Sum

• Problem: Take a list of numbers, and find the largest possible sum over
any segment of contiguous numbers within the list.

• Example:  [-500, 3, 4, 5, 6, -9, -8, 10, 20, 30, -9, 1, 2] 

• Solution: For each i, where 0 ≤ i < n, let pi be the maximum segment sum 
which is constrained to contain xi, and let ps be the list of all the pi. 

Then the maximum segment sum for the entire list is just fold max ps.

How can be compute the maximum segment sum which is constrained 
to contain xi?

segment with
maximum sum
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Example: Maximum Segment Sum

• The following function returns the list of maximum segment sums 
for each element as well as the overall result:

mss :: [Int] -> (Int, [Int])
mss xs = (fold max ps, ps)

where
(a’, b’, ps) = mscan g 0 0 xs
g  a  b  x = (max 0 (a+x), max 0 (b+x), a + b + x)

• Examples:
mss [-500, 1, 2, 3, -500, 4, 5, 6, -500] 
=> (15, [-494, 6, 6, 6, -479, 15, 15, 15, -485])

mss [-500, 3, 4, 5, 6, -9, -8, 10, 20, 30, -9, 1, 2]
=> (61, (-439, 61, 61, 61, 61, 61, 61, 61, 61, 61, 54, 54, 54])
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Summary

Parallelism control data 

implicit automatic parallelisation data parallel languages 

 annotation-based languages 
 

 

controlled para-functional programming high-level data parallelism

 evaluation strategies  

   skeletons 

explicit process control languages   

 message passing languages  
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Conclusions and Outlook

• language design: various levels of parallelism control and process 
models

• existing parallel/distributed implementations:  
Clean, GpH, Eden, SkelML, P3L ....

• applications/benchmarks:
sorting, combinatorial search, n-body, computer algebra, scientific 
computing ......

• semantics, analysis and transformation:
strictness, granularity, types and effects, cost analysis ....

• programming methodology:
skeletons ......


