
Visualizing Parallel Functional Program Runs:
Case Studies with the Eden Trace Viewer

Jost Berthold and Rita Loogen

Philipps-Universität Marburg, Fachbereich Mathematik und Informatik
Hans Meerwein Straße, D-35032 Marburg, Germany

E-mail: {berthold, loogen}@informatik.uni-marburg.de

This paper describes case studies with the Eden Trace Viewer (EdenTV), a post-mortem trace
analysis and visualisation tool for the parallel functional language Eden. It shows program
executions in terms of Eden’s abstract units of computation instead of providing a machine-
oriented low level view like common tools for parallelism analysis do. We show how typical
inefficiencies in parallel functional programs due to delayed evaluation, or unbalanced workload
can be detected by analysing the trace visualisations.

1 Introduction

Parallel functional languages like e.g. the parallel Haskell extension Eden1 offer a highly
abstract view of parallelism. While less error-prone, this sometimes hampers program op-
timisations, because it is very difficult to know or guess what really happens inside the
parallel machine during program execution. A considerable number of profiling toolkits2–4

monitor parallel program executions, but are less appropriate for high-level languages.
These are implemented on top of a parallel runtime system (PRTS) which implements a
parallel virtual machine. Standard profiling tools like xpvm3 monitor the activity of the
virtual processing elements (PEs or machines, usually mapped one-to-one to the physical
ones), the message traffic between these PEs, and the behaviour of the underlying middle-
ware like PVMa or MPIb, instead of the program execution on top of the PRTS.

The Eden trace viewer tool (EdenTV) presented in this paper visualises the execution
of parallel functional Eden programs at such a higher level of abstraction. EdenTV shows
the activity of the Eden threads and processes, their mapping to the machines, stream com-
munication between Eden processes, garbage collection phases, and the process generation
tree, i.e. information specific to the Eden programming model. This supports the program-
mer’s understanding of the parallel behaviour of an Eden program.

The Eden PRTS is instrumented with special trace generation commands activated
by a runtime option. Eden programs themselves remain unchanged. Parts of the well-
established Pablo Toolkit5 and its Self-Defining Data Format (SDDF) are used for trace
generation. EdenTV loads trace files after program execution and produces timeline dia-
grams for the computational units of Eden, i.e. threads, processes, and machines.

The aim of this paper is to show benefits of our high-level EdenTV profiling tool. Using
a few simple case studies, we explain how the trace visualisations may help detect typical
inefficiencies in parallel functional programs which may be due to delayed evaluation or
bad load balancing. Section 2 sketches Eden’s language concepts and its PRTS. Section 3

ahttp://www.csm.ornl.gov/pvm/pvm home.html
bhttp://www.mpi-forum.org

1

shortly describes EdenTV. The central section 4 discusses typical weaknesses of program
executions that can be detected with EdenTV and how to eliminate them. Section 5 points
at related work, and the last section (6) concludes and indicates future work.

2 Eden

Eden1 extends the functional language Haskellc with syntactic constructs for explicitly
defining and creating parallel processes. The programmer has direct control over process
granularity, data distribution and communication topology, but does not have to manage
synchronisation and data exchange between processes. The latter are performed by the
parallel runtime system through implicit communication channels, transparent to the pro-
grammer.
Coordination Constructs. The essential two coordination constructs of Eden are process
abstraction and instantiation:
process :: (Trans a, Trans b) => (a -> b) -> Process a b
(#) :: (Trans a, Trans b) => Process a b -> a -> b

The function process embeds functions of type a->b into process abstractions of type
Process a b where the context (Trans a, Trans b) states that both a and b must be
types belonging to the Trans class of transmissible values.d

Evaluation of an expression (process funct) # arg leads to the creation of a new
process for evaluating the application of the function funct to the argument arg. The
argument is evaluated by new concurrent threads in the parent process and sent to the
new child process, which, in turn, fully evaluates and sends back the result of the function
application. Both are using implicit 1:1 communication channels established between child
and parent process on process instantiation.

The type class Trans provides overloaded communication functions for lists, which
are transmitted as streams, element by element, and for tuples, which are evaluated com-
ponentwise by concurrent threads in the same process. An Eden process can thus contain
a variable number of threads during its lifetime.

As communication channels are normally connections between parent and child pro-
cess, the communication topologies are hierarchical. In order to create other topologies,
Eden provides additional language constructs to create channels dynamically, which is
another source of concurrent threads in the sender process. Besides, Eden supports many-
to-one communication by a nondeterministic merge function.
Parallel Runtime System. Eden is implemented on the basis of the Glasgow Haskell Com-
piler GHCe, a mature and efficient Haskell implementation. While the compiler frontend
is almost unchanged, the backend is extended with a parallel runtime system (PRTS)6. The
PRTS uses suitable middleware (currently PVM or MPI) to manage parallel execution.
Concurrent threads are the basic unit for the implementation, so the central task for profil-
ing is to keep track of their execution. Threads are scheduled round-robin and run through
the straightforward state transitions shown in Figure 1.

chttp://www.haskell.org
dType classes in Haskell provide a structured way to define overloaded functions. Trans provides implicitly
used communication functions.
ehttp://www.haskell.org/ghc

2

Runnable

Running

Finished

Blocked

new thread deblock thread

run thread

suspend thread

kill thread

kill thread

block thread
kill thread

Figure 1. Thread State Transitions

An Eden process, as a purely
conceptual unit, consists of a
number of concurrent threads
which share a common graph
heap (as opposed to processes,
which communicate via chan-
nels). The Eden PRTS does not
support the migration of threads
or processes to other machines

during execution, so every thread is located on exactly one machine during its lifetime.

3 EdenTV — The Eden Trace Viewer

EdenTV enables a post-mortem analysis of program executions at the level of the PRTS.
The steps of profiling are trace generation and trace representation, separated as much as
possible in EdenTV, so that single parts can easily be maintained and modified for other
purposes. Two versions of the trace representation tool are currently available. A Java
implementation has been developed by Pablo Roldán Gómez7. Björn Struckmeier8 did a
re-implementation in Haskell which provides additional features.

Start Machine End Machine
New Process Kill Process
New Thread Kill Thread
Run Thread Suspend Thread

Block Thread Deblock Thread
Send Message Receive Message

Figure 2. Trace Events

Trace Generation. To profile the execution of an Eden
program, we collect information about the behaviour
of machines, processes, threads and messages by writ-
ing selected events into a trace file. These trace events,
shown in Figure 2, indicate the creation or a state tran-
sition of a computational unit. Trace events are emit-
ted from the PRTS, using the Pablo Trace Capture Li-
brary5 and its portable and machine-readable “Self-
Defining Data Format”. Eden programs need not be
changed to obtain the traces.
Trace Representation. In the timeline diagrams generated by EdenTV, machines, pro-
cesses, and threads are represented by horizontal bars, with time on the x axis. EdenTV
offers separate diagrams for machines, processes, and threads. The machines diagrams cor-
respond to the view of profiling tools observing the parallel machine execution. Figure 3
shows examples of the machines and processes diagrams for a parallel divide-and-conquer
program with limited recursion-depth. The trace has been generated on 8 Linux worksta-
tions connected via fast Ethernet. The diagram lines have segments in different colours,
which indicate the activities of the respective logical unit in a period during the execu-
tion. As explained in Figure 3(d), thread states can be directly concluded from the emitted
events. Machine and process states are assigned following a fundamental equation for the
thread count inside one process or machine. The example diagrams in Figure 3 show that
the program has been executed on 8 machines (virtual PEs). While there is some continu-
ous activity on machine 1 (the bottom line) where the main program is started, machines 6
to 8 (the upper three lines) are idle most of the time. The corresponding processes graphic
(see Figure 3(a)) reveals that several Eden processes have been allocated on each machine.
The diagrams show that the workload on the parallel machines was low — there were only

3

(a) Machines Graphic (b) Processes Graphic

(c) . . . with Messages Overlay

Thread Count: 0 ≤ Runnable Threads + Blocked Threads ≤ Total Threads
Condition Machine Process Thread Black/White Colour
Total Threads = 0 Idle n/a n/a smaller bar Blue
Blocked + Runnable < Total Running Running Running dark grey Green
Runnable Threads > 0 System Time Runnable Runnable light grey Yellow
Runnable Threads = 0 Blocked Blocked Blocked black Red

(d) Explanation of Colour Codes

Figure 3. Examples of EdenTV Diagrams and Colour Codes Table

small periods where threads were running. Messages between processes or machines can
optionally be shown by arrows which start from the sending unit line and point at the re-
ceiving unit line (see Figure 3(c)). The diagrams can be zoomed in order to get a closer
view on the activities at critical points during the execution.

Machine Runtime Processes Messages
(sec) sent received

1 0.287197 4 6132 6166
2 0.361365 18 1224 1206

...
8 0.362850 6 408 402

Total 0.371875 66 14784 14784

Additional Features. EdenTV provides ad-
ditional information about the program run,
e.g. a summary of the messages sent and re-
ceived by processes and machines (on the
right for the trace in Figure 3), stream com-
munication is indicated by shading the area
between the first and the last message of
a stream (see Figure 3(c)), garbage collection phases and memory consumption can be
shown in the activity diagrams, and the process generation tree can be drawn.

4 Case Studies: Tuning Eden Programs with EdenTV
Lazy Evaluation vs. Parallelism. When using a lazy computation language, a crucial issue
is to start the evaluation of needed subexpressions early enough and to fully evaluate them

4

Runtime: 19.37 sec. Runtime: 3.62 sec.
without additional demand control with additional demand control

Figure 4. Warshall-Algorithm (500 node graph)

for later use. The basic choice to either evaluate a final result to weak head normal form
(WHNF) or completely (to normal form (NF)) sometimes does not offer enough control
to optimise an algorithm. Strategies9 forcing additional evaluations must then be applied
to certain sub-results. On the sparse basis of runtime measurements, such an optimisation
would be rather cumbersome. The EdenTV, accompanied by code inspection, makes such
inefficiencies obvious, as in the following example.

Example: (Warshall’s algorithm) This algorithm computes shortest paths for all nodes of
a graph from the adjacency matrix. We optimise a parallel implementation of this algorithm
with a ring of processes. Each process computes the minimum distances from one node to
every other node. Initialised with a row of the adjacency matrix, the direct distances are
updated whenever a path of shorter distance via another node exists. All distance rows are
continuously updated, and traverse the whole ring for one round.

The trace visualisations in Figure 4 show EdenTV’s Processes view for two versions
of the program on a Beowulf cluster, with an input graph of 500 nodes (aggregated on
25 processors). The programs differ by a single line which introduces additional demand
for an early update on the local row. The first program version (without demand control)
shows bad performance. The trace visualization clearly shows that the first phase of the
algorithm is virtually sequential. A period of increasing activity traverses the ring, between
long blocked (black) periods. Only the second phase, subsequent updates after sending the
local row, runs in parallel on all machines. The cause is that when receiving a row, the
local row is updated, but demand for this update only occurs at the time when the local row
is sent through the ring. The second version enforces the evaluation of the temporary local
row each time another row is received, which dramatically improves runtime. We still see
the impact of the data dependence, leading to a short wait phase passing through the ring,
but the optimised version shows good speedup and load balance. /

Irregularity and Cost of Load Balancing. Parallel skeletons (higher-order functions im-
plementing common patterns of parallel computation10) provide an easy parallelization of
a program. The higher-order function map applies a function to all elements of a list. These
computations do not depend on each other, thus a number of worker processes can compute
results in parallel. Parallel map variants either distribute the list elements statically (which
is called a farm skeleton), or dynamically, by using a feedback from worker results to

5

(a) Farm skeleton, irregular static distribution (b) Non-hierarchical workpool skeleton

Figure 5. Processes diagrams for different parallelizations of the Mandelbrot program

worker inputs (called a workpool). However, when the tasks expose an irregular complex-
ity, the farm may suffer from an uneven load distribution, and the machine with the most
complex tasks will dominate the runtime of the parallel computation. The workpool can
adapt to the current load and speed of the different machines, but the dynamic distribution
necessarily has more overhead than a static one.

Example: (Mandelbrot) We compare different work distribution schemes using a program
which generates Mandelbrot Set visualizations by applying a uniform, but potentially ir-
regular computation to a set of coordinates. In the traces shown in Figure 5, the pixel
rows are computed in parallel, using either a farm or a workpool skeleton. Both programs
have run on a Beowulf cluster with 32 processors, computing 5000 rows of 5000 pixels.
The trace of the farm skeleton in Figure 5(a) shows that the workers have uneven work-
load. The blockwise row distribution even reflects the silhouette of the Mandelbrot graphic
(bottom-to-top) in the runtimes of the worker processes.

The trace of the workpool skeleton in Figure 5(b) shows how the master process on
machine 1 has to serve new tasks to 31 machines, and collect all results. The workers (2 to
32) spent a lot of time in blocked state, waiting for new work assigned by the heavily loaded
master node. All workers stop at the same time, i.e. the system is well synchronized, but
the single master is a severe bottleneck. /

Figure 6. Hierarchical 3-level workpool

Nesting and Process Placement. In Eden’s
PRTS, processes are placed either round-
robin on available machines or randomly,
but the implementation also supports explicit
placement on particular machines. This can
e.g. be used to optimally place processes in
nested skeleton calls11.

Example: (Hierarchical Workpool) The
workpool master process can be relieved us-
ing a “hierarchy of workpools” with several
stages of task distribution. Figure 6 shows
the trace of a hierarchical workpool in three
levels: a toplevel master, three submasters and two subsubmasters per submaster, each

6

controlling four workers. Thus, 10 of the 32 PEs are reserved as (sub/subsub)master pro-
cesses, only 24 worker processes are allocated, and the four worker processes of the final
group share two PEs. Nevertheless, the trace shows much better workload distribution
and worker activity than in the non-hierarchical system. Only the two machines with two
worker processes need more time, which is due to the higher initial workload caused by
the identical prefetch for all worker processes.
Collecting Results. All Mandelbrot traces suffer from long sequential end phases (omitted
in Figure 5) which dominate the runtimes of the various schemes. An inspection of the
message traffic reveals that all processes return their results to the root process (bottom
line) which merges them at the end of the computation. It can be observed that the end
phase is shorter within the hierarchical scheme, because the merging is done level-wise.
Nevertheless, it is still too long in comparison with the parallel execution times of the
worker processes. /

5 Related Work

(a) xpvm Space-Time Graphic

(b) EdenTV Machines Graphic

Figure 7. xpvm vs EdenTV

A rather simple (but insufficient) way to obtain in-
formation about a program’s parallelism would be
to trace the behaviour of the communication sub-
system. Tracing PVM-specific and user-defined
actions is possible and visualization can be car-
ried out by xpvm3. Yet, PVM-tracing yields
only information about virtual PEs and concrete
messages between them. Internal buffering, pro-
cesses, and threads in the PRTS remain invisible,
unless user-defined events are used.
As a comparison, we show xpvm execution traces
of our first trace examples. The space-time
graphic of xpvm shown in Figure 7(a) corre-
sponds to the EdenTV machine view of the same
run in Figure 7(b), if the machines are ordered ac-
cording to the xpvm order. The monitoring by
xpvm extremely slows down the whole execution.
The runtime increases from 0.37 seconds to 10.11 seconds. A reason for this unacceptable
tracing overhead might be that PVM uses its own communication system for gathering
trace information.

Comparable to the tracing included in xpvm, many efforts have been made in the past
to create standard tools for trace analysis and representation (e.g. Pablo Analysis GUI5,
the ParaGraph Suite12, or the Vampir system4, to mention only a few essential projects).
These tools have interesting features EdenTV does not yet include, like stream-based on-
line trace analysis, execution replay, and a wide range of standard diagrams. The aim of
EdenTV, however, is a specific visualization of logical Eden units, which needed a more
customized solution. The EdenTV diagrams have been inspired by the per-processor view
of the Granularity Simulator GranSim13, a profiler for Glasgow parallel Haskell (GpH)9,
which, however, does not trace any kind of communication due to the different language
concept.

7

6 Conclusions

The Eden Trace Viewer is a combination of an instrumented runtime system to generate
trace files, and an interactive GUI to represent them in interactive diagrams. We have
shown case studies exposing typical traps of parallelism like missing demand or imbalance
in computation or communication, which can be identified using EdenTV. Load balancing
issues and communication structures can be analysed and controlled. Essential runtime
improvements could be achieved for our example programs.

Acknowledgements. The authors thank Pablo Roldán Gómez and Björn Struckmeier for
their contributions to the Eden Trace Viewer project.

References

1. R. Loogen, Y. Ortega-Mallén, and R. Peña-Marı́. Parallel Functional Programming
in Eden. Journal of Functional Programming, 15(3):431–475, 2005.

2. I. Foster. Designing and Building Parallel Programs, Chapter 9. Addison-Wesley,
1995. http://www.mcs.anl.gov/dbpp/.

3. James Arthur Kohl and G. A. Geist. The PVM 3.4 tracing facility and XPVM 1.1. In
Proceedings of HICSS-29, pages 290–299. IEEE Computer Society Press, 1996.

4. W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach. VAMPIR:
Visualization and analysis of MPI resources. Supercomputer, 12(1), January 1996.

5. Daniel A. Reed and Robert D. Olson and Ruth A. Aydt et al. Scalable performance
environments for parallel systems. In Sixth Distributed Memory Computing Confer-
ence Proceedings (6th DMCC’91), pages 562–569, Portland, OR, 1991. IEEE.

6. Jost Berthold and Rita Loogen. Parallel Coordination Made Explicit in a Functional
Setting. In IFL’06, Selected Papers, LNCS 4449. Springer, 2007.

7. Pablo Roldán Gómez. Eden Trace Viewer: Ein Werkzeug zur Visualisierung paral-
leler funktionaler Programme. Master’s thesis, Philipps-Universität Marburg, Ger-
many, 2004. In German.

8. Björn Struckmeier. Implementierung eines Werkzeugs zur Visualisierung und Anal-
yse paralleler Programmläufe in Haskell. Master’s thesis, Philipps-Universität Mar-
burg, Germany, 2006. In German.

9. P.W. Trinder, K. Hammond, H-W. Loidl, and S.L. Peyton Jones. Algorithm + Strategy
= Parallelism. J. of Functional Programming, 8(1), January 1998.

10. F. A. Rabhi and S. Gorlatch, editors. Patterns and Skeletons for Parallel and Dis-
tributed Computing. Springer, 2002.

11. Jost Berthold, Mischa Dieterle, Rita Loogen, and Steffen Priebe. Hierarchical master-
worker skeletons. Technical report, Philipps-Universität Marburg, April 2007.

12. Michael T. Heath and Jennifer A. Etheridge. Visualizing the performance of parallel
programs. IEEE Software, 8(5), 1991.

13. H. W. Loidl. GranSim User’s Guide. Technical report, University of Glasgow.
Department of Computer Science, 1996.

8

