Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Prof. Dr. G. Schumacher M.Sc. Philipp Naumann

Übungen zur Funktionentheorie II

- Blatt 12 -

Abgabe: Montag, den 03.02.2013, 12:00 -12:15 Uhr, Lahnberge SR IV

Aufgabe 1 (4 Punkte)

Sei $X := \mathbb{C}/\Lambda$ ein Torus und $\Omega(X)$ der Vektorraum aller holomorphen 1-Formen auf X. Man beweise, dass dim $\Omega(X) = 1$.

Aufgabe 2 (4 Punkte)

Sei $X = \{z \in \mathbb{C} : |z| < R\}$ für ein $0 < R \leq \infty$. Wir bezeichnen mit \mathcal{H} die Garbe der harmonischen Funktionen auf X, d.h.

$$\mathcal{H}(U) = \{ f : U \to \mathbb{C} \mid f \text{ ist harmonisch} \}$$

für $U \subset X$ offen. Man beweise:

$$H^1(X,\mathcal{H}) = 0.$$

Aufgabe 3 (4 Punkte)

- a) Man zeige, dass $\mathcal{U} = (\mathbb{P}_1 \setminus \{\infty\}, \mathbb{P}_1 \setminus \{0\})$ eine Leray-Überdeckung von \mathbb{P}_1 der Garbe Ω der holomrphen 1-Formen auf \mathbb{P}_1 ist.
- b) Zeige, dass

$$H^1(\mathbb{P}_1,\Omega)\cong H^1(\mathcal{U},\Omega)\cong\mathbb{C}$$

und die Kohomologie-Klasse von $\frac{dz}{z}\in\Omega(U_1\cap U_2)\cong Z^1(\mathcal{U},\Omega)$ eine Basis von $H^1(\mathbb{P}_1,\Omega)$ ist.

Aufgabe 4 (4 Bonuspunkte)

Seien p_1, \ldots, p_n verschiedene Punkte in $\mathbb C$ und

$$X := \mathbb{C} \setminus \{p_1, \dots, p_n\}.$$

Man beweise, dass

$$H^1(X,\mathbb{Z}) \cong \mathbb{Z}^n$$
.

Hinweis: Man konstruiere eine Überdeckung $\mathcal{U} = (U_1, U_2)$ von X, so dass U_1 und U_2 zusammenhängend und einfach-zusammenhängend sind und $U_1 \cap U_2$ in n+1 Zusammenhangskomponenten zerfällt.