
DFG–Schwerpunktprogramm 1114
Mathematical methods for time series analysis and digital image

processing

Adaptive Frame Methods for Elliptic
Operator Equations: The Steepest

Descent Approach

Stephan Dahlke Massimo Fornasier

Thorsten Raasch Rob Stevenson

Manuel Werner

Preprint 138

Preprint Series DFG-SPP 1114

Preprint 138 February 2006



The consecutive numbering of the publications is determined by their chrono-

logical order.

The aim of this preprint series is to make new research rapidly available for

scientific discussion. Therefore, the responsibility for the contents is solely due

to the authors. The publications will be distributed by the authors.



Adaptive Frame Methods for Elliptic Operator Equations:

The Steepest Descent Approach∗

Stephan Dahlke, Massimo Fornasier, Thorsten Raasch,

Rob Stevenson, and Manuel Werner

Abstract

This paper is concerned with the development of adaptive numerical methods for
elliptic operator equations. We are especially interested in discretization schemes based
on wavelet frames. We show that by using three basic subroutines an implementable,
convergent scheme can be derived, which, moreover, has optimal computational com-
plexity. The scheme is based on adaptive steepest descent iterations. We illustrate our
findings by numerical results for the computation of solutions of the Poisson equation
with limited Sobolev smoothness on intervals in 1D and on L-shaped domains in 2D.

AMS subject classification: 41A25, 42C40, 65F10, 65F50, 65N12, 65T60
Key Words: Operator equations, multiscale methods, adaptive algorithms, sparse matri-
ces, Banach frames, norm equivalences.

1 Introduction

In recent years, wavelets have been very successfully applied to several tasks. In sig-
nal/image analysis/compression, wavelet schemes are by now already well–accepted and
clearly compete with other methods. Moreover, wavelets have also been used in numer-
ical analysis, especially for the treatment of elliptic operator equations. Current interest
in particular centers around the development of adaptive discretization schemes. Based on
the equivalence of Sobolev norms and weighted sequence norms of wavelet expansion coeffi-
cients, convergent adaptive wavelet schemes were designed for symmetric elliptic problems
[6, 12, 23] as well as for nonsymmetric and stationary nonlinear problems [7, 8, 22].

Although quite convincing from the theoretical point of view, so far the potential of
adaptive wavelet schemes has not been fully exploited in practice for the following reason.
Usually, the operator under consideration is defined on a bounded domain or on a closed
manifold, so that a construction of a suitable wavelet basis on this domain is needed. There
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Fellowship (contract MEIF–CT–2004–501018, 6th Framework Program) and the hospitality of Universität
Wien, Fakultät für Mathematik, NuHAG, Nordbergstraße 15, A–1090 Wien, Austria. The work of the fourth
author has also been supported through the Netherlands Organization for Scientific Research.
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exist by now several constructions such as, e.g., [3, 9, 17, 18, 29, 34]. None of them, however,
seems to be fully satisfactory in the sense that, besides the relevant positive virtues, these
bases do not exhibit reasonable quantitative stability properties. Moreover, the construc-
tions in aforementioned references are all based on non-overlapping domain decomposition
techniques, most of them requiring certain matching conditions on the parametric mappings,
which in practical situations can be difficult to satisfy.

One possible way to circumvent this bottleneck is to use a slightly weaker concept, i.e.,
to work with (wavelet) frames. In general, a sequence F = {fn}n∈N in a Hilbert space H
is a frame for the Hilbert space H if

AF‖f‖
2
H ≤

∑

n∈N

∣

∣〈f, fn〉H
∣

∣

2
≤ BF‖f‖

2
H, for all f ∈ H,

for suitable constants 0 < AF ≤ BF < ∞, see [5, 19] for further details. Every element of H
has an expansion with respect to the frame elements, but this expansion is not necessarily
unique. On the one hand, this redundancy may cause problems in numerical applications
since it gives rise to a singular stiffness matrix. On the other hand, it has turned out that the
construction of suitable frames on domains and manifolds is a much simpler task compared
to that of stable multiscale bases, see [14, 33]. The idea is to write the domain or manifold
as an overlapping union of subdomains, each of them being the smooth parametric image of
a reference domain. By lifting a wavelet basis on the reference domain to the subdomains,
and taking the union of these lifted bases, a frame is obtained. Due to their nature, we
refer to such frames as aggregated wavelet frames. In recent studies, it has been shown that,
despite of the singular stiffness matrix, a damped Richardson iteration can be generalized
to the frame case in a very natural way [14, 33]. Then, by using the basic building blocks
of the adaptive wavelet algorithms in [7], an implementable and asymptotically optimal
convergent version of this scheme can be constructed.

This paper follows similar lines and can be interpreted as the continuation of the studies
[14, 33]. Instead of using the classical Richardson iteration, here we are especially interested
in the steepest descent method. As we will show, with this method again an asymptotically
optimal convergent scheme can be derived. Its main advantage is that it releases the user
of providing a damping parameter as with Richardson’s method, which preferably is close
to the optimal one. This, however, requires an accurate estimate of the largest and smallest
non-zero eigenvalues of the stiffness matrix, where in the frame case in particular the smallest
non-zero eigenvalue is hard to access. Although the steepest descent method requires more
computational effort per iteration, in our numerical experiments it is as efficient as the
Richardson iteration. Moreover, in case the Richardson damping parameter is not optimally
chosen, then the steepest descent method can even outperform the Richardson iteration,
see Section 4.

The steepest descent method for the adaptive solution of infinite–dimensional systems
has also been studied in [4], however, there the results are restricted to the basis case,
whereas we are concerned with frames.

This paper is organized as follows. In Section 2, we discuss the scope of problems we
shall be concerned with and summarize the basic concepts of frame discretizations. Then, in
Section 3, we introduce the adaptive steepest descent method and establish its convergence
and optimality. Finally, in Section 4, we present numerical experiments for the special case
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of the Poisson equation on an interval in 1D and on an L–shaped domain in 2D. The results
fully confirm the expected convergence and optimality for both the Richardson and the
steepest descent iterations. A comparison between the two schemes is also discussed.

2 Preliminaries

In this section, we briefly describe the scope of problems we shall be concerned with. More-
over, we recall the basic concepts of frame discretization schemes for operator equations.

We consider linear operator equations

Lu = f, (2.1)

where we will assume L to be a boundedly invertible operator from some Hilbert space H
into its normed dual H ′, i.e.,

‖Lu‖H′ h ‖u‖H , u ∈ H. (2.2)

Here ‘a h b’ means that both quantities can be uniformly bounded by some constant
multiple of each other. Likewise, ‘.’ indicates inequalities up to constant factors. We write
out such constants explicitly only when their value matters. Since L is assumed to be
boundedly invertible, (2.1) has a unique solution u for any f ∈ H ′. In the sequel, we shall
focus on the important special case where

a(v, w) := 〈Lv, w〉 (2.3)

defines a symmetric bilinear form on H, 〈·, ·〉 corresponding to the dual pairing of H ′ and
H. We will always assume that a(·, ·) is elliptic in the sense that

a(v, v) h ‖v‖2
H , (2.4)

which is easily seen to imply (2.2).
Typical examples are variational formulations of second order elliptic boundary value

problems on a domain Ω ⊂ R
d such as the Poisson equation

−4u = f in Ω, (2.5)

u = 0 on ∂Ω.

In this case, H = H1
0 (Ω), H ′ = H−1(Ω), and the corresponding bilinear form is given by

a(v, w) =

∫

Ω
∇v · ∇wdx. (2.6)

Thus typically H is a Sobolev space. Therefore, from now on, we will always assume that
H and H ′, together with L2(Ω), form a Gelfand triple, i.e.,

H ⊂ L2(Ω) ⊂ H ′ (2.7)

with continuous and dense embeddings.
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The design of adaptive wavelet or frame schemes in the aforementioned setting starts
with a reformulation of (2.1) as an equivalent discrete problem on some sequence space
`2(N ). However, to perform this transformation, it will not be sufficient to work with
a simple frame in L2, since the operator L acts between Sobolev spaces. Similar to the
classical wavelet case, we need specific norm equivalences of Sobolev norms and weighted
sequence norms of frame coefficients. These can be realized by so–called Gelfand frames as
introduced in [14]. Given a frame F in H, one usually defines the corresponding operators
of analysis and synthesis to be

F : H → `2(N ), f 7→
(

〈f, fn〉H
)

n∈N
, (2.8)

F ∗ : `2(N ) → H, c 7→
∑

n∈N

cnfn. (2.9)

The composition S := F ∗F is a boundedly invertible (positive and self–adjoint) operator,
called the frame operator, and F̃ := S−1F is again a frame for H, the canonical dual frame.
Then, a frame F for H is called a Gelfand frame for the Gelfand triple (B,H,B′), if F ⊂ B,
F̃ ⊂ B′ and there exists a Gelfand triple

(

Bd, `2(N ),B′
d

)

of sequence spaces such that

F ∗ : Bd → B, F ∗c =
∑

n∈N

cnfn and F̃ : B → Bd, F̃ f =
(

〈f, f̃n〉B×B′

)

n∈N
(2.10)

are bounded operators.

Remark 2.1. i) For the applications we have in mind, clearly the case (B,H,B′) =
(H, L2(Ω), H ′), where H denotes some Sobolev space, is the most important one.
Then, similar to the classical wavelet basis case, the spaces Bd and B′

d are weighted
`2(N )–spaces, see [14] for details.

ii) It can be shown that Gelfand frames are also Banach frames for the spaces B and B′

in the sense of [28], see again [14] for details.

iii) A natural way to construct wavelet Gelfand frames on domains and manifolds is that
by means of overlapping partitions of parametric images of unit cubes, see Section 4
and [14, 33] for details. We call such frames aggregated wavelet frames.

For the transformation of (2.1) into a discrete problem on `2(N ), we have to assume that
there exists an isomorphism DB : Bd → `2(N ), so that its `2(N )–adjoint D∗

B : `2(N ) → B′
d

is also an isomorphism. Then, the following lemma holds [14, 33].

Lemma 2.2. Under the aforementioned assumptions on the frame, as well as (2.3), (2.4)
on L, the operator

G := (D∗
B)−1FLF ∗D−1

B (2.11)

is a bounded operator from `2(N ) to `2(N ). Moreover G = G∗, and it is boundedly invertible
on its range ran(G) = ran((D∗

B)−1F ).

With
f := (D∗

B)−1Ff, (2.12)
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we are therefore left with the problem to solve

Gu = f . (2.13)

One natural way to solve (2.13) would be to use a damped Richardson iteration. Indeed,
the following theorem can be shown [14, 33].

Theorem 2.3. Let L satisfy (2.3) and (2.4). Then with G and f as in (2.11) and (2.12),
respectively, the solution u of (2.1) can be computed as

u = F ∗D−1
B u (2.14)

with u given by

u =

(

α
∞

∑

n=0

(I − αG)n

)

f , (2.15)

with 0 < α < 2/‖G‖`2(N )→`2(N ).

Observe that the computation of (2.15) is indeed nothing but an infinite damped
Richardson iteration

u(i+1) = u(i) + α(f − Gu(i)), (2.16)

starting with u(0) = 0. This scheme has been analyzed in [14, 33]. In this paper, we use a
different approach and work with a version of the steepest descent scheme, see the following
section.

3 The Steepest Descent Scheme

In this section, we introduce and analyze a steepest descent scheme for the solution of (2.13).
In Subsection 3.1, we explain the basic setting, and we prove a perturbation theorem for
this scheme. Then, in Subsection 3.2, we derive an implementable version and show its
asymptotically optimal convergence.

3.1 Basic Setting

The first step is to introduce a natural energy (semi)–norm on `2(N ). In the following,
we write ‖ · ‖ and 〈·, ·〉 for ‖ · ‖`2(N ), or ‖ · ‖`2(N )→`2(N ), and 〈·, ·〉`2(N ), respectively. We

set 〈〈·, ·〉〉 := 〈G·, ·〉 and the semi–norm ||| · ||| := 〈〈·, ·〉〉
1

2 . With G† being the Moore-Penrose
pseudo inverse of G, and

Q : `2(N ) → ranG

being the orthogonal projector onto ranG, for any v ∈ `2(N ) we have

‖G†‖−
1

2 ‖Qv‖ ≤ |||v||| ≤ ‖G‖
1

2 ‖Qv‖, ‖G†‖−
1

2 |||v||| ≤ ‖Gv‖ ≤ ‖G‖
1

2 |||v|||. (3.1)

Then, the steepest descent scheme reads as follows:
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Proposition 3.1. Let w be an approximation for u with r := f − Gw 6= 0. Then, with
κ(G) := ‖G‖‖G†‖, for

w̃ := w +
〈r, r〉

〈Gr, r〉
r (3.2)

we have

|||u − w̃||| ≤
κ(G) − 1

κ(G) + 1
|||u − w|||.

The proof is a standard argument on the convergence of iterative descent methods. In
the following, we will often use r as a shorthand notation for the residual f − Gw.

It is clear that (3.2) cannot be implemented directly since infinite sequences and biin-
finite matrices are involved. Therefore the challenging task is to transform (3.2) into an
implementable version. This will be done in the next section. One has to replace the infi-
nite sequences by finite ones without destroying the overall convergence of the scheme. The
basic tool for this is the following perturbation result.

Proposition 3.2. For any λ ∈ (κ(G)−1
κ(G)+1 , 1), there exists a δ = δ(λ) > 0 small enough, such

that if ‖r̃ − r‖ ≤ δ‖r̃‖ and ‖z − Gr̃‖ ≤ δ‖r̃‖, then with

w̃ := w +
〈r̃, r̃〉

〈z, r̃〉
r̃,

we have
|||u − w̃||| ≤ λ|||u − w|||,

and | 〈r̃,r̃〉〈z,r̃〉 | . 1. If, for some η > 0, in addition ‖r̃− r‖ ≤ η, then ‖(I−Q)(w̃−w)‖ ≤ C3η,
with some absolute constant C3 > 0.

Proof. Eq. (3.1) implies that 〈Gr, r〉 h ‖r‖2. The first step is to show that for a sufficiently
small δ̄, and any 0 < δ ≤ δ̄

〈z, r̃〉 h ‖r‖2 and ‖r̃‖ h ‖r‖ (3.3)

holds. We have

〈z, r̃〉 = 〈z − Gr̃ + Gr̃, r̃〉 ≤ ‖z − Gr̃‖‖r̃‖ + ‖Gr̃‖‖r̃‖ ≤ (δ + ‖G‖)‖r̃‖2

and
‖r̃‖2

h 〈Gr̃, r̃〉 = 〈Gr̃ − z + z, r̃〉 ≤ ‖Gr̃ − z‖‖r̃‖ + 〈z, r̃〉 ≤ δ‖r̃‖2 + 〈z, r̃〉,

which implies the first equivalence in (3.3). The second one can be proved in a similar
fashion. From (3.3), we infer that

∣

∣

∣

∣

〈r̃, r̃〉

〈z, r̃〉
−

〈r, r〉

〈Gr, r〉

∣

∣

∣

∣

. δ,

since

〈r̃, r̃〉

〈z, r̃〉
−

〈r, r〉

〈Gr, r〉
=

〈r̃, r̃〉 − 〈r, r〉

〈z, r̃〉
+ 〈r, r〉

[ 1

〈z, r̃〉
−

1

〈Gr, r〉

]

=
〈r̃, r̃〉 − 〈r, r〉

〈z, r̃〉
+

〈r, r〉

〈z, r̃〉〈Gr, r〉
[〈Gr, r〉 − 〈z, r̃〉]

=
〈2(r̃ − r), r〉 + ‖r̃ − r‖2

〈z, r̃〉
+

〈r, r〉

〈z, r̃〉〈Gr, r〉
[〈Gr, r − r̃〉 + 〈Gr̃ − z, r̃〉 + 〈G(r − r̃), r̃〉].
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Writing
〈r̃, r̃〉

〈z, r̃〉
r̃ −

〈r, r〉

〈Gr, r〉
r =

[ 〈r̃, r̃〉

〈z, r̃〉
−

〈r, r〉

〈Gr, r〉

]

r +
〈r̃, r̃〉

〈z, r̃〉
[r̃ − r], (3.4)

we find that ‖ 〈r̃,r̃〉
〈z,r̃〉 r̃ − 〈r,r〉

〈Gr,r〉r‖ . δ‖r‖ . δ|||u − w|||, which, together with Proposition 3.1,
completes the proof of the first statement.

From (3.4) and (I − Q)r = 0, we have (I − Q)(w̃ − w) = 〈r̃,r̃〉
〈z,r̃〉(I − Q)(r̃ − r), which by

| 〈r̃,r̃〉〈z,r̃〉 | . 1 and ‖I − Q‖ ≤ 1 completes the proof of the second statement.

3.2 Numerical Realization

Obviously, the steepest descent scheme in Proposition 3.1 cannot be implemented since
neither infinite sequences nor biinfinite matrices can be handled. Therefore the task is to
replace the scheme (3.2) by an implementable one. The guideline given by Proposition 3.2 is
to approximate the infinite expressions by finite ones within some sufficiently small relative
tolerance.

In the sequel, we shall make the following basic assumptions. Let ΣN denote the (non-
linear) subspace of `2(N ) consisting of all vectors with at most N nonzero coordinates.
Given v ∈ `2(N ), we introduce the error of approximation

σN (v) := inf
w∈ΣN

‖v − w‖. (3.5)

Clearly this infimum is attained for w being a best N -term approximation for v, i.e., a
vector from ΣN that agrees with v in those coordinates on which v takes its N largest
values in modulus. Such a best N -term approximation for v will be denoted as vN . Note
that it is not necessarily unique.

For some s > 0, we assume that

sup
N∈N

N sσN (u) < ∞. (3.6)

Eq. (3.6) describes how well the solution u to (2.13) can be approximated by the elements
of ΣN . Essentially, (3.6) is a regularity assumption on the exact solution u to (2.1). Indeed,
in the wavelet basis case, it is well–known that the convergence order of best N–term
approximation is determined by the maximum of the polynomial order and a specific Besov
regularity of the object that we want to approximate [20]. For aggregated wavelet frames
the same holds true, see [33]. Specifically, when H is a Sobolev space of order t over an
n-dimensional domain, and the aggregated wavelet frame has order d, then s = d−t

n if not
limited by the Besov regularity. Fortunately, recent studies indicate that for the solution
of elliptic operator equations this Besov regularity is quite large, see, e.g., [10, 11, 13], and,
moreover, that in many cases it is much larger than the Sobolev regularity that governs the
convergence rate of non-adaptive schemes.

The concept of best N–term approximation is closely related to the weak `τ–spaces
`w
τ (N ). Given some 0 < τ < 2, `w

τ (N ) is defined as

`w
τ (N ) := {c ∈ `2(N ) : |c|`w

τ
:= sup

n∈N

n1/τ |γn(c)| < ∞}, (3.7)
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where γn(c) is the nth largest coefficient in modulus of c. Then, for each s > 0,

sup
N

N sσN (v) h |v|`w
τ
, (3.8)

where here, and for the remainder of this paper, s and τ are always related according to

τ = (
1

2
+ s)−1.

The expression |v|`w
τ

defines only a quasi-norm since it does not necessarily satisfy the
triangle inequality. Yet, for each 0 < τ < 2, there exists a C1(τ) > 0 with

|v + w|`w
τ
≤ C1(τ)

(

|v|`w
τ

+ |w|`w
τ

)

(v,w ∈ `w
τ (N )). (3.9)

We refer to [6, 20] for further details on the quasi–Banach spaces `w
τ (N ).

For some s∗ larger than any s for which (3.6) can be expected (i.e., s > d−t
n ), we assume

the existence of the following three subroutines:

• APPLY[w, ε] → zε. Determines for ε > 0 and a finitely supported w, a finitely
supported zε with

‖Gw − zε‖ ≤ ε. (3.10)

Moreover, for any s < s∗, #supp zε . ε−1/s|w|
1/s
`w
τ

, where the number of arithmetic
operations and storage locations used by this call is bounded by some absolute multiple

of ε−1/s|w|
1/s
`w
τ

+ #suppw + 1.

• RHS[ε] → fε. Determines for ε > 0, a finitely supported fε with ‖f − fε‖ ≤ ε.

Moreover, for any s < s∗, if u ∈ `w
τ (N ), then #supp fε . ε−1/s|u|

1/s
`w
τ

, where the
number of arithmetic operations and storage locations used by the call is bounded by

some absolute multiple of ε−1/s|u|
1/s
`w
τ

+ 1.

• COARSE[w, ε] → wε. Determines for a finitely supported w, a finitely supported
wε, such that

‖w − wε‖ ≤ ε. (3.11)

Moreover, #suppwε . inf{N : σN (w) ≤ ε}, and COARSE can be arranged to
take a number of arithmetic operations and storage locations that is bounded by an
absolute multiple of #suppw + max{log(ε−1‖w‖), 1}.

Using that G : `2(N ) → `2(N ) is bounded, the properties of APPLY and RHS imply
the following:

Proposition 3.3. For any s ∈ (0, s∗), G : `w
τ (N ) → `w

τ (N ) is bounded. For zε :=
APPLY[w, ε] and fε := RHS[ε], we have |zε|`w

τ
. |w|`w

τ
and |fε|`w

τ
. |u|`w

τ
, uniformly

over ε > 0 and all finitely supported w.

Proof. Since the proof in [33] is incomplete, we include a proof here. We first show that
for s ∈ (0, s∗), G : `w

τ (N ) → `w
τ (N ) is bounded. Let C > 0 be a constant such that for
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zε := APPLY[w, ε], supp zε ≤ Cε−1/s|w|
1/s
`w
τ

. Let v ∈ `w
τ (N ) and N ∈ N be given. For

ε̄ := Cs|vN |`w
τ
N−s, let zε̄ := APPLY[vN , ε̄]. Then, by (3.8),

‖Gv − zε̄‖ ≤ ‖GvN − zε̄‖ + ‖G‖‖v − vN‖

. Cs|vN |`w
τ
N−s + ‖G‖N−s|v|`w

τ
. N−s|v|`w

τ
.

Since #supp zε ≤ N , from again (3.8) we infer that |Gv|`w
τ

. |v|`w
τ
.

By using that for any v ∈ `w
τ (N ), and finitely supported z, we have

|z|`w
τ

. |v|`w
τ

+ (#supp z)s‖v − z‖ (3.12)

[6, Lemma 4.11], for finitely supported w, ε > 0, and with zε := APPLY[w, ε], we have
|zε|`w

τ
. |Gw|`w

τ
+ (#supp zε)

sε ≤ |Gw|`w
τ

+ Cs|w|`w
τ

. |w|`w
τ
. Similarly, for fε := RHS[ε],

we have |fε|`w
τ

. |Gu|`w
τ

+ (#supp fε)
sε ≤ |u|`w

τ
.

Thanks to the properties of COARSE we have the following:

Proposition 3.4. Let µ > 1 and s > 0. Then for any ε > 0, v ∈ `w
τ (N ), and finitely

supported w with
‖v − w‖ ≤ ε,

for w := COARSE[µε,w] it holds that

#suppw . ε−1/s|v|
1/s
`w
τ

,

obviously ‖v − w‖ ≤ (1 + µ)ε, and

|w|`w
τ

. |v|`w
τ
.

Proof. Let N be the smallest integer such that ‖vN − v‖ ≤ (µ − 1)ε for a best N–term

approximation vN of v. Then #suppvN . ε−1/s|v|
1/s
`w
τ

. Furthermore ‖vN − w‖ ≤ ‖vN −

v‖+‖v−w‖ ≤ (µ−1+1)ε = µε, and so #suppw . #suppvN . The last statement follows
from an application of (3.12).

Let us briefly discuss the assumptions we made on APPLY, RHS and COARSE. The
approximate matrix-vector product APPLY can be implemented in the way as introduced
in [6, §6.4]. Then the question whether APPLY has the assumed properties reduces to
the question how well G can be approximated by sparse matrices constructed by dropping
small entries. This can be quantified by the concept of s∗-compressibility, meaning that
if G is s∗-compressible, then APPLY has the assumed properties with that value of s∗.
For the basis case, for both differential operators and singular integral operators, and for
sufficiently smooth wavelets with sufficiently many vanishing moments in relation to their
approximation order, in [35] it was shown that G is s∗-compressible with s∗ larger than any
s = 1/τ − 1/2 for which u ∈ `w

τ (N ) can be expected. This result extends to aggregated
wavelet frames, see [33] for details.

Above, we silently assumed that the remaining entries from the sparse approximations
for G are exactly available. Generally, however, these entries have to be approximated by
numerical quadrature. For the basis case, in [24, 25] it was verified that these remaining
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entries can be approximated within a sufficiently small tolerance by quadrature rules that,
on average over each row and column, take only O(1) operations per entry, showing that
the “fully discrete” APPLY has the required properties. The development of suitable
numerical quadrature is more complicated in the aggregated wavelet frame case, since in
overlap regions, pairs of frame elements can be piecewise smooth with respect to uncorre-
lated partitions. Despite of this, in a forthcoming paper we will show that relatively easy
implementable quadrature exists that realizes the above O(1) condition also in the general
aggregated wavelet frame case. In the nice setting of the numerical examples in this pa-
per, all entries of G are exactly available at unit cost, so that the question of numerical
quadrature does not play a role.

Concerning RHS, for some s < s∗, let u ∈ `w
τ (N ). Then Proposition 3.3 shows that

f = Gu ∈ `w
τ (N ) with |f |`w

τ
. |u|`w

τ
. So (3.8) shows that indeed for any ε > 0, there exists

an fε with ‖f − fε‖ ≤ ε and #supp fε . ε−1/s|u|
1/s
`w
τ

. The question how to construct such an

fε in O(ε−1/s|u|
1/s
`w
τ

+ 1) operations cannot be answered in general, and therefore depends
on the right-hand side at hand.

Finally, a routine COARSE with the aforementioned properties can be based on binary
binning, see [1, 33] for details.

We are going to solve Gu = f with an approximate steepest descent method. Unless
F is a basis, G has a non-trivial kernel, meaning that, as with any iterative method,
a component of the error in a current approximation w that is in ker(G) will never be
reduced in subsequent iterations. Although such components do not influence the resulting
approximation w := F ∗D−1

B w because ker(F ∗D−1
B ) = ker(G), in principal they may cause

an unbounded increase of |w|`w
τ

as the iteration proceeds, making the cost of calls of APPLY

possibly uncontrollable. Under the assumption given below, we will nevertheless be able to
control these cost, which allow us to show optimality of the method.

Assumption 3.5. For any s ∈ (0, s∗), Q is bounded on `w
τ (N ).

On the one hand, it is a very difficult theoretical problem to prove that Q is bounded on
`w
τ (N ) for all s ∈ (0, s∗) for aggregated wavelet frames. On the other hand, this condition

can be indirectly verified numerically as we will show in Section 4, by observing the optimal
convergence of SOLVE. According to [33, Remark 3.13], the boundedness of Q on `w

τ (N )
for all s ∈ (0, s∗) is (almost) a necessary requirement for the scheme to behave optimally.
Moreover, not restricting our analysis to wavelet frames and to differential equations, there
exist frames, for example time–frequency localized Gabor frames (and more generally all
intrinsically polynomially localized frames [14, 21]), for which the boundedness of the cor-
responding Q has been proven rigorously, see [14, Theorem 7.1 in Section 7]. Therefore, for
specific operator equations, optimality of SOLVE based on, e.g., Gabor frame discretiza-
tions is justified theoretically.

Remark 3.6. For cases in which Assumption 3.5 might not be valid, one can apply a modified
algorithm that contains a recurrent inexact application of a projector to reduce components
in ker(G), similar to the algorithm modSOLVE in [33] based on Richardson iteration.
Although also for this algorithm optimal computational complexity can be shown, even
with a simpler proof, we focus on the algorithm without this projector, since we expect it
to have better quantitative properties.
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Now we are in the position to formulate our inexact steepest descent scheme. The
first step is to establish a routine that computes an approximate residual of the current
approximation w for u within a sufficiently small tolerance ζ such that either, in view of
Proposition 3.2, the relative error in this approximate residual is below some prescribed
tolerance δ, or the residual itself, being a measure of the error in w, is below some other
prescribed tolerance ε. In view of controlling the components of the approximations in
ker(G), the tolerance ζ should be in any way below some third input parameter ξ.

RES[w, ξ, δ, ε] → [r̃, ν]:

ζ := 2ξ
do ζ := ζ/2

r̃ := RHS[ζ/2] − APPLY[w, ζ/2]
until ν := ‖r̃‖ + ζ ≤ ε or ζ ≤ δ‖r̃‖

Theorem 3.7. The routine RES has the following properties.

i) [r̃, ν] = RES[w, ξ, δ, ε] terminates with ν ≥ ‖r‖, ν & min{ξ, ε} and ‖r − r̃‖ ≤ ξ.

ii) If, for s ≤ s̆ < s∗, with, as always, τ = (1
2 + s)−1 and τ̆ = (1

2 + s̆)−1, u ∈ `w
τ (N ), then

#supp r̃ . min{ξ, ν}−1/s|u|
1/s
`w
τ

+ min{ξ, ν}−1/s̆|w|
1/s̆
`w
τ̆

, (3.13)

min{ξ, ν}(s̆/s)−1|r̃|`w
τ̆

. |u|
s̆/s
`w
τ

+ min{ξ, ν}(s̆/s)−1|w|`w
τ̆
, (3.14)

and the number of arithmetic operations and storage locations required by the call is
bounded by some absolute multiple of

min{ξ, ν}−1/s|u|
1/s
`w
τ

+ min{ξ, ν}−1/s̆[|w|
1/s̆
`w
τ̆

+ ξ1/s̆(#suppw + 1)].

iii) In addition, if RES terminates with ν > ε, then ‖r− r̃‖ ≤ δ‖r̃‖, ν ≤ (1 + δ)‖r̃‖, and
ν ≤ 1+δ

1−δ‖r‖.

Proof. Let us start by proving i). If at evaluation of the until-case, ζ > δ‖r̃‖, then ‖r̃‖+ζ <
(δ−1 + 1)ζ. Since ζ is halved in each iteration, we infer that, if not by ζ ≤ δ‖r̃‖, RES will
terminate by ‖r̃‖ + ζ ≤ ε.

Since after any evaluation of r̃ inside the algorithm, ‖r̃ − r‖ ≤ ζ, any value of ν deter-
mined inside the algorithm is an upper bound on ‖r‖.

If the do–loop terminates in the first iteration, then ν ≥ ξ. In the other case, let
r̃old := RHS[ζ] − APPLY[w, ζ]. We have ‖r̃old‖ + 2ζ > ε and 2ζ > δ‖r̃old‖, so that

ν ≥ ζ > (2δ−1 + 2)−1(‖r̃old‖ + 2ζ) >
δε

2 + 2δ
,

and i) is shown.
The next step is to establish part ii). For any finitely supported v, we have

|v|`w
τ̆
≤ (#suppv)s̆−s|v|`w

τ
. (3.15)

11



So for g := RHS[ζ], from #suppg . ζ−1/s|u|
1/s
`w
τ

and |g|`w
τ

. |u|`w
τ
, we have ζ(s̆/s)−1|g|`w

τ̆
.

|u|
s̆/s
`w
τ

. With ζ, r̃, and ν having their values at termination, the properties of APPLY, cf.
Proposition 3.3, now show that

#supp r̃ . ζ−1/s|u|
1/s
`w
τ

+ ζ−1/s̆|w|
1/s̆
`w
τ̆

,

and
ζ(s̆/s)−1|r̃|`w

τ̆
. |u|

s̆/s
`w
τ

+ ζ(s̆/s)−1|w|`w
τ̆
.

Therefore, (3.13) and (3.14) follow from these expressions once we have shown that ζ &

min{ξ, ν}. When the do–loop terminates in the first iteration, we have ζ & ξ. In the other
case, with r̃old as above, we have δ‖r̃old‖ < 2ζ, and so from ‖r̃ − r̃old‖ ≤ ζ + 2ζ, we infer
‖r̃‖ ≤ ‖r̃old‖ + 3ζ < (2δ−1 + 3)ζ, so that ν < (2δ−1 + 4)ζ.

To complete the proof of ii), it remains to estimate the number or arithmetic operations.
Again the properties of APPLY and that of RHS together with the geometric decrease
of ζ inside the algorithm, imply that the total cost can be bounded by some multiple of

ζ−1/s|u|
1/s
`w
τ

+ ζ−1/s̆|w|
1/s̆
`w
τ̆

+ K(#suppw + 1), with K being the number of calls of APPLY

that were made. Taking into account its initial value, and the geometric decrease of ζ inside
the algorithm, we have K(#suppw+1) = Kξ−1/s̆ξ1/s̆(#suppw+1) . ζ−1/s̆ξ1/s̆(#suppw+
1). Since we have already shown that ζ & min{ξ, ν}, this finishes the proof of ii).

Finally, let us check iii). Suppose that RES terminates with ν > ε, and thus with
ζ ≤ δ‖r̃‖. Then obviously ‖r − r̃‖ ≤ δ‖r̃‖.

From ‖r̃‖ ≤ ‖r − r̃‖ + ‖r‖ ≤ δ‖r̃‖ + ‖r‖, we have ‖r̃‖ ≤ ‖r‖
1−δ , and so we arrive at

ν = ‖r̃‖ + ζ ≤ (1 + δ)‖r̃‖ ≤ 1+δ
1−δ‖r‖.

The routine RES is the basic building block for our fundamental algorithm which reads
as follows.

Algorithm 1. SOLVE[ω, ε] → w:
% Input should satisfy ω ≥ ‖Qu‖.
% Let λ and δ = δ(λ) be constants as in Proposition 3.2.
% Fix some constants µ > 1, β ∈ (0, 1).
% Let K, M be the smallest integers with βKω ≤ ε, λM ≤ 1−δ

1+δ
β

(1+3µ)κ(G) , respectively.

w0 := 0; ω0 := ω
for i := 1 to K do

w̄i := wi−1; ωi := βωi−1; ξi := ωi

(1+3µ)C3M % C3 from Proposition 3.2

while with [r̃i, νi] := RES[w̄i, ξi, δ,
ωi

(1+3µ)‖G†‖
], νi > ωi

(1+3µ)‖G†‖
do

zi := APPLY[r̃i, δ‖r̃i‖]

w̄i := w̄i + 〈r̃i,r̃i〉
〈zi,r̃i〉

r̃i

enddo

wi := COARSE[w̄i,
3µωi

1+3µ ]

endfor

It turns out that Algorithm 1 indeed converges with the optimal order. This is confirmed
by the following theorem which is the main result of this paper.
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Theorem 3.8. i) If ω ≥ ‖Qu‖, then w := SOLVE[ω, ε] terminates with
‖Q(u − w)‖ ≤ ε.

ii) For any η ∈ (0, s∗), let s̆ = s∗ − η
2 , τ̆ = (1

2 + s̆)−1, and let the constant β inside
SOLVE satisfy

β < min{1, [C1(τ̆)C2(τ̆)|I − Q|`w
τ̆
→`w

τ̆
]2(s

∗−η)/η}.

Then if for some s ∈ (0, s∗ − η], u ∈ `w
τ (N ), then #suppw . ε−1/s|u|

1/s
`w
τ

and, when

ε . ω . ‖u‖, the number of arithmetic operations and storage locations required by
the call is bounded by some absolute multiple of the same expression.

Proof. The first step is to prove i). Let us consider the ith iteration of the for-loop. Assume
that

‖Q(u − wi−1)‖ ≤ ωi−1, (3.16)

which holds by assumption for i = 1. The inner loop terminates after not more than M +1
calls of RES. Indeed, suppose that this is not the case, then the first M +1 calls of RES do
not terminate because the first condition in the until-clause is satisfied, and so Theorem 3.7
iii), Proposition 3.2, (3.1) and assumption (3.16) show that the (M + 1)th call outputs a νi

with

νi ≤
1 + δ

1 − δ
‖f − Gw̄i‖ =

1 + δ

1 − δ
‖G(u − w̄i)‖ ≤

1 + δ

1 − δ
‖G‖

1

2 |||u − w̄i|||

≤
1 + δ

1 − δ
‖G‖

1

2 λM |||u − wi−1||| ≤
1 + δ

1 − δ
‖G‖

1

2 λM‖G‖
1

2 ‖Q(u − wi−1)‖

≤
ωi

(1 + 3µ)‖G†‖

by definition of M , which gives a contradiction.
With ŵi denoting w̄i at termination of the inner loop, we have by (3.1) and the properties

of RES

‖Q(u − ŵi)‖ ≤ ‖G†‖
1

2 |||u − ŵi||| ≤ ‖G†‖‖G(u − ŵi)‖ ≤ ‖G†‖νi ≤
ωi

1 + 3µ
, (3.17)

so that, by the properties of COARSE,

‖Q(u − wi)‖ ≤ ωi

1+3µ + 3µωi

1+3µ = ωi,

showing convergence, and by definition of K completes the proof of the first statement.
The proof of ii) follows the lines of the proof of [33, Theorem 3.12]. In our case where

G has possibly a non-trivial kernel, generally, due to the errors in ran(I − Q), we have
no convergence of ŵi to u for i → ∞, and as a consequence, we are not able to bound
|wi|`w

τ
by some absolute multiple of |u|`w

τ
. Instead we prove a weaker result (3.21), that,

however, suffices to conclude optimal computational complexity. By part i) of Theorem 3.7,
Proposition 3.2 and the definition of the ξi,

‖(I − Q)(ŵi − wi−1)‖ ≤ C3Mξi = ωi

1+3µ . (3.18)
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Since Q is bounded on `2, and by Assumption 3.5, it is bounded on `w
τ̆ , an interpolation

argument, cf. [20, (4.24)], shows that it is bounded on `w
τ , uniformly in τ ∈ [τ̆ , 2]. Let Ni

be the smallest integer such that

‖Qu − (Qu)Ni
‖ ≤ ωi

1+3µ , (3.19)

where (Qu)N denotes the best N -term approximation for Qu. Then, using the assumption
u ∈ `w

τ (N ), (3.8) shows that

Ni . ω
−1/s
i |Qu|

1/s
`w
τ

. ω
−1/s
i |u|

1/s
`w
τ

,

and so, using (3.15),

ω
(s̆/s)−1
i |(Qu)Ni

|`w
τ̆

. |u|
(s̆/s)−1
`w
τ

|(Qu)Ni
|`w

τ
. |u|

(s̆/s)−1
`w
τ

|Qu|`w
τ

. |u|
s̆/s
`w
τ

. (3.20)

From (3.17), (3.18) and (3.19), we get

‖(Qu)Ni
+ (I − Q)wi−1 − ŵi‖ ≤ 3ωi

1+3µ .

From Proposition 3.4, with v reading as (Qu)Ni
+ (I−Q)wi−1 and by using that µ > 1, it

follows that wi := COARSE[ŵi,
3µωi

1+3µ ] satisfies

|wi|`w
τ̆
≤ C2(τ̆)|(Qu)Ni

+ (I − Q)wi−1|`w
τ̆

≤ C1(τ̆)C2(τ̆)|(Qu)Ni
|`w

τ̆
+ C1(τ̆)C2(τ̆)|(I − Q)|`w

τ̆
←`w

τ̆
|wi−1|`w

τ̆

by (3.9), and so by (3.20),

ω
(s̆/s)−1
i |wi|`w

τ̆
≤ C|u|

s̆/s
`w
τ

+ C1(τ̆)C2(τ̆)|(I − Q)|`w
τ̆
←`w

τ̆
β(s̆/s)−1ω

(s̆/s)−1
i−1 |wi−1|`w

τ̆

for some absolute constant C > 0. The assumption on β made in the theorem shows that

C1(τ̆)C2(τ̆)|(I − Q)|`w
τ̆
←`w

τ̆
β(s̆/s)−1 < 1,

from which we conclude by a geometric series argument that

ω
(s̆/s)−1
i |wi|`w

τ̆
. |u|

s̆/s
`w
τ

, (3.21)

which, as we emphasize here, holds uniformly in i. Moreover, knowing this, Proposition 3.4
and (3.20) show that

#suppwi . ω
−1/s̆
i |(Qu)Ni

+ (I − Q)wi−1|
1/s̆
`w
τ̆

. ω
−1/s
i

(

ω
(s̆/s)−1
i

[

|(Qu)Ni
|`w

τ̆
+ |I − Q|`w

τ̆
→`w

τ̆
|wi−1|`w

τ̆

])1/s̆

. ω
−1/s
i |u|

1/s
`w
τ

, (3.22)

again uniformly in i.
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For any computed νi in the inner loop, Theorem 3.7 i) shows that ωi

(1+3µ)‖G†‖
. νi. At

termination of the inner loop we have νi . ωi, whereas for any evaluation of RES that does
not lead to termination, Theorem 3.7 iii) and Proposition 3.2 show that

νi ≤
1 + δ

1 − δ
‖f − Gw̄i‖ . |||u − w̄i||| ≤ |||u − wi−1||| . ωi−1.

We conclude that
νi h ωi,

uniformly in i and over all computations of νi in the inner loop.
Inside the body of the inner loop, we have that the tolerance for the call of APPLY

satisfies δ‖r̃i‖ ≥ δνi

1+δ by Theorem 3.7 iii) and, by Proposition 3.2, that | 〈r̃i,r̃i〉
〈zi,r̃i〉

| . 1. By

(3.21) and the fact that the number of iterations of the inner loop is uniformly bounded,
Theorem 3.7 ii) shows that

ω
(s̆/s)−1
i |r̃i|`w

τ̆
. |u|

s̆/s
`w
τ

, ω
(s̆/s)−1
i |w̄i|`w

τ̆
. |u|

s̆/s
`w
τ

.

With this result and (3.22), Theorem 3.7 ii) and the properties of APPLY (with s reading
as s̆) show that

#supp r̃i . ω
−1/s
i |u|

1/s
`w
τ

, #supp zi . ω
−1/s
i |u|

1/s
`w
τ

, #supp w̄i . ω
−1/s
i |u|

1/s
`w
τ

.

By using these results concerning the lengths of the supports and the `w
τ̆ -norms, again

Theorem 3.7 ii) and the properties of APPLY and COARSE show that the number
of arithmetic operations and storage locations required for the computation of wi starting

from wi−1 is bounded by an absolute multiple of ω
−1/s
i |u|

1/s
`w
τ

+max{log(ω−1
i ‖ŵi‖), 1}. From

log(ω−1
i ‖ŵi‖) . ω

−1/s̆
i ‖ŵi‖

1/s̆ . ω
−1/s̆
i |ŵi|

1/s̆
`w
τ̆

. ω
−1/s
i |u|

1/s
`w
τ

, as well as 1 . ω−1/s‖u‖1/s .

ω
−1/s
i |u|

1/s
`w
τ

by assumption, the geometric decrease of the ωi, and ωK & ε, which, in case
K = 0, is an assumption, the proof is completed.

4 Numerical Experiments

After the construction of a convergent and asymptotically optimal steepest descent algo-
rithm, we now investigate the practical applicability of the scheme. Moreover we want
to compare it with the adaptive scheme based on the damped Richardson iteration. The
version of the latter scheme appearing in [14, 33] has been proven to converge and, under
Assumption 3.5, to be also asymptotically optimal. Unfortunately its concrete implemen-
tation has shown to be rather inefficient and therefore not well suited for comparison. For
this reason, we will compare the results of our adaptive frame algorithm SOLVE with those
obtained with the Richardson iteration based method from [7]. This scheme can be shown
to converge also in the case of a wavelet frame discretization, but a proof of its optimality
has not been achieved yet. Nevertheless we will see that it is in fact optimal in practice.
Again the routines RHS, APPLY, and COARSE are the basic building blocks for its
implementation which reads as follows.
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Figure 1: Exact solution (solid line) for the one–dimensional example being the sum of the
dashed and dash–dotted functions.

Algorithm 2. CDD2SOLVE[η, ε] → w:
% Input should satisfy η ≥ ‖Qu‖.

% Define the parameters αopt := 2
‖G‖+‖G†‖−1 and ρ := κ(G)−1

κ(G)+1 .

% Let θ and K be constants with 2ρK < θ < 1/2.

w := 0;
while η > ε do

for j := 1 to K do

w := w + αopt

(

RHS[ ρjη
2αK ] − APPLY[w, ρjη

2αK ]
)

;

endfor

η := 2ρKη/θ;
w := COARSE[w, (1 − θ)η];

enddo

For the discretization we use aggregated wavelet frames on suitable overlapping domain
decompositions, as the union of local wavelet bases lifted to the subdomains. As such local
bases we use piecewise linear wavelets with complementary boundary conditions from [16],
with order of polynomial exactness d = 2 and with d̃ = 2 vanishing moments. In particular,
we impose here homogenous boundary conditions on the primal wavelets and free boundary
conditions on the duals. We will test the algorithms both on 1D and 2D Poisson problems.

4.1 Poisson Equation on the Interval

We consider the variational formulation of the following problem of order 2t = 2 on the
interval Ω = (0, 1), i.e., n = 1, with homogenous boundary conditions

−u′′ = f on Ω, u(0) = u(1) = 0. (4.1)

The right-hand side f is given as the functional defined by f(v) := 4v(1
2) +

∫ 1
0 g(x)v(x)dx,

where
g(x) = −9π2 sin(3πx) − 4.
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Figure 2: Left: Convergence histories of SOLVE and CDD2SOLVE with respect to CPU
time. Two tests for CDD2SOLVE with different fixed damping parameters are shown.
Right: Convergence histories with respect to the support size of the iterands.

The solution is consequently given by

u(x) = − sin(3πx) +

{

2x2 , x ∈ [0, 1
2)

2(1 − x)2, x ∈ [12 , 1]
,

see Figure 1. As an overlapping domain decomposition we choose Ω = Ω1∪Ω2, where Ω1 =
(0, 0.7) and Ω2 = (0.3, 1). Associated to this decomposition we construct our aggregrated
wavelet frames just as the union of the local bases. It is shown in [14, 33] that such a system
is a (Gelfand) frame for Ht

0(Ω) and that it can provide a suitable characterization of Besov
spaces in terms of wavelet coefficients. On the one hand, the solution u is contained in
Hs+1

0 (Ω) only for s < 1
2 . This means that linear methods can only converge with limited

order. On the other hand, it can be shown that u ∈ Bs
τ (Lτ (Ω)) for any s > 0, 1/τ = s−1/2,

so that the wavelet frame coefficients u associated with u define a sequence in `w
τ for any

s < d−t
n , see [20, 33]. This ensures that the choice of wavelets with suitable order d can

allow for any order of convergence in adaptive schemes like that presented in this paper, in
the sense that the error is O(N−s) where N is the number of unknowns. Due to our choice
of piecewise linear wavelets with order d = 2, the optimal rate of convergence is bound to
be s = d−t

n = 1. We will show that the numerical experiments confirm this expected rate.
We have tested the adaptive wavelet algorithms CDD2SOLVE with parameters αopt ≈

0.52, θ = 2/7, K = 83, and with initial η = 64.8861, and SOLVE with parameters δ = 1,
µ = 1.0001, β = 0.9, M = C3 = 1, K = 134, ω0 = 64.8861. The parameters M, C3

have been chosen in such a way to produce an optimal response of the numerical results.
The numerical results in Figure 2 illustrate the optimal computational complexity of both
schemes. In particular, we show that for a suboptimal choice of the damping parameter
(α∗ = 0.2 ≤ αopt ≈ 0.52 in this specific test) SOLVE outperforms CDD2SOLVE. In
practice, the wrong guess of the damping parameter can even spoil convergence and/or
optimality.

In order to speed up computational time, we have implemented a caching strategy for
the entries of the stiffness matrix involved. Due to limited memory resources one is then
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Figure 3: Distribution of active wavelet frame elements in Ω1 and Ω2.
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Figure 4: Exact solution (left) and right–hand side for the two–dimensional Poisson equation
in an L–shaped domain.

forced to fix in advance a certain maximal number of frame elements that can be taken
into account during the iteration process, which means that we are solving a truncated
problem. Thus, for the computation of the residuals, only wavelets up to a fixed scale are
used. For small accuracies, the actually computed residuals may then deviate from the true
ones. This effect shows up in the CPU time histories displayed in Figure 2 for the area of
small error tolerances. However, we observe that the influence of the truncation is almost
negligible in the 1D–case, since here the finest refinement level can be chosen very high.

Finally, Figure 3 illustrates the distribution of the active wavelet frame elements used
by the steepest descent scheme, each of them corresponding to a colored rectangle. The
two overlapping subintervals are treated separately. For both patches one observes that the
adaptive scheme detects the singularity of the solution. The chosen frame elements arrange
in a tree–like structure with large coefficients around the singularity, while on the smooth
part the coefficients are equally distributed, and along a fixed level they are here of similar
size.

4.2 Poisson Equation on the L-shaped Domain

We consider the model problem of the variational formulation of Poisson’s equation in two
spatial dimensions:

−∆u = f in Ω, u|Ω = 0. (4.2)

The problem will be chosen in such a way that the application of adaptive algorithms pays
off most, as it is the case for domains with reentrant corners. Here, the reentrant corners
themselves lead to singular parts in the solutions, forcing them to have a limited Sobolev
regularity, even for smooth right–hand sides. For instance, considering the L-shaped domain
Ω = (−1, 1)2\[0, 1) × [0, 1), and f ∈ L2(Ω), the solution u is known to be of the form

u = κS + ū,

where ū ∈ H2(Ω) ∩ H1
0 (Ω), κ is a generally non-zero constant, and, with respect to polar

coordinates (r, θ) related to the reentrant corner,

S(r, θ) := ζ(r)r2/3 sin(
2

3
θ),
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Figure 5: Approximations and corresponding pointwise errors produced by the adaptive
steepest descent algorithm, using piecewise linear frame elements. Upper part: Approxima-
tions with 287, 694, and 809 frame elements. Lower part: Approximations with 952, 1139,
and 4617 frame elements.
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where ζ ∈ C∞(Ω) is a truncation function. We use S as exact solution, which is shown to-
gether with the corresponding right–hand side in Figure 4. It is well-known that S ∈ Hs(Ω)
for s < 5/3 only, but it is contained in every Besov space Bs

τ (Lτ (Ω)), where s > 0,
1/τ = (s − 1)/2 + 1/2, see [10]. As previously recalled, the convergence rate of a uni-
form refinement strategy is determined by the Sobolev regularity of the solution, while
in the context of adaptive schemes it depends on the Besov regularity [11]. In particu-
lar, considering piecewise linear approximation, the best possible convergence rate in the
H1(Ω)-norm for uniform refinement strategies is O(N−( 5

3
−1)/2), with N being the number

of unknowns, whereas our adaptive frame scheme gives the optimal rate O(N−1/2). The
latter can be shown, in view of our assumptions on the APPLY routine, provided that
the wavelets used in the construction of the aggregated frame are smooth enough and have
sufficiently many vanishing moments, see [33] for a detailed discussion of this relation.

More generally, assuming f is sufficiently smooth, with piecewise polynomial approxi-
mation of order d, a further expansion of u into more singularity functions associated to the
corners of the domain shows that with the adaptive scheme the optimal rate O(N−(d−1)/2)
is reached, whereas with uniform refinement strategies the rate is always restricted to
O(N−( 5

3
−1)/2).

For our numerical experiments, we will use an aggregated wavelet frame. With Ω1 =
(−1, 0)× (−1, 1), Ω2 = (−1, 1)× (−1, 0), and ¤ = (0, 1)2, let κi be affine bijections between
¤ and Ωi (i = 1, 2). For Ψ¤ being a piecewise linear wavelet basis as mentioned above for
H1

0 (¤), we set F = ∪2
i=1κi(Ψ

¤). Although this construction is in the spirit of that from
[14, 33], we cannot conclude from the theory developed there that F is actually a frame.
The difficulty is that there does not exist a partition of unity with respect to the open cover
Ω1 ∪ Ω2 of Ω. The non-overlapping parts of Ω1 and Ω2 are infinitely close at the reentrant
corner. We give a direct proof that nevertheless F is a frame.

Using that κi(Ψ
¤) are frames (even bases) for H1

0 (Ωi), it is sufficient to show that

‖u‖2
H1(Ω) h inf

u1∈H1
0
(Ω1), u2∈H1

0
(Ω2),u=u1+u2

‖u1‖
2
H1(Ω1) + ‖u2‖

2
H1(Ω2)

,

uniformly in u ∈ H1
0 (Ω). Let φ : [0, 3π

2 ] → R≥0 be a smooth function with φ(θ) = 1 for
θ ≤ π

2 and φ(θ) = 0 for θ ≥ π. Writing u = u1 + u2 where u2(x, y) = u(x, y)φ(θ(x, y)) with
(r(x, y), θ(x, y)) being the polar coordinates of (x, y) with respect to the reentrant corner,
we have that ui ∈ H1

0 (Ωi) (i = 1, 2). Since Ω is a Lipschitz domain, with δ(x, y) denoting
the distance of (x, y) ∈ Ω to the boundary, we know that for u ∈ H1

0 (Ω), δ−1u ∈ L2(Ω)
with ‖δ−1u‖L2(Ω) . ‖u‖H1(Ω), uniformly in u, see [27, Theorem 1.4.4.4]. Since furthermore

∇(uφ) = φ∇u +
u

r

(

− sin(θ)
∂φ

∂θ
, cos(θ)

∂φ

∂θ

)T

,

and r(x, y) ≥ δ(x, y), we conclude that ‖ui‖H1(Ω) . ‖u‖H1(Ω) uniformly in u, which com-
pletes the proof of F being a frame for H1

0 (Ω).
We have tested the adaptive wavelet algorithms CDD2SOLVE with parameters αopt ≈

0.238, θ = 2/7, K = 488, and with initial η = 158.8, and SOLVE with parameters δ = 1,
µ = 1.0001, β = 0.9, M = C3 = 1, K = 92, ω0 = 158.8. In Figure 5 we show some of the
approximations and the corresponding pointwise differences to the exact solution produced
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Figure 6: Convergence histories of SOLVE and CDD2SOLVE with respect to CPU time.

by our steepest descent scheme. The numerical results in Figure 6 illustrate the optimal
convergence of both schemes for moderate accuracies. In order to get good approximations
of the true residuals, here we need a significantly higher number of frame elements than in
the one–dimensional example discussed in Section 4.1. Therefore, due to the restriction on
the number of frame elements, we observe a deviation of the computed residuals from the
true ones sooner in the iteration process.

Remark 4.1. For the damped Richardson and the steepest descent scheme, optimality has
been theoretically proven only under Assumption 3.5. As previously mentioned, according
to [33, Remark 3.13], the boundedness of Q on `w

τ (N ) for all s ∈ (0, s∗) is (almost) a
necessary requirement for the scheme to behave optimally. So our numerical results can
also be seen as a possible indirect confirmation of such boundedness.

Remark 4.2. We have restricted our numerical tests to piecewise linear wavelets with com-
plementary boundary conditions as defined in [16]. Of course, one may consider higher
order wavelets, but one would encounter the following drawback. For the wavelet bases
constructed in [15, 16], as soon as the order increases, their condition number increases also
rather significantly, spoiling the benefits due to adaptivity. Nevertheless, very recently new
bases have been constructed [2, 26, 32] that exhibit significantly better condition numbers
and they will probably allow for very efficient implementations with high order bases.

5 Conclusion

In this paper we have presented a new optimally convergent adaptive scheme for the nu-
merical solution of elliptic operator equations, based on redundant frame discretizations.
The scheme is based on approximated iterations of steepest descent type. We have shown
that the search of the damping parameter can be executed adaptively at each iteration,
allowing for better practical usability compared to the damped Richarson iteration. There,
the optimal damping parameter can often only be guessed, since the estimation of the
lowest non–zero eigenvalue of the stiffness matrix is difficult in the case of frame discretiza-
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tions. The use of frames instead of Riesz bases does not spoil the optimal convergence
of the scheme that can be theoretically proved and numerically verified. Moreover, the
construction of wavelet systems on domains with complicated geometry is extremely sim-
plified by considering frames instead of Riesz bases. The numerical implementation is also
significantly simplified.

The results included in [30, 31] illustrate that frames can be naturally used for domain
decomposition methods, where the overlapping patches induce a Schwarz alternating itera-
tion. Together with adaptive schemes and the implementation of well-conditioned high order
bases [2, 26, 32], we expect that this line of research will produce a significant breakthrough
for numerical schemes based on frame decompositions.
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