
A Mathematical Model for Protein Oscillations in Bacteria
Peter Rashkov1, Bernhard A. Schmitt1, Stephan Dahlke1, Peter Lenz2, Lotte Søgaard-Andersen3

1FB Mathematik und Informatik, Philipps-Universität Marburg 2FB Physik, Philipps-Universität Marburg 3Max-Planck-Institut für terrestrische Mikrobiologie

Protein oscillations in bacteria govern many fundamental processes, such as cell polarity which influences the direction of motion. Oscillatory
changes in protein concentration between cell poles lead to reversals in the cell’s directional movement.

The soil bacterium
Myxococcus xanthus
moves with help of
two gliding motility
systems regulated
by the MglA-MglB
protein complex [3].

Scheme of M. xanthus reversing.

Empirical evidence on MglA, MglB [1, 2, 3] shows that they

• set up correct polarity of motility proteins at the poles,

• can bind to both poles and diffuse through the cytoplasm,

• localize ‘antagonistically’ at opposite poles, whereby MglA clusters
near the leading pole and MglB near lagging pole,

• interact only at localized sites at the cell poles .

Aim: develop a minimal model producing pole-to-pole oscill ations
under these assumptions without external triggers.

Model assumptions
Cell is modeled in 1-D as segment of length 1.

• Diffusion coefficient of each protein is assumed constant.

• Conservation of mass holds for each protein.

• Binding of the proteins to the cell poles occurs at a rate propor-
tional to the cytoplasmic concentration near the pole.

• Unbinding of the proteins from the poles into the cytoplasm occurs
at a rate proportional to their polar concentrations.

• Binding and unbinding rates depend on the concentrations of the
pole-bound proteins.

Three-compartment cell model
A system of n ≥ 2 proteins, labeled by i = 1, . . . ,n
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Identical laws of interaction at both poles → no directional bias

Differential equations
The assumptions yield a weakly-coupled reaction-diffusion system.

∂
∂ t

ci(x) = di∆ci︸︷︷︸

diffusion

, x ∈ [0,1]

1
di

d
dt
ℓi = αi(ℓ)ci(0)

︸ ︷︷ ︸

binding

− κi(ℓ)ℓi
︸ ︷︷ ︸

unbinding
1
di

d
dt

ri = αi(r)ci(1)
︸ ︷︷ ︸

binding

− κi(r)ri
︸ ︷︷ ︸

unbinding

, i = 1, . . . ,n

αi,κi ≥ 0, i = 1, . . . ,n assure positivity of concentrations at all times.

Boundary conditions
The following boundary conditions for ci are imposed,

∂
∂ x

ci(0) = αi(ℓ)ci(0)−κi(ℓ)ℓi,

∂
∂ x

ci(1) = −αi(r)ci(1)+κi(r)ri, i = 1, . . . ,n,

so that for continuous αi,κi the mass

mi(t) := ℓi(t)+
∫ 1

0
ci(t,x)dx+ ri(t), i = 1, . . . ,n,

is constant, mi(t)≡ mi(0), i = 1, . . .n for all t ≥ 0.

Stability analysis
Regular oscillations can occur as stable limit cycle of nonlinear system.
Design considerations:
• Linearized system at the steady state exhibits eigenvalues with posi-

tive real part.

• Nonlinear terms should limit growth of the solution and bend the tra-
jectory into a limit cycle.

• Necessary conditions for unstable steady state based on linear sta-
bility analysis are given in [4].

• Interaction functions αi,κi designed according to mathematical anal-
ysis to produce an unstable steady state.

A starting point is the homogeneous steady state ℓi = ri = ci(x) = 1,∀i.
Initially the case n = 2 is considered [4].
If α1(1,1) = α2(1,1), and d1 = d2, this steady state is unstable if the
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has eigenvalues with positive real part [4].
A more complex criterion exists for n > 2, general αi, and d1 6= d2.

“Stalker” scenario
Protein 1 is attracted to both poles; protein 2
follows it and repels it from the poles:

d1 = d2 = 1
α1(x1,x2) = 0.2+0.8x2

1

α2(x1,x2) = 0.5+0.5x1

κ1(x1,x2) = x2

κ2(x1,x2) =
2

1+ x2

Concentration profile at left pole
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Second protein (“stalker”) is lagging on the first.

Color-plot of c1(t,x), horizontal axis t, vertical axis x

Oscillations across cytoplasm are sinusoidal.

Robustness of model

To make reliable predictions, it is necessary
to verify that the model dynamics is robust
against small variations in parameters or ini-
tial conditions.

The model should contain as few parameters
as possible.

A parameter scan is undertaken to define the
parameter range where the qualitative behav-
ior of the model remains unchanged.

For the “stalker” scenario the parametrized in-
teraction functions are

α1(x1,x2) = 1−a1+a1x2
1

α2(x1,x2) = 1−a2+a2x1

κ1(x1,x2) = x2

κ2(x1,x2) =
a3

1+(a3−1)x2

Computations are performed under the as-
sumption d1 = d2 = 1.

Numerical results

Range of (ai)
3
i=1 where the solution is oscillatory.

“Antagonist” scenario
Both proteins cluster at opposite poles over
an extended time period:

d1 = d2 = 1
α1(x1,x2) = 0.05+0.95x2

1

α2(x1,x2) = (0.8+0.2x1)x2

κ1(x1,x2) =
2x2

1+ x2

κ2(x1,x2) =
4

3+ x2

Concentration profile at left pole
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Proteins display “antagonistic” pattern at the pole.

Color-plot of c1(t,x), horizontal axis t, vertical axis x
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First protein remains in cytoplasm for short periods.

Discussion
XModel produces self-sustained regular oscillations without external

triggers.

XDynamics of the model is robust against small variation in parame-
ters and initial conditions.

XDifferent interaction functions produce diverse spatiotemporal con-
centration patterns.

Outlook Study extensions of the model to higher number of proteins
and incorporate stochastic effects in order to describe irregular oscil-
lations characteristic of wild-type M. xanthus.
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