Übungen zur Funktionalanalysis

- Blatt 5 -

Abgabe Dienstag, 26.5.2010

Aufgabe 16 (4 Punkte). Seien $p, q \in [1, \infty]$ mit $\frac{1}{p} + \frac{1}{q} = 1$ und $a \in \ell^q(\mathbb{N} \times \mathbb{N})$. Zeigen Sie:

a) Für alle $p \in [1, \infty]$ ist ein stetiger Operator $T : \ell^p(\mathbb{N}) \to \ell^q(\mathbb{N})$ definiert durch

$$(x_k)_{k\in\mathbb{N}} \mapsto \left(\sum_k a_{jk} x_k\right)_{j\in\mathbb{Z}}.$$

b) Für $p \in]1, \infty]$ ist T kompakt, im allgemeinen jedoch nicht für p = 1 (Gegenbeispiel). [Erinerung:

$$\ell^p(\mathbb{R}) := \left\{ (x_n), \, x_n \in \mathbb{R}, \, n \in \mathbb{N} \mid \left(\sum_{n=1}^{\infty} |x_n|^p \right)^{1/p} < \infty \right\} \right]$$

Aufgabe 17 (4 Punkte). Sei $0 \neq g \in C([0,1])$, $k \in C([0,1]^2)$ mit k(s,t) = g(s) und $K \in \mathcal{L}(C([0,1]))$ der zugehörige Integraloperator. Berechnen Sie alle Eigenwerte $\lambda \neq 0$ von K, bestimmen Sie jeweils die Abbruchzahl $q(=q(\lambda))$ und geben Sie für $f \in C([0,1])$ die konkrete Zerlegung in

$$C([0,1]) = Kern(\lambda Id - K)^q \oplus Bild(\lambda Id - K)^q$$

Aufgabe 18 (4 Punkte). Sei $X \subset \mathbb{R}^m$ kompakt und

$$K(x,y) = \frac{H(x,y)}{|x-y|^{\alpha}}, \quad 0 < \alpha < m$$

ein schwach-singulärer Kern mit auf $X \times X$ stetigem H. Beweisen Sie, daß der entsprechende Integraloperator $L:C(X)\to C(X)$ kompakt ist.

Aufgabe 19 (4 Punkte). Sei H ein Hilbert-Raum, $L: H \to H$ linear und stetig. Beweisen Sie: L ist genau dann ein kompakter Operator, falls eine natürliche Zahl k > 0 derar existiert, daß $(L^*L)^k$ kompakt ist.