Übungen zur Funktionalanalysis

– Blatt 6 –

Abgabe Mittwoch, 02.06.2010, 14 Uhr

Aufgabe 20 (5 Punkte). Sei $k \in L^1([-1,1])$ und

$$K: L^1([0,1]) \longrightarrow L^1([0,1])$$
$$K(f)(s) := \int_0^1 k(s-t)f(t)dt$$

Zeigen Sie

- i) K ist ein stetiger Operator auf L([0,1]) mit $||K|| \le ||k||_{1,[-1,1]}$
- ii) K ist kompakt
- iii) Für $k(t) := e^t$ gilt: $\forall \lambda \neq 0$ ist

$$\operatorname{Kern}(\lambda \operatorname{Id} - K) \oplus \operatorname{Bild}(\lambda \operatorname{Id} - K) = L^1([0.1]).$$

(Ind i) kann die Messbarkeit von $(s,t) \mapsto k(s-t)f(t)$ vorausgesetzt werden.)

Aufgabe 21 (3 Punkte). Geben Sie ein Beispiel für einen stetigen Operator T auf einem Banachraum E an, für den nur die Kerne (oder nur die Bilder) von T^j stabil werden (d.h. Kern T^q =Kern T^{q+1} für ein q, aber Bild $T^j \neq \text{Bild}T^{j+1}$ für alle j bzw. anders herum).

Aufgabe 22 (4 Punkte). Sei $X = l^{\infty}$ und $L : l^{\infty} \longrightarrow l^{\infty}$ definiert durch $L(c_1, c_2, c_3, ...) = (c_2, c_3, c_4, ...)$. Berechnen Sie $\rho(L), \sigma_p(L), \sigma_r(L)$ und $\sigma_c(L)$. Wie ändert sich das Ergebnis, wenn man L als Operator von l^2 nach l^2 auffasst?