Fachbereich Mathematik und Informatik Universität Marburg Prof. Dr. Harald Upmeier Dr. Octavio Paniagua Sascha Henzgen

Übungen zur Mathematischen Logik

- Blatt 11 -

Abgabe Donnerstag, 24.01.2013 vor der Vorlesung

Aufgabe 37 (4 Punkte).

a) Sei $\iota: X \to \mathcal{T}$ die identische Term-Belegung. Beweise

$$\iota^{\vee}(t) = t$$

für alle Terme $t \in \mathcal{T}$. Hinweis: Zeige, dass die Menge aller Terme mit dieser Eigenschaft die Primterme enthält und abgeschlossen ist.

b) Sei umgekehrt $\gamma:X\to X\subset\mathcal{T}$ eine Term-Belegung, welche nur Variablen als Werte hat. Es gelte

$$\gamma^{\vee}(t) = t$$

für alle Terme $t \in \mathcal{T}$. Beweise: $\gamma = \iota$ ist die identische Term-Belegung

Aufgabe 38 (6 Punkte). Definiere

$$A = p_3 x_0 s_2 x_1 x_4 x_3$$

und

$$\gamma = \iota_{x_3|x_4}^{s_3 x_0 x_1 x_4 | x_0}$$

Dies bedeute $\gamma x_3 = s_3 x_0 x_1 x_4$, $\gamma x_4 = x_0$

- a) Bestimme die Ausnahmemenge von (A, γ) bezüglich x_4
- b) Besimme die neue Variable $z = (x_4)_{\gamma}^{|A|}$
- c) Bestimme die neue Term-Belegung $\gamma_{x_A}^z$
- d) Bestimme die Substitution

$$\gamma \circ \bigwedge_{x_4} A = \gamma \circ \bigwedge_{x_4} p_3 x_0 s_2 x_1 x_4 x_3$$

Aufgabe 39 (6 Punkte). Seien $\gamma = \iota_{x_0|x_1|x_2}^{x_2|x_2|x_4}$ und

$$A = p_2 s_2 x_1 x_0 x_2, B = p_3 x_0 x_1 x_2$$

- a) Bestimme die Ausnahmemengen von (A, γ) bezüglich x_2 und von (B, γ) bezüglich x_1
- b) Besimme die neuen Variablen $z=(x_2)_{\gamma}^{|A|}$ und $w=(x_1)_{\gamma}^{|B|}$
- c) Bestimme die neuen Term-Belegungen $\gamma^z_{x_2}$ und $\gamma^w_{x_1}$
- d) Bestimme die Substitution

$$\gamma \circ (\bigvee_{x_2} A \wedge \bigwedge_{x_1} B) = \gamma \circ (\bigvee_{x_2} p_2 s_2 x_1 x_0 x_2 \wedge \bigwedge_{x_1} p_3 x_0 x_1 x_2)$$